
CS341: ALGORITHMS (F23)
Lecture 1

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

TABLE OF CONTENTS

• Course mechanics

• Models of computation

• Worked example: Bentley’s problem

• Multiple solutions,

demonstrating different algorithm design techniques

• Analyzed in different models of computation

2

COURSE MECHANICS

3

COURSE MECHANICS

• In person

• Lectures

• “Lab” section is for tutorials

• Course website: https://student.cs.uwaterloo.ca/~cs341/

• Syllabus, calendar, policies, slides, assignments…

• Read this and mark important dates.

• Keep up with the lectures: Material builds over time…

• Piazza: For questions and announcements.

4

ASSESSMENTS

• All sections have same assignments, midterm and final

• Sections are roughly synchronized to ensure necessary

content is taught

• Tentative plan is 5 assignments, midterm, final

• See website for grading scheme, etc.

5

TEXTBOOK

• Available for free via library website!

• You are expected to know

• entire textbook sections,

as listed on course website

• all the material presented in lectures
(unless we explicitly say you aren’t

responsible for it)

• Some other textbooks cover some material better… see www

6

ACADEMIC OFFENSES

• Beware plagiarism

• High level discussion

about solutions with individual

students is OK

• Don’t take written notes away

from such discussions

• Class-wide discussion of solutions

is not OK (until deadline+2 days)

7

WHY IS CS341 IMPORTANT FOR YOU?

• Algorithms is the heart of CS

• It appears often in later courses

• It dominates technical interviews

• Master this material…

make your interviews easy!

• Designing algorithms is creative work

• Useful for some of the more

interesting jobs out there

• And, you want to graduate…

8

MODELS OF COMPUTATION

9

WHAT IS AN ALGORITHM?

• Informally: A description of input,

and the desired output

WHAT IS A COMPUTATIONAL PROBLEM?

• Informally: A well-defined

procedure (sequence of steps)

to solve a computational problem Correctness?

10

ANALYSIS OF ALGORITHMS

• Every program uses resources

• CPU instructions / cycles → time

• Memory (RAM) → space

• Others: I/O, network bandwidth/messages, locks…

(not covered in this course)

• Analysis is the study of how many resources an algorithm uses

• Usually using big-O notation (to ignore constant factors)

11

But how do we

know how much

time 𝑀 will take

on input 𝐼?

Depends on the

model of

computation

12

MODELS OF COMPUTATION

• Make analysis possible

• Ones covered in this course

• Unit cost model

• Word RAM model

• Bit complexity model

13

UNIT COST MODEL

• Each variable (or array entry) is a word

• Words can contain unlimited bits

• Basic operations on words take O(1) time

• Read/write a word in O(1)

• Add two words in O(1)

• Multiply two words in O(1)

• Space complexity is the number of words used
(excluding the input)

14

BUT SOMETIMES WE CARE ABOUT WORD SIZE

• Suppose we want to limit

the size of words

• Must consider how many

bits are needed to represent

a number 𝒏

15

n in decimal n in binary 𝐥𝐨𝐠𝟐 𝒏 + 𝟏

1 1 0 + 1 = 1

2 10 1 + 1 = 2

3 11 1.58 + 1 = 2

4 100 2 + 1 = 3

5 101 2.32 + 1 = 3

6 110 2.58 + 1 = 3

7 111 2.81 + 1 = 3

8 1000 3 + 1 = 4

9 1001 3.17 + 1 = 4

10 1010 3.32 + 1 = 4

11 1011 3.46 + 1 = 4

12 1100 3.58 + 1 = 4

Need 𝐥𝐨𝐠𝟐 𝒏 + 𝟏 bits to store 𝒏

i.e., 𝚯(𝐥𝐨𝐠 𝒏) bits

WORD RAM MODEL

• Key difference: we care about the size of words

• Words can contain O(lg n) bits,

where n is the number of words in the input

• Word size depends on input size!

• Intuition: if the input is an array of n words,

a word is large enough to store an array index

• Basic operations on words still take O(1) time

• (but the values they can contain are limited)

16

BIT COMPLEXITY MODEL

• Each variable (or array entry) is a bit string

• Size of a variable x is the number of bits it needs

• It takes O(log v) bits to represent a value v

• So if v is stored in x, the size of x must be Ω(lg 𝑣) bits

• Basic operations are performed on individual bits

• Read/write a bit in O(1)

• Add/multiply two bits in O(1)

• Space complexity is the total number of bits used
(excluding the input)

17

BENTLEY’S PROBLEM
A worked example to demonstrate algorithm design & analysis

18

1 7 4 0 2 1 3 1Example 1 Solution: 19

(take all of A[1..8])Array index 1 2 3 4 5 6 7 8

-1 -7 -4 -1 -2 -1 -3 -1Example 2
Index 1 2 3 4 5 6 7 8

Solution: 0

(take no elements of A)

1 -7 4 0 2 -1 3 -1Example 3
Index 1 2 3 4 5 6 7 8

Solution: 8

(take A[3..7])

19

in unit cost model?

1 -7 4 0 2 -1 3 -1

𝒊 𝒋

𝒌

Try all combinations of 𝒊, 𝒋
And for each combination,

sum over 𝒌 = 𝒊 . . 𝒋

Design: brute force

20

in unit cost model?

Avoid repeatedly summing over 𝒌 = 𝒊 . . 𝒋

Design: slightly better

brute force

21

1 -7 4 0 2 -1 3 -1

𝒊 = 𝒋 𝒋 𝒋 𝒋

9 -3 4 -5 -2 -5 3 -1

9 -3 4 -5 -2 -5 3 -1

A

L R
Case 1: optimal sol’n

is entirely in L

Case 2: optimal sol’n

is entirely in R

1 -7 4 0 2 -1 3 0

1 -7 4 0 2 -1 3 0

A

L R
Case 3: optimal sol’n

crosses the partition

22

1 -7 4 0 2 -1 3 0A
Find: maximum

subarray going over

the middle partition

Find 𝒊 that maximizes

the sum over 𝒊 . . . 𝒏/𝟐

Index 1 2 … n/2 n/2+1 … n

Find 𝒋 that maximizes the

sum over
𝒏

𝟐
+ 𝟏 . . . 𝒋

𝒊 𝒋
We can prove 𝐀[𝒊 … 𝒋]

is the maximum

subarray going over

the middle partition!

23

WHY 𝐴[𝑖 … 𝑗] IS MAXIMAL

• Suppose not for contradiction

• Then some 𝐴[𝑖′ … 𝑗′] that crosses the partition

has a larger sum

But both are

impossible!

A

𝑖 𝑗

𝑖′ 𝑗′

𝐿 𝑅

𝐿′ 𝑅′
This sum is bigger

So either ∑𝐿′ > ∑𝐿
or ∑𝑅′ > ∑𝑅

24

A
Index 1 2 … n/2 𝑛

2
+ 1 … n

9 -3 4 -5 -2 -5 3 -1

9 -3 4 -5 -2 -5 3 -1

A

L R

maxL = 10

9 -3 4 -5 -2 -5 3 -1

maxR = 3

maxI = 5 maxJ = 0

maxM = maxI + maxJ = 5

Return max(10, 3, 5) = 10
25

A
Index 1 2 … n/2 𝑛

2
+ 1 … n

1 -7 4 0 2 -1 3 0

1 -7 4 0 2 -1 3 0

A

L R

maxL = 4

1 -7 4 0 2 -1 3 0

maxR = 4

maxI = 4
maxJ = 4

maxM = maxI + maxJ = 8

Return max(4, 4, 8) = 8
26

How do we analyze this running time?

Need new mathematical techniques!

Recurrence relations, recursion tree

methods, master theorem…

This result is really quite good…

but can we do asymptotically better?

27

(in unit cost model)

ANALYSIS IN THE BIT COMPLEXITY MODEL

• Revisiting Solution 1

28

Can only add a pair of bits

in O(1) time. How many

bits are added here?

𝐬𝐢𝐳𝐞 𝐀 𝒌 ∈ 𝐎 𝐥𝐨𝐠 𝐀 𝒌 bits.

𝐬𝐢𝐳𝐞 𝐬𝐮𝐦 ∈ ???

𝐬𝐮𝐦 = 𝐀 𝒊 + ⋯ + 𝐀[𝒌 − 𝟏]

so 𝐬𝐢𝐳𝐞 𝐬𝐮𝐦 ∈ 𝐎 𝐥𝐨𝐠 𝐀 𝒊 + ⋯ + 𝐀 𝒌 − 𝟏 bits

How to simplify?

COMPLEXITY OF ADDITION

29

Adding two numbers x+y takes

O(max{size(x), size(y)}) bit operations
Fun fact: the size of x+y can be 1

bit larger than either x or y

(multiplication can double #bits)
This can be rewritten O(size(x)+size(y))

= O(lg x + lg y)

Let 𝐌 = 𝒎𝒂𝒙{𝑨 𝟏 , … , 𝑨 𝒏 }

𝐬𝐢𝐳𝐞 𝐬𝐮𝐦 ∈ 𝐎 𝐥𝐨𝐠 𝐀 𝒊 + ⋯ + 𝐀 𝒌 − 𝟏

∈ 𝐎 𝐥𝐨𝐠 𝐌 + ⋯ + 𝐌 bits

∈ 𝑶 𝐥𝐨𝐠 ((𝐤 − 𝒊)𝐌 bits

Optional: simplify to 𝑶 𝐥𝐨𝐠 𝐤𝐌

ADDING SUM AND A[K]

• Recall size 𝑠𝑢𝑚 ∈ 𝑂 log 𝑘𝑀 , size A 𝑘 ∈ 𝑂 log 𝐴 𝑘 bits

• Adding them takes

𝑂 log 𝑘𝑀 + log 𝐴 𝑘 bit operations

• And since log 𝐴[𝑘] ≤ log 𝑀 we get:

𝑂 log 𝑘𝑀 + log 𝑀

• And the first term asymptotically dominates:

𝑶(𝐥𝐨𝐠 𝒌𝑴)

30

ZOOMING OUT TO THE K LOOP

• The addition happens for all values of 𝑘

• Total time for the loop is at most ∑𝑘=𝑖
𝑗

𝑂(log 𝑘𝑀)

• Complicated to sum for 𝑘 = 𝑖 … 𝑗
so get an upper bound with 𝑘 = 1 … 𝑛

• ∑𝑘=1
𝑛 𝑂(log 𝑘𝑀) = 𝑂(log 𝑀 + log 2𝑀 + log 3𝑀 + ⋯ + log 𝑛𝑀)

• ⊆ 𝑂 log 𝑛𝑀 + log 𝑛𝑀 + log 𝑛𝑀 + ⋯ + log 𝑛𝑀

• = 𝑂 𝑛 log 𝑛𝑀

31

Careful to check this

does not affect the Θ

complexity (much).

(Check by finding

similar Ω result.)

And similarly

for this…

𝒏

ACCOUNTING FOR THE OUTER LOOPS

• 𝑘 loop is repeated

at most 𝑛2 times

• Each time taking at most

𝑂(𝑛 log 𝑛𝑀) time

• So total runtime is

𝑂(𝑛3 log 𝑛𝑀) time

32

Compare to unit cost model:

𝑂 𝑛3 time

Difference is due to

(1) growth in variable sizes and

(2) cost of bitwise addition

log-factor difference is common…

HOW ABOUT WORD RAM?

• If each variable fits in a single word,

the analysis (and result) is as in the unit cost model

• Since there are 𝑛 input words,

each 𝐴[𝑘] will fit in one word only if size 𝐴 𝑘 ∈ O log 𝑛

• i.e., if O log 𝐴 𝑘 = O(log 𝑛)

• If a variable is too big to fit in a word,

it is stored in multiple words,

and analysis looks more like bit complexity model

33

BENTLEY’S SOLUTIONS: RUNTIME IN PRACTICE

• Consider solutions

implemented in C

• Some values

measured on a

Threadripper 3970x

• Red values

extrapolated from

measurements

• 0 represents time

under 0.01s

34

n Sol.4 O(n) Sol.3 O(n lg n) Sol.2 O(n2) Sol.1 O(n3)

100 0 0 0 0

1,000 0 0 0 0.12

10,000 0 0 0.036 2 minutes

100,000 0 0.002 3.582 33 hours

1M 0.001 0.017 6 minutes 4 years

10M 0.012 0.195 12 hours 3700 years

100M 0.112 2.168 50 days 3.7M years

1 billion 1.124 24.57 1.5 years > age of life

10 billion 19.15 5 minutes 150 years > age of universe

HOMEWORK: BIG-O REVIEW & EXERCISES

35

𝑓 𝑛 ∈ 𝑂(𝑔 𝑛)

36

𝑓 𝑛 ∈ Ω(𝑔 𝑛)
𝑔 𝑛

𝑓 𝑛

37

𝑓 𝑛 ∈ Θ(𝑔 𝑛)

𝑔 𝑛 ∈ Θ(𝑓 𝑛)

𝑓 𝑛 ∈ O(𝑔 𝑛)

𝑓 𝑛 ∈ Ω(𝑔 𝑛)

𝑂 + Ω = Θ

38

𝑓 𝑛 ∈ o 𝑔 𝑛

implies
𝑓 𝑛 ∈ O(𝑔 𝑛)

But NOT

vice versa

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛

implies
𝑓 𝑛 ∈ Ω(𝑔 𝑛)

But NOT

vice versa

39

EXERCISE
• Which of the following are true?

• 𝑛2 ∈ 𝑂(𝑛3)

• 𝑛2 ∈ 𝑜(𝑛3)

• 𝑛3 ∈ 𝜔(𝑛3)

• log 𝑛 ∈ 𝑜(𝑛)

• 𝑛 log 𝑛 ∈ Ω(𝑛)

• 𝑛 log 𝑛2 ∈ 𝜔(𝑛 log 𝑛)

• 𝑛 ∈ Θ(𝑛 log 𝑛)

40

EXERCISE
• Which of the following are true?

• 𝑛2 ∈ 𝑂(𝑛3) YES

• 𝑛2 ∈ 𝑜(𝑛3) YES

• 𝑛3 ∈ 𝜔(𝑛3) NO

• log 𝑛 ∈ 𝑜(𝑛) YES

• 𝑛 log 𝑛 ∈ Ω(𝑛) YES

• 𝑛 log 𝑛2 ∈ 𝜔(𝑛 log 𝑛) NO

• 𝑛 ∈ Θ(𝑛 log 𝑛) NO

41

COMPARING GROWTH RATES

42

43

LIMIT TECHNIQUE
FOR COMPARING GROWTH RATES

44

LIMIT RULES 1/3

All of the identities shown

hold only if the limits exist

45

LIMIT RULES 2/3

46

LIMIT RULES 3/3

Limit of an Exponential Function

lim
𝑥→𝑎

𝑏𝑓 𝑥 = 𝑏
lim
𝑥→𝑎

𝑓 𝑥

Limit of a Logarithm of a Function
lim
𝑥→𝑎

log𝑏 𝑓(𝑥) = log𝑏 lim
𝑥→𝑎

𝑓 𝑥

(Where base 𝑏 > 0)

47

L’HOSPITAL’S RULE

• Often we take the limit of
𝑓 𝑛

𝑔 𝑛
where

both 𝑓(𝑛) and 𝑔(𝑛) tend to ∞, or

both 𝑓(𝑛) and 𝑔(𝑛) tend to 0

• Such limits require L’Hospital’s rule

• This rule says the limit of 𝒇(𝒏)/𝒈(𝒏) in this case

is the same as the limit of the derivative

• In other words, lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= lim

𝑛→∞

𝑑

𝑑𝑛
𝑓 𝑛

𝑑

𝑑𝑛
𝑔 𝑛

48

USING THE LIMIT METHOD: EXERCISE 1
• Compare growth rate of 𝑛2 and 𝑛2 − 7𝑛 − 30

• lim
𝑛→∞

𝑛2−7𝑛−30

𝑛2

• = lim
𝑛→∞

(1 −
7

𝑛
−

30

𝑛2)

• = 1

• So 𝑛2 − 7𝑛 − 30 ∈ Θ(𝑛2)

49

USING THE LIMIT METHOD: EXERCISE 2
• Compare growth rate of ln 𝑛 2 and 𝑛1/2

• lim
𝑛→∞

ln 𝑛 2

𝑛1/2 = lim
𝑛→∞

𝑑

𝑑𝑛
ln 𝑛 2

𝑑

𝑑𝑛
𝑛1/2

50

USING THE LIMIT METHOD: EXERCISE 2
• Compare growth rate of ln 𝑛 2 and 𝑛1/2

• lim
𝑛→∞

𝑑

𝑑𝑛
ln 𝑛 2

𝑑

𝑑𝑛
𝑛1/2

• = lim
𝑛→∞

2 ln 𝑛 (1/𝑛)
1

2
𝑛−1/2

• = lim
𝑛→∞

4 ln 𝑛

𝑛1/2

• = lim
𝑛→∞

𝑑

𝑑𝑛
4 ln 𝑛

𝑑

𝑑𝑛
𝑛1/2

• = lim
𝑛→∞

4/𝑛
1

2
𝑛−1/2

• = lim
𝑛→∞

8

𝑛1/2

• = 0

• So, ln 𝑛 2 ∈ 𝑜(𝑛1/2)

51

Try these at home…

52

SUMMATIONS

AND SEQUENCES

53

This is included for

your notes

54

55

SEQUENCES

56

SEQUENCES CONTINUED This is included for

your notes

57

This is included for

your notes

58

LOGARITHM RULES

59

60

BASE OF LOGARITHM DOES NOT MATTER!

• Big-O notation does not distinguish between log bases

• Proof:

• Fix two constant logarithm bases b and c

• From log rules, we can change from log𝑐 to log𝑏

by using formula: logb 𝑥 = log𝑐 𝑥 / log𝑐 𝑏

• But log𝑐 𝑏 is a constant!

• So log𝑐 𝑥 ∈ Θ(log𝑏 𝑥)

We typically omit the base,

and just write 𝜣 𝐥𝐨𝐠 𝒙
for this reason

61

LOOP ANALYSIS

62

META-ALGORITHM FOR ANALYZING LOOPS

• Identify operations that require only constant time

• The complexity of a loop is the sum of

the complexities of all iterations

• Analyze independent loops separately and add the results

• If loops are nested, it often helps to start at the innermost,

and proceed outward… but,

• sometimes you must express several nested loops together in a

single equation (using nested summations),

• and actually evaluate the nested summations… (can be hard)

63

TWO BIG-O ANALYSIS STRATEGIES

• Strategy 1

• Prove a O-bound and a matching Ω-bound

separately to get a Θ -bound.

• Strategy 2

• Use Θ-bounds throughout the analysis and thereby obtain

a Θ-bound for the complexity of the algorithm

Often easier

(but not always)

64

EXAMPLE 1

65

Strategy 1: big-O and big-Ω bounds

66

Strategy 2: use Θ-bounds throughout the analysis

67

EXAMPLE 2
𝑂(1)

𝑂(1)

𝑂(1)

𝑂(1)

𝑂(1)

Consider this loop alone…

number of loop iterations?

𝑗 starts at 𝑖 and is repeatedly divided by

2… this can happen only 𝚯(𝐥𝐨𝐠 𝒊) times

So inner loop has runtime 𝚯(𝐥𝐨𝐠 𝒊)

And the entire inner loop is

executed for 𝑖 = 1,2, … , 𝑛

So, we have 𝑻 𝒏 ∈ 𝚯 ∑𝒊=𝟏
𝒏 𝐥𝐨𝐠 𝒊

𝑇 𝑛 ∈ O

𝑖=1

𝑛

log 𝑖 ⊆ O

𝑖=1

𝑛

log 𝑛 ⊆ 𝑶(𝒏 𝐥𝐨𝐠 𝒏) 𝑇 𝑛 ∈ Ω

𝑖=1

𝑛

log 𝑖 ⊆ Ω

𝑖=
𝒏
𝟐

𝑛

log
𝑛

2
⊆ 𝜴(𝒏 𝐥𝐨𝐠 𝒏)

68

… ANOTHER EXERCISE

IN LOOP ANALYSIS?

69

EXAMPLE 3 (BENTLEY’S PROBLEM, SOLUTION 1)

Try to analyze this yourself!

One possible solution is

given in these slides…

70

Strategy 1: big-O and big-Ω bounds

𝑇 𝑛 ∈ Θ 1 +

𝑖=1

𝑛

𝑗=𝒊

𝑛

Θ 1 +

𝑘=𝒊

𝒋

Θ 1 + Θ(1)

𝑇 𝑛 ∈

𝑖=1

𝑛

𝑗=𝒊

𝑛

𝚯 𝒋 − 𝒊 ∈ 𝚯

𝑖=1

𝑛

𝑗=𝒊

𝑛

(𝑗 − 𝑖)

𝑇 𝑛 ∈ 𝑶

𝑖=1

𝑛

𝑗=𝒊

𝑛

(𝑗 − 𝑖) ≤ 𝑂

𝑖=1

𝑛

𝑗=𝒊

𝑛

𝒏

≤ 𝑂

𝑖=1

𝑛

𝒋=𝟏

𝑛

𝑛

𝑻 𝒏 ∈ 𝑶(𝒏𝟑)

𝑂(1)

𝑂(1)

𝑂(1)

𝑂(1)

𝒊=1

𝑛

…

This is the maximum number of

iterations that could be

performed in this loop

71

Proving a big-Ω bound…

𝑇 𝑛 ∈ 𝚯

𝑖=1

𝑛

𝑗=𝒊

𝑛

(𝑗 − 𝑖)

𝑇 𝑛 ∈ 𝛀

𝑖=1

𝑛

𝑗=𝒊

𝑛

(𝑗 − 𝑖)

≥ Ω

𝑖=1

𝒏/𝟐

𝑗=𝒊

𝑛

(𝑗 − 𝑖)

≥ Ω

𝑖=1

𝑛/2

𝑗=𝟑𝒏/𝟒

𝑛

(𝑗 − 𝑖)

Recall:

Intuition: 𝑗 − 𝑖 is 𝛀(𝒏) in some iterations. How

many iterations? Lots?

To get a good Ω-bound, we ask questions like:

When do our loops have many iterations?

When is our dominant term large?

Many iterations: when our 𝒋 loop does 𝛀(𝒏)

iterations! For example, when 𝒊 ≤ 𝒏/𝟐…

Large dominant term: when 𝒋 is much

larger than 𝒊 (i.e., by a factor of n)

72

Proving a big-Ω bound… continued

𝑇 𝑛 ∈ Ω

𝑖=1

𝑛/2

𝑗=𝟑𝒏/𝟒

𝑛

(𝑗 − 𝑖)

≥ Ω

𝑖=1

𝑛/2

𝑗=3𝑛/4

𝑛
𝟑𝒏

𝟒
−

𝒏

𝟐

= Ω

𝑖=1

𝑛/2

𝑗=3𝑛/4

𝑛

𝒏/𝟒

≥ Ω
𝒏

𝟐
⋅

𝒏

𝟒
⋅

𝑛

4
= 𝛀(𝒏𝟑)

Recall:

Smallest possible value of 𝑗 − 𝑖
for these bounds on 𝒊, 𝒋

We will perform at least this much

work in every iteration!

This term does not depend on the

loop indexes, so just multiply by the

total number of loop iterations…

Since we have 𝑂 𝑛3 and Ω 𝑛3 , we have proved 𝚯 𝒏𝟑

73

74

BONUS

• Study-song of the day

• Tool - Descending

• youtu.be/PcSoLwFisaw

75

youtu.be/PcSoLwFisaw

