CS341: ALGORITHMS (F23)

Lecture 1

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

TABLE OF CONTENTS

- Course mechanics
- Models of computation
- Worked example: Bentley's problem
 - Multiple solutions, demonstrating different algorithm design techniques
 - Analyzed in different models of computation

COURSE MECHANICS

COURSE MECHANICS

In person

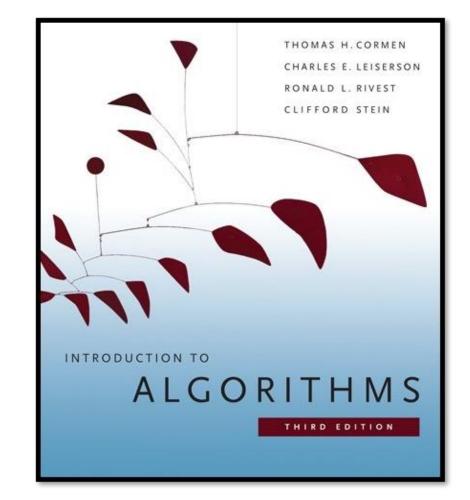
- Lectures
- "Lab" section is for tutorials
- Course website: https://student.cs.uwaterloo.ca/~cs341/
 - Syllabus, calendar, policies, slides, assignments...
 - Read this and mark important dates.
- Keep up with the lectures: Material builds over time...
- **Piazza:** For questions and announcements.

ASSESSMENTS

- All sections have same assignments, midterm and final
- Sections are roughly synchronized to ensure necessary content is taught
- Tentative plan is 5 assignments, midterm, final
- See website for grading scheme, etc.

TEXTBOOK

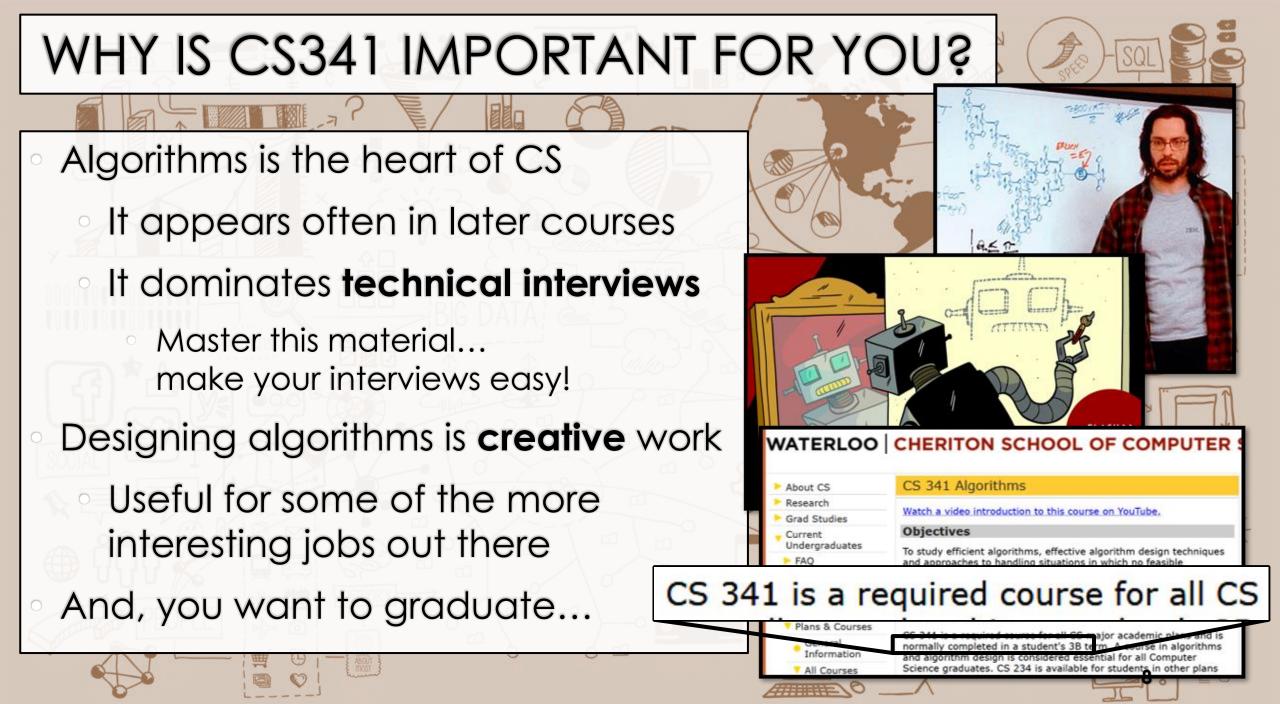
- Available for free via library website!
- You are expected to know
 - entire textbook sections, as listed on course website
 - all the material presented in lectures (unless we explicitly say you aren't responsible for it)



Some other textbooks cover some material better... see www

ACADEMIC OFFENSES

- Beware plagiarism
 - High level discussion about solutions with individual students is OK
 - Don't take written notes away from such discussions
 - Class-wide discussion of solutions is **not** OK (until deadline+2 days)

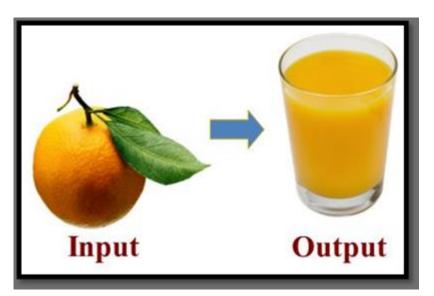


MODELS OF COMPUTATION

WHAT IS A COMPUTATIONAL PROBLEM?

 Informally: A description of input, and the **desired output**

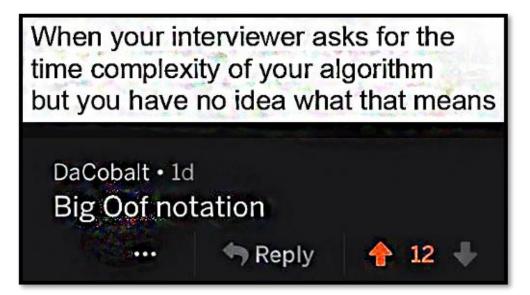
WHAT IS AN **ALGORITHM**?



Informally: A well-defined
 procedure (sequence of steps)
 to solve a computational problem

ANALYSIS OF ALGORITHMS

- Every program uses **resources**
 - \circ CPU instructions / cycles \rightarrow time
 - Memory (RAM) → space



- Others: I/O, network bandwidth/messages, locks... (not covered in this course)
- Analysis is the study of how many resources an algorithm uses
 Usually using big-O notation (to ignore constant factors)

Running Time of a Program: $T_M(I)$ denotes the running time of a program M on a problem instance I.

Worst-case Running Time as a Function of Input Size: $T_M(n)$ denotes the maximum running time of program M on instances of size n:

$$T_M(n) = \max\{T_M(I) : \operatorname{Size}(I) = n\}.$$

Average-case Running Time as a Function of Input Size: $T_M^{avg}(n)$ denotes the *average* running time of program *M* over all instances of size *n*:

$$T_{M}^{avg}(n) = \frac{1}{|\{I : \text{Size}(I) = n\}|} \sum_{\{I : \text{Size}(I) = n\}} T_{M}(I).$$

But how do we know how much **time** *M* will take on input *I*?

Depends on the model of computation

MODELS OF COMPUTATION

- Make analysis possible
- Ones covered in this course
 - Unit cost model
 - Word RAM model
 - Bit complexity model

UNIT COST MODEL

- Each variable (or array entry) is a word
- Words can contain unlimited bits
- Basic operations on words take O(1) time
 - Read/write a word in O(1)
 - Add two words in O(1)
 - Multiply two words in O(1)
- Space complexity is the number of words used (excluding the input)

BUT SOMETIMES WE CARE ABOUT WORD SIZE

- Suppose we want to limit the size of words
- Must consider how many
 bits are needed to represent
 a number n

Need $[\log_2 n] + 1$ bits to store n

i.e., $\Theta(\log n)$ bits

n in decimal	n in binary	$\lfloor \log_2 n \rfloor + 1$
1	1	[0] + 1 = 1
2	10	[1] + 1 = 2
3	11	[1.58] + 1 = 2
4	100	[2] + 1 = 3
5	101	[2.32] + 1 = 3
6	110	[2.58] + 1 = 3
7	111	[2.81] + 1 = 3
8	1000	[3] + 1 = 4
9	1001	[3.17] + 1 = 4
10	1010	[3.32] + 1 = 4
11	1011	[3.46] + 1 = 4
12	1100	[3.58] + 1 = 4

WORD RAM MODEL

- Key difference: we care about the size of words
- Words can contain O(lg n) bits,
 where n is the number of words in the input
 - Word size depends on input size!
 - Intuition: if the input is an array of n words,
 a word is large enough to store an array index
- Basic operations on words still take O(1) time
 - (but the values they can contain are limited)

BIT COMPLEXITY MODEL

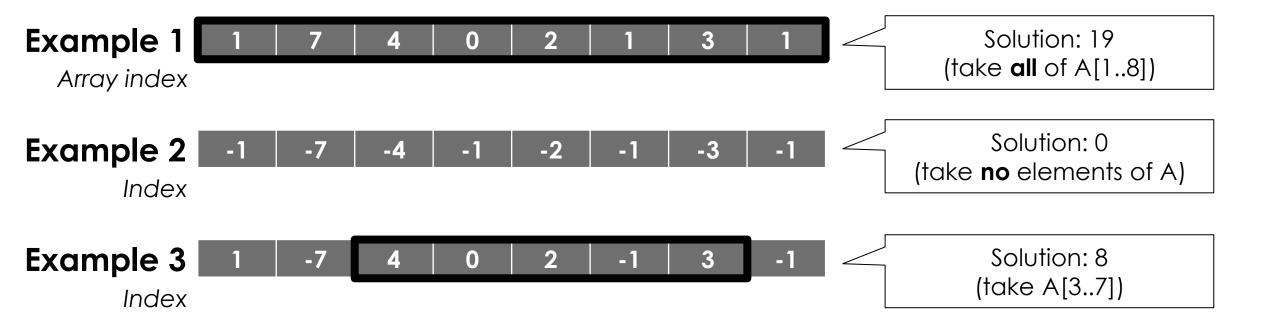
- Each variable (or array entry) is a bit string
- $^{\circ}$ Size of a variable **x** is the number of bits it needs
 - It takes O(log v) bits to represent a value v
 - So if **v** is stored in **x**, the size of **x** must be $\Omega(\lg v)$ bits
- Basic operations are performed on individual bits
 - Read/write a bit in O(1)
 - Add/multiply two bits in O(1)
- Space complexity is the total number of bits used (excluding the input)

BENTLEY'S PROBLEM

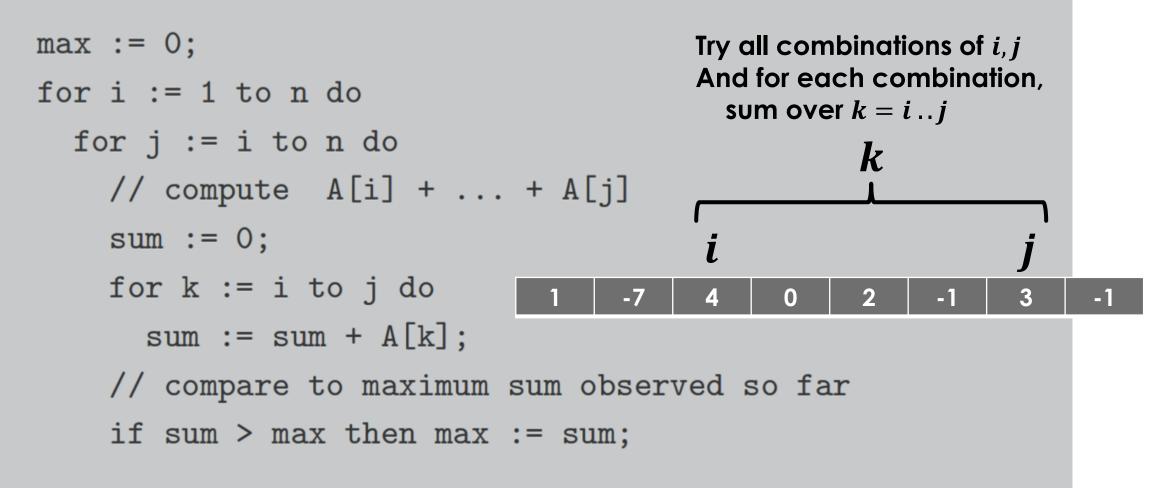
A worked example to demonstrate algorithm design & analysis

Bentley's Problem (introductory example)

Given an array of n integers, A[1], ..., A[n], find the maximum sum of consecutive entries of A (return 0 if all entries of A are negative).

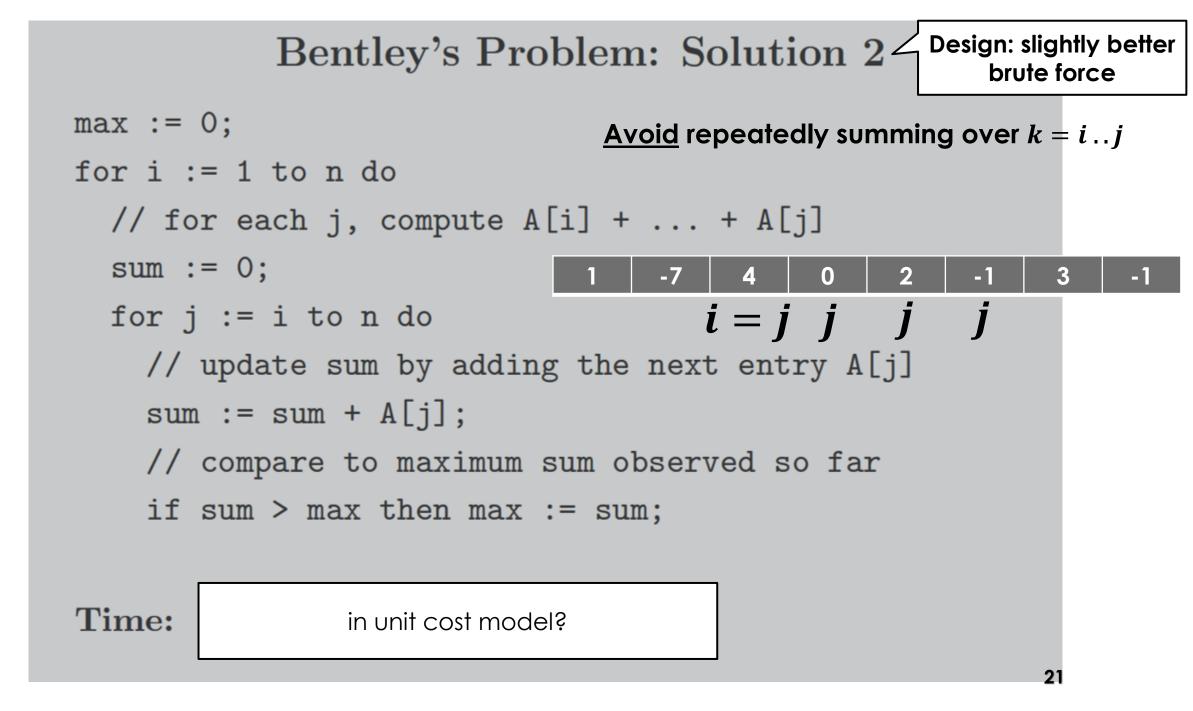


Bentley's Problem: Solution 1 Design: brute force



Time:

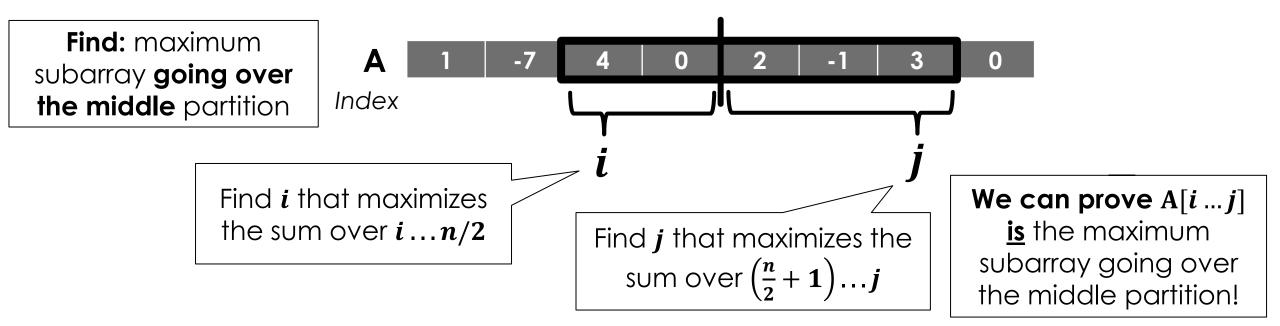
in unit cost model?



Bentley's Problem: Solution 3

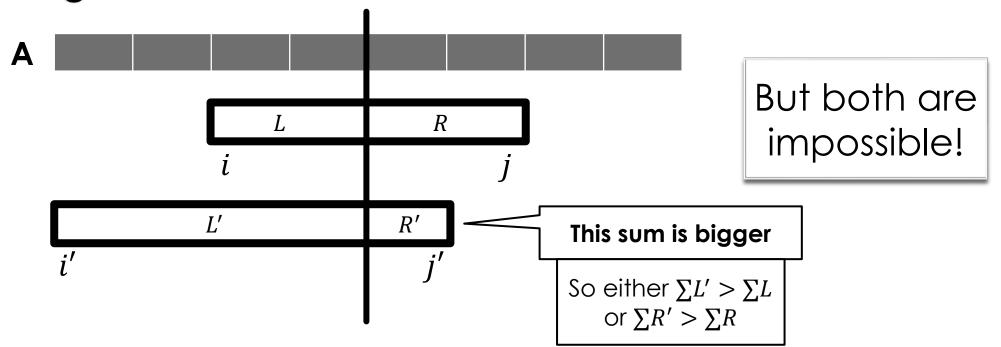
Divide-and-Conquer can also be used here: Divide an array into two equally-sized parts. Our solution must either be entirely in the left part, or entirely in the right part, or it must be crossing the partition line.

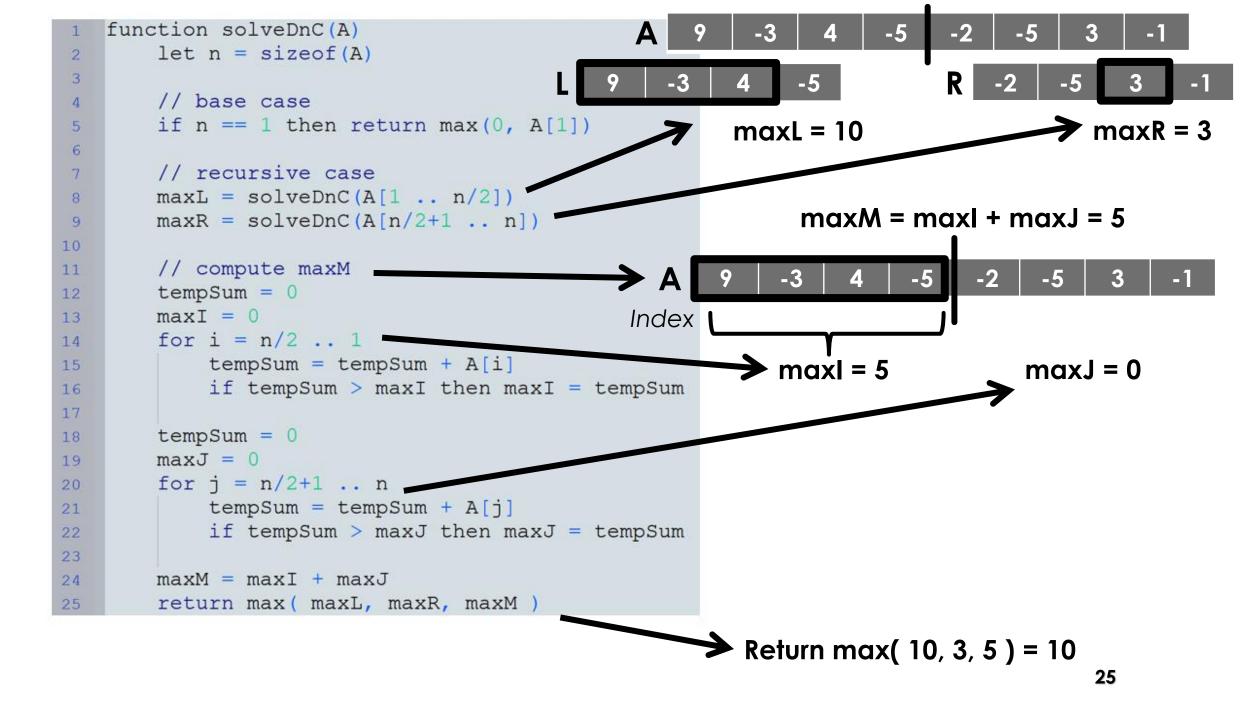
Case 1: optimal sol'n is <u>entirely in L</u>	L	A 9 9 -3	-3 4	-5	-5	-2 R	-5 -2	3 -5	-1 3	-1
Case 2: optimal sol'n is <u>entirely in R</u>									_	
Case 3: optimal sol'n		A 1	-7	4	0	2	-1	3	0	_
crosses the partition	L	1 -7	4	0		' R	2	-1	3	0

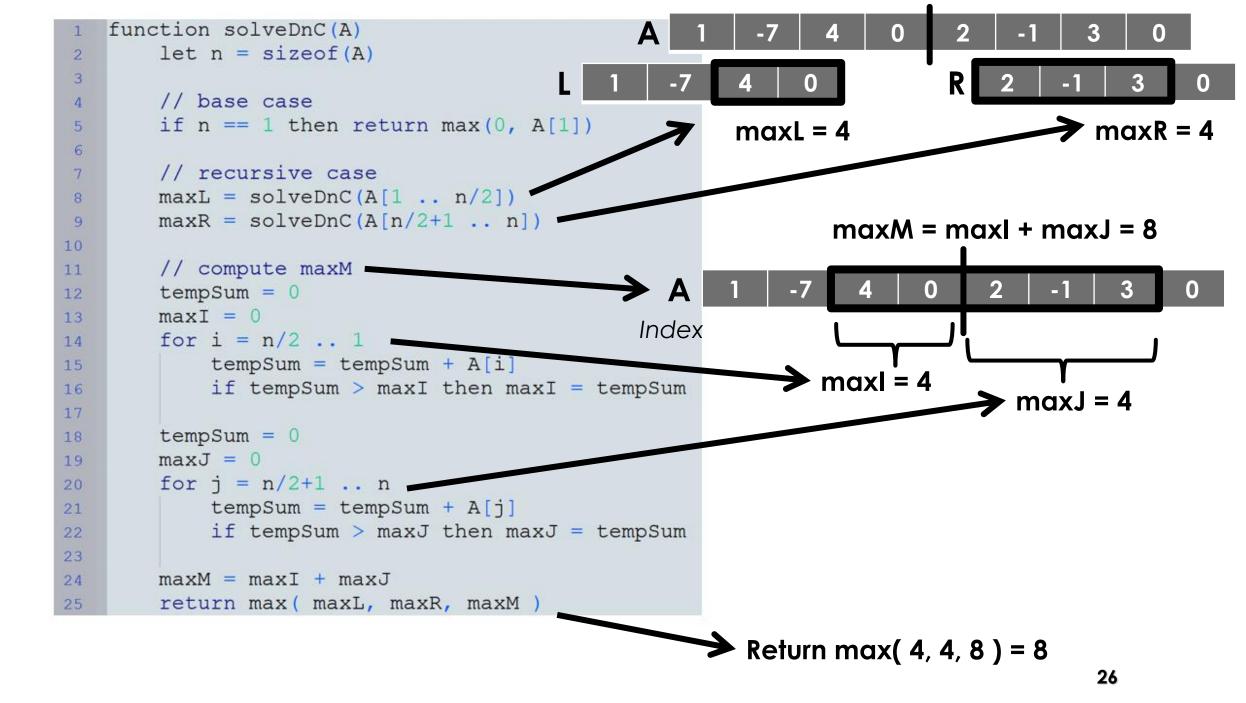


WHY $A[i \dots j]$ IS MAXIMAL

- Suppose not for contradiction
- Then some A[i' ... j'] that crosses the partition has a larger sum

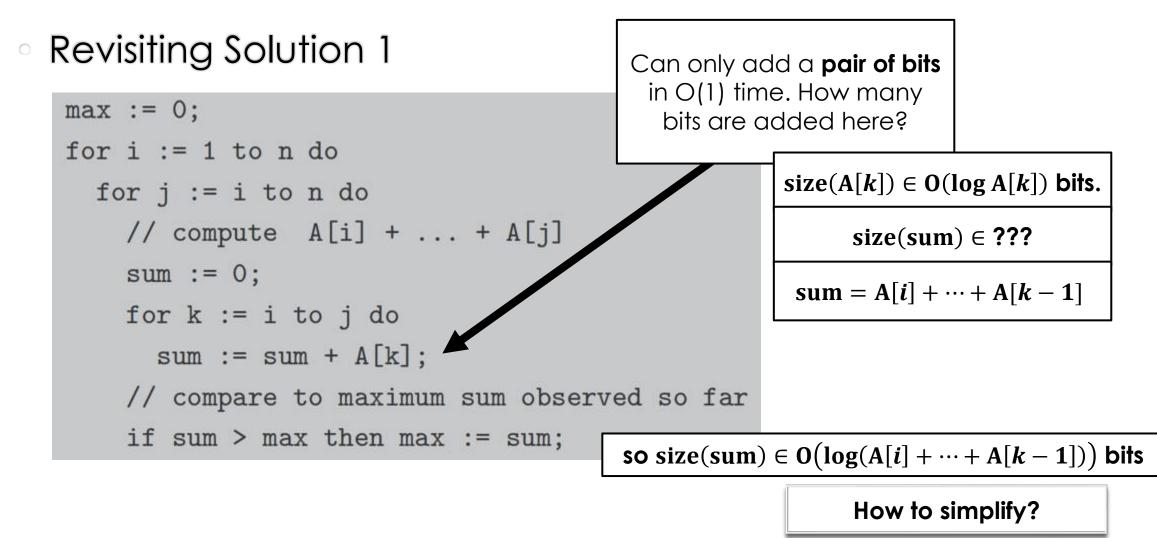






```
function solveDnC(A)
1
       let n = sizeof(A)
2
                                                              Time: \Theta(n \log n)
3
       // base case
4
       if n == 1 then return max(0, A[1])
5
                                                                   (in unit cost model)
6
       // recursive case
7
       maxL = solveDnC(A[1 .. n/2])
                                                   How do we analyze this running time?
8
       maxR = solveDnC(A[n/2+1 .. n])
9
                                                    Need new mathematical techniques!
10
       // compute maxM
11
       tempSum = 0
12
                                                     Recurrence relations, recursion tree
       maxI = 0
13
       for i = n/2 ... 1
                                                         methods, master theorem...
14
           tempSum = tempSum + A[i]
15
            if tempSum > maxI then maxI = tempSum
16
17
       tempSum = 0
18
                                                       This result is really quite good...
       maxJ = 0
19
       for j = n/2+1 ... n
                                                   but can we do asymptotically better?
20
           tempSum = tempSum + A[j]
21
            if tempSum > maxJ then maxJ = tempSum
22
23
       maxM = maxI + maxJ
24
       return max ( maxL, maxR, maxM )
25
```

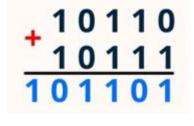
ANALYSIS IN THE BIT COMPLEXITY MODEL



COMPLEXITY OF ADDITION

Adding two numbers x+y takes O(max{size(x), size(y)}) bit operations

This can be rewritten O(size(x)+size(y))= O(lg x + lg y)



Fun fact: the size of x+y can be 1 bit larger than either x or y (multiplication can double #bits)

Let $M = max\{A[1], ..., A[n]\}$ size(sum) $\in O(log(A[i] + \dots + A[k-1]))$ $\in O(log(M + \dots + M))$ bits $\in O(log((k-i)M)$ bits Optional: simplify to O(log kM)

ADDING SUM AND A[K]

sum := sum + A[k];

- **Recall** size(sum) $\in O(\log kM)$, size(A[k]) $\in O(\log A[k])$ bits
- Adding them takes
 O(log(kM) + log A[k]) bit operations
- And since $\log A[k] \le \log M$ we get: $O(\log(kM) + \log M)$
- And the first term asymptotically dominates: O(log kM)

ZOOMING OUT TO THE K LOOP

```
for k := i to j do
    sum := sum + A[k];
```

• The addition happens for all values of kCareful to check this • Total time for the loop is at most $\sum_{k=i}^{j} O(\log kM)$ does not affect the Θ complexity (much). • Complicated to sum for $k = i \dots j$ (Check by finding similar Ω result.) so get an upper bound with $k = 1 \dots n$ $\sum_{k=1}^{n} O(\log kM) = O(\log M + \log 2M + \log 3M + \dots + \log nM)$ And similarly for this... $\circ \subseteq O(\log nM + \log nM + \log nM + \dots + \log nM)$ n

 $\circ = O(n \log nM)$

ACCOUNTING FOR THE OUTER LOOPS

- k loop is repeated at most n² times
- Each time taking at most
 O(n log nM) time
- So total runtime is $O(n^3 \log nM)$ time

```
max := 0;
for i := 1 to n do
  for j := i to n do
    // compute A[i] + ... + A[j]
    sum := 0;
    for k := i to j do
        sum := sum + A[k];
    // compare to maximum sum observed so far
    if sum > max then max := sum;
```

Compare to unit cost model: $O(n^3)$ time

Difference is due to (1) growth in variable sizes and (2) cost of bitwise addition

log-factor difference is common...

HOW ABOUT WORD RAM?

- If each variable fits in a single word, the analysis (and result) is as in the unit cost model
- Since there are n input words, each A[k] will fit in one word only if size $(A[k]) \in O(\log n)$

• i.e., if $O(\log A[k]) = O(\log n)$

 If a variable is too big to fit in a word, it is stored in multiple words, and analysis looks more like bit complexity model

BENTLEY'S SOLUTIONS: RUNTIME IN PRACTICE

- Consider solutions implemented in C
 - Some values
 measured on a
 Threadripper 3970x
 - Red values
 extrapolated from measurements
 - 0 represents time under 0.01s

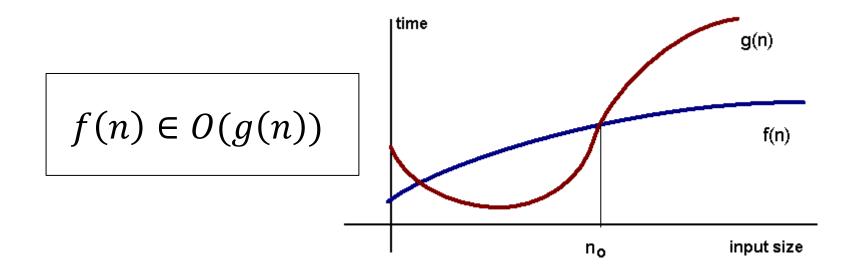
n	Sol.4 O(n)	Sol.3 O(n lg n)	Sol.2 O(n ²)	Sol.1 O(n ³)
100	0	0	0	0
1, 000	0	0	0	0. 12
10, 000	0	0	0. 036	2 minutes
100, 000	0	0. 002	3. 582	33 hours
1M	0. 001	0. 017	6 minutes	4 years
10M	0. 012	0. 195	12 hours	3700 years
100M	0. 112	2. 168	50 days	3.7M years
1 billion	1.124	24.57	1.5 years	> age of life
10 billion	19.15	5 minutes	150 years	> age of uni verse

HOMEWORK: BIG-O REVIEW & EXERCISES

O-notation:

 $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

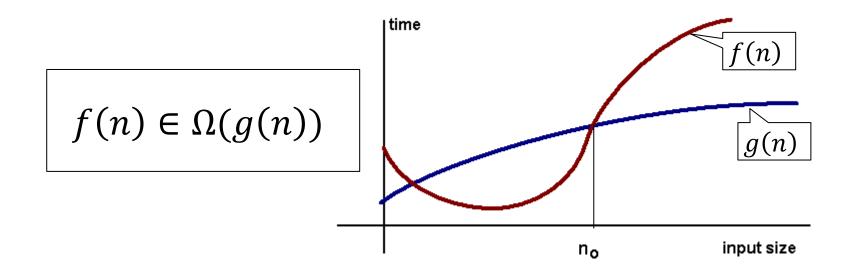
Here the complexity of f is **not higher** than the complexity of g.



Ω -notation:

 $f(n) \in \Omega(g(n))$ if there exist constants c > 0 and $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

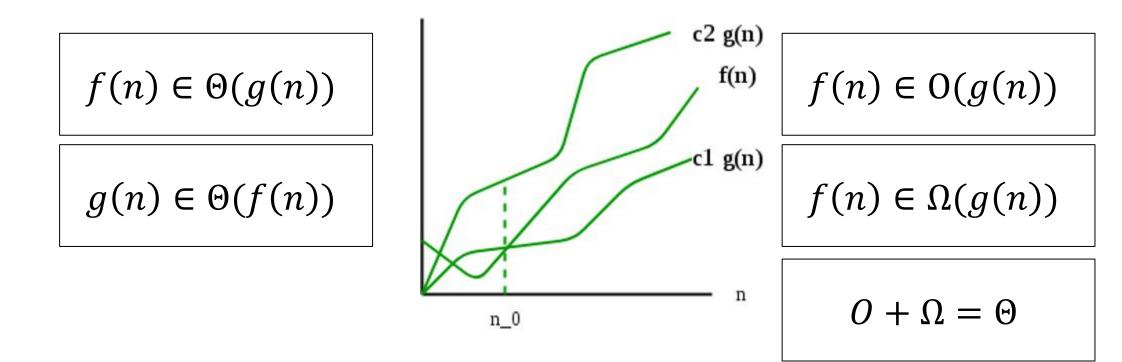
Here the complexity of f is **not lower** than the complexity of g.



Θ -notation:

 $f(n) \in \Theta(g(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

Here f and g have the same complexity.



o-notation:

 $f(n) \in o(g(n))$ if for all constants c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$. Here f has lower complexity than g. $f(n) \in o(g(n))$ implies $f(n) \ge o(g(n))$ $f(n) \in o(g(n))$ $f(n) \in o(g(n))$

ω -notation:

 $f(n) \in \omega(g(n))$ if for all constants c > 0, there exists a constant $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

Here f has higher complexity than g.

$$\begin{array}{c} f(n) \in \omega(g(n)) \\ \text{implies} \\ f(n) \in \Omega(g(n)) \end{array} \end{array} \quad \begin{array}{c} \text{But NOT} \\ \text{vice versa} \end{array}$$

 $f(n) \in O(q(n))$

EXERCISE

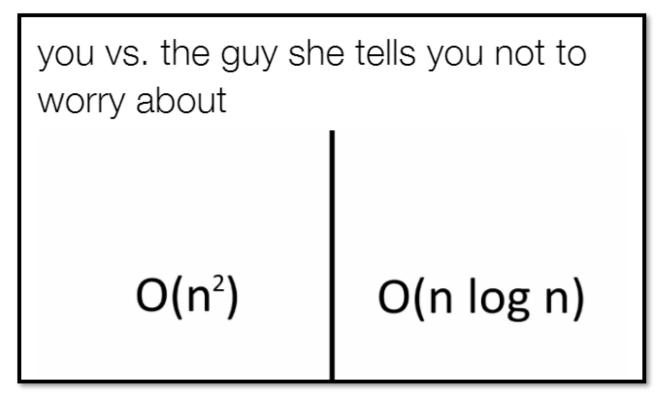
• Which of the following are true?

- $^{\circ}\ n^{2}\in O(n^{3})$
- $^{\circ} n^2 \in o(n^3)$
- $^{\circ} n^3 \in \omega(n^3)$
- $\circ \log n \in o(n)$
- $\circ n \log n \in \Omega(n)$
- $^{\circ} n \log n^2 \in \omega(n \log n)$
- $\circ n \in \Theta(n \log n)$

EXERCISE

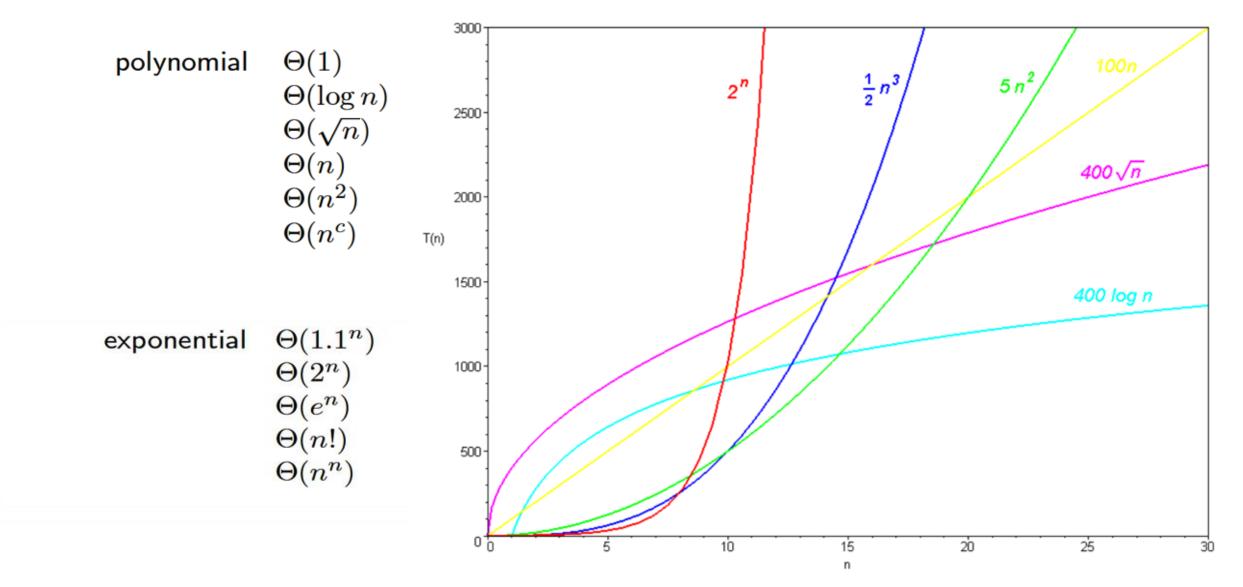
• Which of the following are true?

- $n^2 \in O(n^3)$ YES $n^2 \in o(n^3)$ YES $n^3 \in ω(n^3)$ NO
- $\circ \log n \in o(n) \qquad \qquad \text{YES}$
- $\circ n \log n \in \Omega(n) \qquad \text{YES}$
- $n \log n^2 \in \omega(n \log n)$ NO
- $n \in \Theta(n \log n)$ NO



COMPARING GROWTH RATES

Some Common Growth Rates (in increasing order)



43

LIMIT TECHNIQUE FOR COMPARING GROWTH RATES

Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$. Suppose that

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}.$$

Then

$$f(n) \in \begin{cases} o(g(n)) & \text{if } L = 0\\ \Theta(g(n)) & \text{if } 0 < L < \infty\\ \omega(g(n)) & \text{if } L = \infty. \end{cases}$$

LIMIT RULES 1/3

Constant Function Rule

The limit of a constant function is the constant:

 $\lim_{x\to a} C = C.$

Sum Rule

This rule states that the limit of the sum of two functions is equal to the sum of their limits:

$$\lim_{x
ightarrow a} \left[{f\left(x
ight) + g\left(x
ight)}
ight] = \lim_{x
ightarrow a} {f\left(x
ight) + \lim_{x
ightarrow a} g\left(x
ight) } .$$

All of the identities shown hold **only if the limits exist**

LIMIT RUI ES 2/3

Product Rule

This rule says that the limit of the product of two functions is the product of their limits (if they exist):

 $\lim_{x
ightarrow a}\left[f\left(x
ight)g\left(x
ight)
ight]=\lim_{x
ightarrow a}f\left(x
ight)\cdot\lim_{x
ightarrow a}g\left(x
ight).$

Quotient Rule

The limit of quotient of two functions is the quotient of their limits, provided that the limit in the

denominator function is not zero:

$$\lim_{x
ightarrow a}rac{f\left(x
ight)}{g\left(x
ight)}=rac{\lim_{x
ightarrow a}f\left(x
ight)}{\lim_{x
ightarrow a}g\left(x
ight)}, \hspace{0.2cm} ext{if} \hspace{0.2cm} \lim_{x
ightarrow a}g\left(x
ight)
eq 0.$$

I IN AIT DI II EC 2/2
Power Rule

$$\lim_{x \to a} [f(x)]^{p} = \left[\lim_{x \to a} f(x)\right]^{p},$$

Limit of an Exponential Function $\lim_{x \to a} b^{f(x)} = b^{\lim_{x \to a} f(x)}$

Limit of a Logarithm of a Function $\lim_{x \to a} \log_b f(x) = \log_b \lim_{x \to a} f(x)$

(Where base b > 0)

L'HOSPITAL'S RULE

- Often we take the limit of $\frac{f(n)}{g(n)}$ where both f(n) and g(n) tend to ∞ , or both f(n) and g(n) tend to 0
- Such limits require L'Hospital's rule
 - This rule says the limit of f(n)/g(n) in this case is the same as the limit of the **derivative**

• In other words,
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{d}{dn}f(n)}{\frac{d}{dn}g(n)}$$

USING THE LIMIT METHOD: EXERCISE 1

• Compare growth rate of n^2 and $n^2 - 7n - 30$

$$\lim_{n \to \infty} \frac{n^2 - 7n - 30}{n^2}$$
$$= \lim_{n \to \infty} \left(1 - \frac{7}{n} - \frac{30}{n^2}\right)$$
$$= 1$$

 \circ So $n^2 - 7n - 30 \in \Theta(n^2)$

49

USING THE LIMIT METHOD: EXERCISE 2

• Compare growth rate of $(\ln n)^2$ and $n^{1/2}$

USING THE LIMIT METHOD: EXERCISE 2

 $^{\circ}$ Compare growth rate of $(\ln n)^2$ and $n^{1/2}$

$$\lim_{n \to \infty} \frac{\frac{d}{dn} (\ln n)^2}{\frac{d}{dn} n^{1/2}}$$

$$= \lim_{n \to \infty} \frac{2 \ln n (1/n)}{\frac{1}{2} n^{-1/2}}$$

$$= \lim_{n \to \infty} \frac{4 \ln n}{n^{1/2}}$$

$$\circ = \lim_{n \to \infty} \frac{\frac{d}{dn} 4 \ln n}{\frac{d}{dn} n^{1/2}}$$

$$\circ = \lim_{n \to \infty} \frac{4/n}{\frac{1}{2}n^{-1/2}}$$

$$= \lim_{n \to \infty} \frac{8}{n^{1/2}}$$

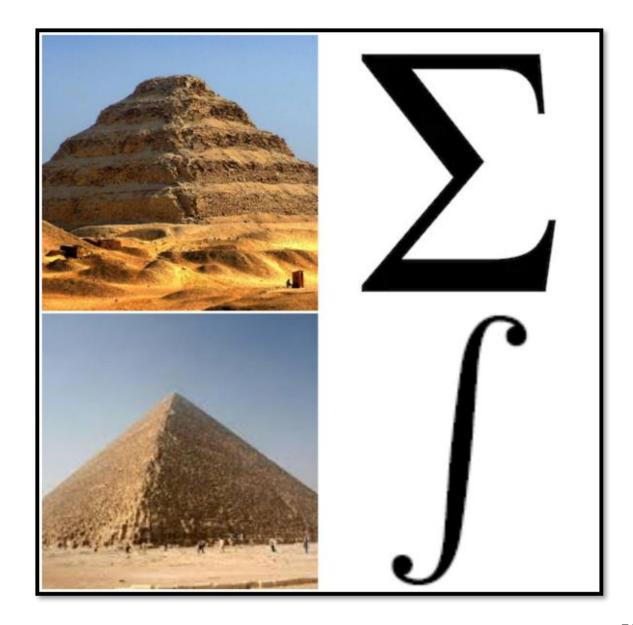
SO,
$$(\ln n)^2 \in o(n^{1/2})$$

Additional Exercises

¹ Compare the growth rate of the functions $(3 + (-1)^n)n$ and n.

² Compare the growth rates of the functions $f(n) = n |\sin \pi n/2| + 1$ and $g(n) = \sqrt{n}$.

SUMMATIONS AND SEQUENCES



Algebra of Order Notations

"Maximum" rules: Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$. Then:

$$O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$$

$$\Theta(f(n) + g(n)) = \Theta(\max\{f(n), g(n)\})$$

$$\Omega(f(n) + g(n)) = \Omega(\max\{f(n), g(n)\})$$

This is included for your notes

"Summation" rules: Supose *I* is a finite set. Then

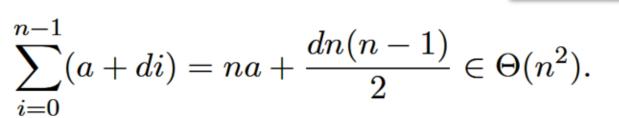
$$O\left(\sum_{i\in I} f(i)\right) = \sum_{i\in I} O(f(i))$$
$$\Theta\left(\sum_{i\in I} f(i)\right) = \sum_{i\in I} \Theta(f(i))$$
$$\Omega\left(\sum_{i\in I} f(i)\right) = \sum_{i\in I} \Omega(f(i))$$

Summation rules are commonly used in loop analysis. Example:

$$\sum_{i=1}^{n} O(i) = O\left(\sum_{i=1}^{n} i\right)$$
$$= O\left(\frac{n(n+1)}{2}\right)$$
$$= O(n^{2}).$$

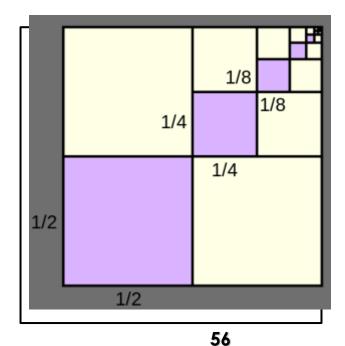
SEQUENCES

Arithmetic sequence:



Geometric sequence:

$$\sum_{i=0}^{n-1} ar^{i} = \begin{cases} a\frac{r^{n}-1}{r-1} \in \Theta(r^{n}) & \text{if } r > 1\\ na \in \Theta(n) & \text{if } r = 1\\ a\frac{1-r^{n}}{1-r} \in \Theta(1) & \text{if } 0 < r < 1. \end{cases}$$



SEQUENCES CONTINUED

This is included for your notes

Arithmetic-geometric sequence:

$$\sum_{i=0}^{n-1} (a+di)r^i = \frac{a}{1-r} - \frac{(a+(n-1)d)r^n}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2}$$

provided that $r \neq 1$.

Harmonic sequence:

$$H_n = \sum_{i=1}^n \frac{1}{i} \in \Theta(\log n)$$

Miscellaneous Formulae

 $n! \in \Theta\left(n^{n+1/2}e^{-n}\right)$ $\log n! \in \Theta(n\log n)$

Another useful formula is

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6},$$

which implies that

$$\sum_{i=1}^{n} \frac{1}{i^2} \in \Theta(1).$$

A sum of powers of integers when $c \ge 1$:

$$\sum_{i=1}^{n} i^c \in \Theta(n^{c+1}).$$

This is included for your notes

LOGARITHM RULES

Logarithm Formulae

$$\log_b xy = \log_b x + \log_b y$$

²
$$\log_b x/y = \log_b x - \log_b y$$

$$3 \quad \log_b 1/x = -\log_b x$$

$$4 \quad \log_b x^y = y \log_b x$$

$$5 \quad \log_b a = \frac{1}{\log_a b}$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

7
$$a^{\log_b c} = c^{\log_b a}$$

BASE OF LOGARITHM DOES NOT MATTER!

- Big-O notation does not distinguish between log bases
- Proof:
 - Fix two constant logarithm bases b and c
 - From log rules, we can change from \log_c to \log_b by using formula: $\log_b x = \log_c \frac{\gamma / \log_b}{r}$
 - But log_c b is a constant!
 - So $\log_c x \in \Theta(\log_b x)$

We typically omit the base, and just write $\Theta(\log x)$ for this reason

LOOP ANALYSIS

META-ALGORITHM FOR ANALYZING LOOPS

- Identify operations that require only constant time
- The complexity of a loop is the sum of the complexities of all iterations
- Analyze independent loops separately and add the results
- If loops are nested, it often helps to start at the innermost, and proceed outward... but,
 - sometimes you must express several nested loops together in a single equation (using nested summations),
 - and actually evaluate the nested summations... (can be hard)

TWO BIG-O ANALYSIS STRATEGIES

Strategy 1

• Prove a O-bound and a matching Ω -bound separately to get a Θ -bound. \frown Often eas

Strategy 2

Often easier (but not always)

 Use O-bounds throughout the analysis and thereby obtain a O-bound for the complexity of the algorithm

EXAMPLE 1

Algorithm: LoopAnalysis1(n:integer)(1) $sum \leftarrow 0$ (2) for $i \leftarrow 1$ to ndo $\begin{cases} for \ j \leftarrow 1 \text{ to } i \\ do \begin{cases} sum \leftarrow sum + (i - j)^2 \\ sum \leftarrow \lfloor sum/i \rfloor \end{cases}$ (3) return (sum)

Strategy 1: big-O and big- Ω bounds

We focus on the two nested for loops (i.e., (2)).

The total number of iterations is $\sum_{i=1}^n i$, with $\Theta(1)$ time per it

Upper bound:

$$\sum_{i=1}^{n} O(i) \le \sum_{i=1}^{n} O(n) = O(n^{2}).$$

Algorithm: LoopAnalysis1(
$$n:integer$$
)
(1) $sum \leftarrow 0$
(2) for $i \leftarrow 1$ to n
do $\begin{cases} \text{for } j \leftarrow 1 \text{ to } i \\ do \begin{cases} sum \leftarrow sum + (i - j)^2 \\ sum \leftarrow \lfloor sum/i \rfloor \end{cases}$
(3) return (sum)

Lower bound:

$$\sum_{i=1}^{n} \Omega(i) \ge \sum_{i=n/2}^{n} \Omega(i) \ge \sum_{i=n/2}^{n} \Omega(n/2) = \Omega(n^2/4) = \Omega(n^2).$$

Since the upper and lower bounds match, the complexity is $\Theta(n^2)$.

Strategy 2: use @-bounds throughout the analysis

Algorithm: LoopAnalysis1(n:integer)

(1)
$$sum \leftarrow 0$$

(2) for $i \leftarrow 1$ to n
do $\begin{cases} \text{for } j \leftarrow 1 \text{ to } i \\ \text{do } \begin{cases} sum \leftarrow sum + (i - j)^2 \\ sum \leftarrow \lfloor sum/i \rfloor \end{cases}$
(3) return (sum)

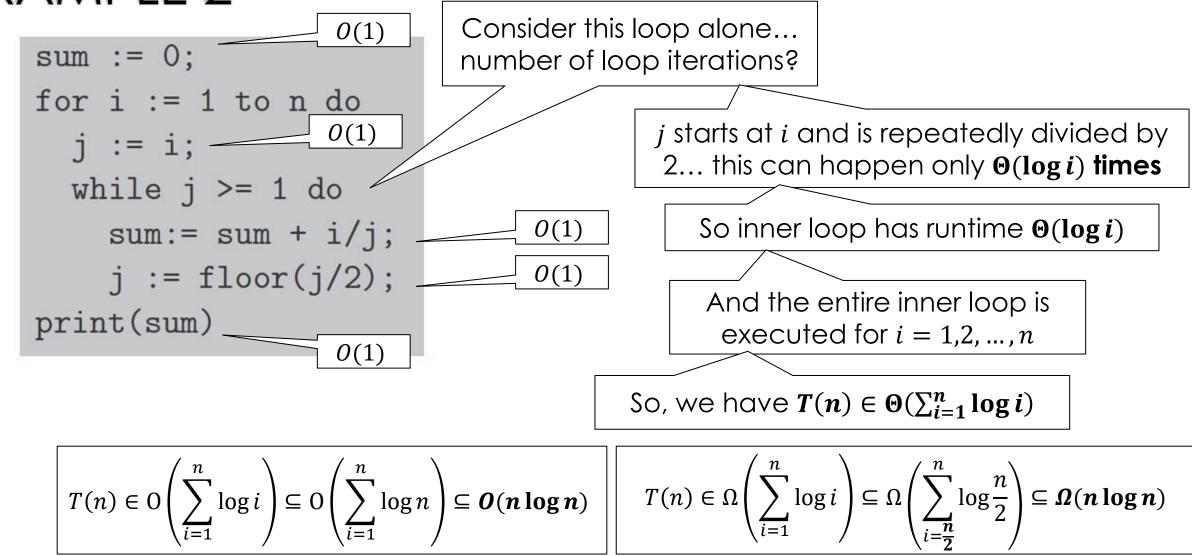
 $\Theta\text{-bound}$ analysis

$$\sum_{i=1}^{n} \Theta(i) = \Theta\left(\sum_{i=1}^{n} i\right) = \Theta\left(\frac{n(n+1)}{2}\right) = \Theta(n^2).$$

(1)
$$\Theta(1)$$

(2) Complexity of inner for loop: $\Theta(i)$
Complexity of outer for loop: $\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$
(3) $\Theta(1)$
total $\Theta(1) + \Theta(n^2) + \Theta(1) = \Theta(n^2)$

EXAMPLE 2



IN LOOP ANALYSIS?

Olive Garden waiter: Sir, you've already had 5 baskets of breadsticks

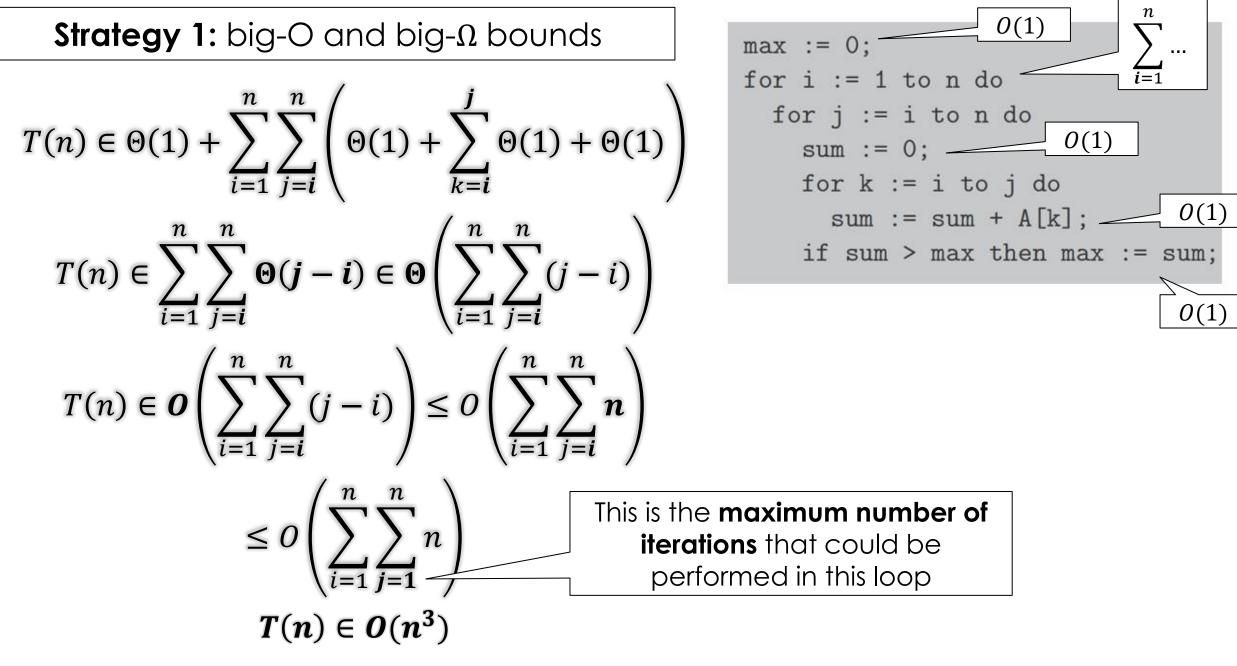
Me:



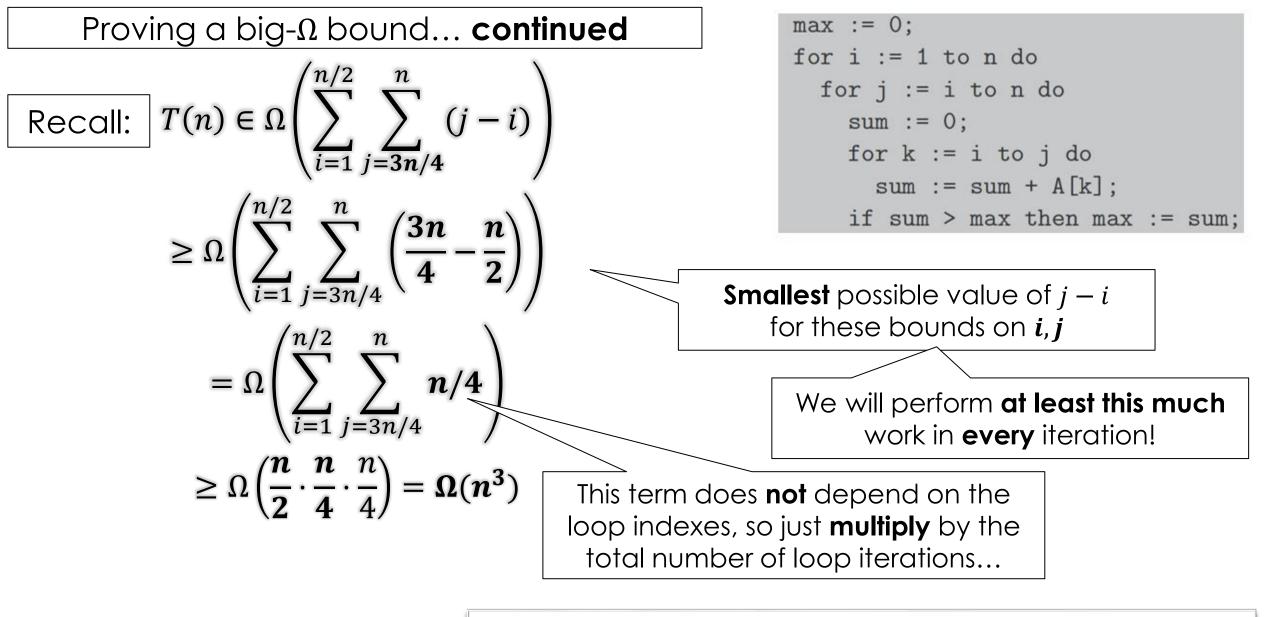
EXAMPLE 3 (BENTLEY'S PROBLEM, SOLUTION 1)

```
max := 0;
for i := 1 to n do
  for j := i to n do
    sum := 0;
    for k := i to j do
      sum := sum + A[k];
    if sum > max then max := sum;
```

Try to analyze this yourself! One possible solution is given in these slides...



Proving a big-
$$\Omega$$
 bound...
Recall: $T(n) \in \Theta\left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j-i)\right)$
 $T(n) \in \Omega\left(\sum_{i=1}^{n} \sum_{j=i}^{n} (j-i)\right)$
 $\geq \Omega\left(\sum_{i=1}^{n/2} \sum_{j=i}^{n} (j-i)\right)$
 $\equiv \Omega\left(\sum_{i=1}^{n/2} \sum_{j=i}^{n/2} \sum_{i=i}^{n/2} \sum_{i=i}^{$



Since we have $O(n^3)$ and $\Omega(n^3)$, we have proved $\Theta(n^3)$

BONUS

- Study-song of the day
- Tool Descending
- youtu.be/PcSoLwFisaw