CS341: ALGORITHMS (F23)

Lecture 1

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

COURSE MECHANICS

ASSESSMENTS

All sections have same assignments, midterm and final

Sections are roughly synchronized to ensure necessary
content is taught

Tentative planis 5 assignments, midterm, final
See website for grading scheme, etc.

2023-09-13

TABLE OF CONTENTS

Course mechanics
Models of computation
Worked example: Bentley's problem

Multiple solutions,
demonstrating different algorithm design techniques

Analyzed in different models of computation

COURSE MECHANICS

In person
Lectures
“Lab" section is for tutorials

Course website: https://student.cs.uwaterloo.ca/~cs341/
Syllabus, calendar, policies, slides, assignments...
Read this and mark important dates.

Keep up with the lectures: Material builds over time...

Piazza: For questions and announcements.

TEXTBOOK

Available for free via library website!
You are expected to know

entire textbook sections,

as listed on course website

all the material presented in lectures

(unless we explicitly say you aren't
responsible for it)

Some other textbooks cover some material better... see www

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-09-13

ACADEMIC OFFENSES

Beware plagiarism

High level discussion
about solutions with individual
students is OK

Don't take written notes away

from such discussions

Class-wide discussion of solutions
is not OK (until deadline+2 days)

MODELS OF COMPUTATION

When your interviewer asks for the

A NALYSIS O F ALGO R |TH MS time complexity of your algorithm

but you have no idea what that means

Every program uses resources
CPU instructions / cycles = time
Memory (RAM) - space

Others: 1/0, network bandwidth/messages, locks...
(not covered in this course)

Analysis is the study of how many resources an algorithm uses
Usually using big-O notation (to ignore constant factors)

NECmwm-? X/ i &%
Algorithms is the heart of CS

It appears often in later courses

It dominates technical interviews

Master this material...
make your interviews easy!

Designing algorithms is creative work Bwarerioo | cheriton scrool oF computer

Useful for some of the more
interesting jobs out there

€5 343 Aigoeine

And, you want to graduate... ‘ CS 341 is a required course for all CS

C4hN -
x a
o 2}

WHAT IS A COMPUTATIONAL PROBLEM?

Informally: A description of input, ¢ Y
and the desired output

Input Output

WHAT IS AN ALGORITHM?

Informally: A well-defined
procedure (sequence of steps)
to solve a computational problem |

Running Time of a Program: Ty(/) denotes the running time |
of a program M on a problem instance /. \ But how do we
know how much

Worst-case Running Time as a Function of Input Size: Ty(n) fime M will take

denotes the maximum running time of program M on instances of oninput 12
size n:
Tum(n) = max{ Tu(!) : Size(/) = n}.
Depends on the
Average-case Running Time as a Function of Input Size: model of
Ti®(n) denotes the average running time of program M over all computation

instances of size n:

v 1
T:f(")’m S Tul).

{1:Size(1)=n}

MODELS OF COMPUTATION

Make analysis possible
Ones covered in this course
Unit cost model
Word RAM model
Bit complexity model

BUT SOMETIMES WE CARE ABOUT WORD SIZE
Suppose we want to limit [nindecimal _ninbinary __ _liogz nl +1_]

- 1 1 loj+1=1

the size of words) 0 e
Must consider how many 3 n 1158] +1=2

bits are needed to represent 4 179 2] +1=3
anumbern 5 101 1232]+1=3
6 110 1258/ +1=3

7 m 1281 +1=3

Need |log, n| + 1 bits to store n 8 1000 13]+1=4
9 1001 1317]+1=4
i.e., ©(logn) bits 10 1010 13321 +1=4
1 1011 [346] +1=4
12 1100 1358 +1=4

15

Each variable (or array entry) is a bit string
Size of a variable x is the number of bits it needs
It takes O(log V) bits to represent a value v
So if v is stored in x, the size of x must be Q(lgv) bits
Basic operations are performed on individual bits
Read/write a bit in O(1)
Add/multiply two bits in O(1)

Space complexity is the total number of bits used
(excluding the input)

2023-09-13

UNIT COST MODEL

Each variable (or array entry) is a word
Words can contain unlimited bits
Basic operations on words take O(1) time
Read/write a word in O(1)
Add two words in O(1)
Multiply two words in O(1)

Space complexity is the number of words used
(excluding the input)

WORD RAM MODEL

Key difference: we care about the size of words

Words can contain O(lg n) bits,
where n is the number of words in the input

Word size depends on input size!

Intuition: if the input is an array of n words,
a word is large enough to store an array index

Basic operations on words still take O(1) time
(but the values they can contain are limited)

BENTLEY'S PROBLEM

A worked example to demonstrate algorithm design & analysis

2023-09-13

Bentley’s Problem: Solution 1

Try all combinations of i, j
And for each combination,
sumoverk =i..j

k

Bentley’s Problem (introductory example)

Given an array of n integers, A[1], ... , A[n], find the maximum sum
of consecutive entries of A (return 0 if all entries of A are negative).

B e T
Array index (take all of A[1..8]) sum := 0; i j
ElEAEIENEN for k :=dto jdo EEEANEEFEENENEN
-7 Solution: 0
Examp;’lzei; “un (take no elements of A) sum := sum + A[k];

// compare to maximum sum observed so far

Example 3 IENIEA T TR T Solution: 8 if sum > max then max := sum;
Index (take A[3.7])

Time: in unit cost model2
19 20
v i 3 5 g
Bentley’s Problem: Solution 2m Bentley’s Problem: Solution 3
max := O: P " i, Divide-and-Conquer can also be used here:
g i wvoid repeatedly summing over k = i..j R 3 3
S 4l 5o Al e o Gl Divide a.n'array mto. two equull).'-sw,ef:l parts. : :
0 e crdn S, mmEe AEL G o, @) :iur t.»o::tmantmust.tcnhcl; :c cm,uc.ly Ththc letf‘tt‘pa.rtlZ or entirely in
.= 0 e right part, or it must be crossing the partition line.
Lt B (5 0 [7] a]o]2]1]3].1]
for j := i ton do i=jj Jj Jj A EEEARN IERENEN
// update sum by adding the next emtry A[j] Is enfirely In L L y 2 53]|
sum := sum + A[j]; Case 2: optimalsol'n
// compare to maximum sum observed so far is enfirely in R
e T T O s » ENEARENNFEEREETE
. ’ crosses the parition | L [HEIN
Time: in unit cost model?
2 22
WHY A[i ...j] 1S MAXIMAL
Suppose not for contradiction
Find: maximum .1 .y Ty
subarray going over | A _m Then some A[i’ ...j'] that crosses the partition
the middle partition | Index LT_, l—'_l has a larger sum
fna i } t J — A ---*---
ind i that maxi We can prove A[i ...j] But both
the sum over Find j that maximizes the is the maximum EE UTboth are
sum over (ﬂ + 1) N subarrcy going over - - |mpOSSIb|e|
2t 1) the middle partition! i J L
| I A | This sum is bigger
o 7

Soeither L' > yL
Or TR > ¥R

gPitunction solveDnC ()

3 t n = sizeof (A)

2 L
.

s

A EEIEIRE NI ERER

/! base case

if n == | then return max(0, A[1]) maxL = 10
“
5 // recursive case /

. maxL = solveDnC(A[l .. n/

s maxR = solveDnC(A[n/2+1 .. nl) maxM = maxl + maxJ = §
10

1 // compute maxM —_— A
1 tempSum ~

1 maxl = Index
" for i = n

15 tempSum = tempSum + Ali

10 if tempSum > maxI then maxI = tempSum
1

1 tempsum =

" maxJ =

) for j = n/2+ n

n tempSum = tempSum + A[j

2 if tempSum > maxJ then maxJ = tempSum
P

2 maxM = maxI + maxd

s return max{ maxL, maxR, maxM)

\ Return max(10, 3,5) =10
25

B function solveDnC(A)

2 let n = sizeof (A)

-} Time: ©O(nlogn)
.

s

// base case

maxR =3

if n == 1 then return max(U, A[1]) (in unit cost model)
‘
¥ // recursive case
. Mx; . wivexg;:\r <= n/2)) How do we analyze this running time?
& AR T sedve £ AR Need new mathematical techniques!
0 // compute max#
i tempSum - N N
13 maxl = Recurrence relations, recursion tree
b for i = n methods, master theorem...
15 tempSum = tempSum + A
% if tempSum > maxI then maxI = tempSum
1
1 tempSum = X . X
1 maxJ = This result is really quite good...
2 for j = n/2+l .. n but can we do asymptotically better2
n tempSum = tempSum + A[j
2 if tempSum > maxJ then maxJ = tempSum
2
" maxM = maxl + maxJ
= return max(maxL, maxR, maxM)

COMPLEXITY OF ADDITION

o dding two numbers xvy fakes ‘ £ 10110 ey fact the size of xty can be 1
X). size(y)) 10111 bit larger than either x ory
101101 (multiplication can double #bits)

This can be rewritten Ofsize (x) +size y))
=0(g x+Igy)

Let M = max{A[1], ..., A[n]}
size(sum) € O(log (A[i] + -+ A[k — 1]))
€ 0(log(M + -+ M)) bits
€ 0(log ((k — i)M) bits
Optional: simplify to 0(log kM)

2023-09-13

ENENEE
R_ |13 o

maxR =4

itunction solveDnc (A) AN
: let n = sizeof(A)

3 -7 4 o
- - L I ‘

s if n = | then return max(0, A[:]) maxl = 4
“

5 // recursive case /

. maxL = solveDnC(A[l .. n,)

> maxR = solveDnC(Aln/2+1 .. nl)

3 maxM = maxl + maxJ = 8
1 // compute maxM

N e e————— 5 KN

1 max] =

“ for i = n/2 .. Index

3 Hampsina "N T

) if tempSum > maxI then maxI = tempSum maxl = 4

1 maxJ =4
18 tempsum =

1 maxJ =

) for j = n/2+

n tempSum =

2 if tempSum > maxJ then maxJ = tempSum

2

7 maxM = maxI + maxJ

» return max(maxL, maxR, maxM)

\ Return max(4,4,8) =8

ANALYSIS IN THE BIT COMPLEXITY MODEL

Revisiting Solution 1

Can only add a pair of bits
. in O(1) time. How many
max 03 bits are added here?
for i := 1 to n do
for j :=1i ton do
// compute A[i]l + ... + A[j]
sum := 0;
for k := 1 to j do
sum := sum + A[k];
// compare to maximum sum observed so far
if sum > max then max := sum;

size(A[k]) € O(log A[K]) bits.

size(sum) € 777

sum = A[i] + -+ A[k—1]

50 size(sum) € O(log(A[i] + -+ A[k — 1])) bits]

How to simplify?

28

ADDING SUM AND A[K] [sum := sum + Afk);
Recall size(sum) € 0(log kM), size(A[k]) € 0(log A[k]) bits
Adding them takes
0(log(kM) + log A[k]) bit operations
And since log A[k] <logM we get:

0(log(kM) + logM)
And the first term asymptotically dominates:

0(log kM)

ZOOMING OUTTO THE K LOOP | #ar & =1 ta j <o

sum := sum + A[k];

The addition happens for all values of k

Careful to check this
does not affect the ©
complexity (much).
(Check by finding
similar Q result.)

Total time for the loop is at most 3_; 0(log kM)

Complicatedto sumfork =i...j

so get an upperbound withk =1..n
Yr=10(ogkM) = O(logM + log2M +log3M + --- + lognM)
c 0(|lognM +lognM +lognM + -+ +lognM')

Y
n

And similarly
for this....

= 0(nlognM)

HOW ABOUT WORD RAM?

If each variable fits in a single word,
the analysis (and result) is as in the unit cost model

Since there are n input words,
each A[k] will fit in one word only if size(A[k]) € O(logn)

i.e., if 0(logA[k]) = O(logn)

If a variable is too big to fit in a word,
it is stored in multiple words,
and analysis looks more like bit complexity model

HOMEWORK: BIG-O REVIEW & EXERCISES

2023-09-13

ACCOUNTING FOR THE OUTER LOOPS

max := 0;
k loop is repeated for i := 1 to ndo
at most n? times for.§isme 2o do
// compute A[1] + ... + A[J]
Each time taking at most sum := 0;
0(nlognM) time for k i= i to j do

. . sum := sum + A[k];
So total runtime is // compare to maximum sum observed so far
0(n®lognM) time

if sum > max then max := sum;

Difference is due to
(1) growth in variable sizes and
(2) cost of bitwise addition

Compare to unit cost model:
0(n®) time

l log-factor difference is common... 2

BENTLEY’S SOLUTIONS: RUNTIME IN PRACTICE

Consider solutions
implementedin C

100 o [[} o
Some values 1,000 o 0 o 0.12
measured on a 10,000 o 0 0.036 2 minutes
Threadripper 3970x 100,000 o 0.002 3.582 33 hours
M o.001 0.017 6 minutes 4 years
Red values 108 o012 0.195 12 hours 3700 years
exirapoluied from 1 b":(:ﬂl‘ 0.112 2.168 50 days 3.7M years
lon 1.124 24.57 1.5 years > age of life
measurements 10 billlon 19,15 5 minutes 150 years > age of universe
O represents time
under 0.01s
]
f(n) € O(g(n)) if there exist constants ¢ > 0 and ng > 0 such that
0 < f(n) < eg(n) for all = np.
Here the complexity of f is not higher than the complexity of g.
time
gt
f) € 0(g(n) o
|

ng Inputsize

f(n) € Q(g(n)) if there exist constants ¢ > 0 and ny > 0 such that
0 < eg(n) < f(n) for all n = nq

Here the complexity of f is not lower than the complexity of g.
e
]
f@) € a(g() '
I o inputsize

f(n) € o(g(n)) if for all constants ¢ > 0, there exists a constant ng > 0

such that 0 < f(n) < cg(n) forall n 2 no. | oy ¢ of
9(m)
But NOT

Here f has lower complexity than g. i i .
! ! v g implies vice versa

f(n) € 0(g(n)

f(n) € w(g(n)) if for all constants ¢ = 0, there exists a constant ng > 0
such that 0 < eg(n) < f(n) for all n > ny.

Here f has higher complexity than g. f("). € “l"(g(n)) But NOT
implies vice versa
f) € (g()

EXERCISE

Which of the following are true?

n? € 0(n®) YES
n? € o(n®) YES
n® € w(n®) NO
logn € o(n) YES
nlogn € Q(n) YES
nlogn? € w(nlogn) NO
n € O(nlogn) NO

2023-09-13

f(n) € Big(n)) if there exist constants ¢;,e2 > 0 and ng > 0 such that

0 < erg(n) < f(n) < eagn) for all n = ny
€2 gln)
@ f(n) € 0(g(W)

Here f and g have the same complexity.

EXERCISE

Which of the following are true?2
n? € 0(n®)

n? € o(n®)

n® € w(n®)

logn € o(n)

nlogn € Q(n)

nlogn? € w(nlogn)

n € O(nlogn)

you vs. the guy she tells you not to
worry about
o(n?) O(n log n)

COMPARING GROWTH RATES

a2

polynomial -~ ©(1) |
O(logn)
a(y/n)
B(n) |
B(n?) am|
(n*) o

exponential ©(1.1%) |
afam)]
a(em) |
a(n!) |
a(n™) g

LIMIT RULES 1/3

Constant Function Rule
“The limit of a eonstant funetion is the eonstant:
hc =C.

Sum Rule
This rule states that the limit of the sum of two functions is equal to the sum of their limits:

lim [(=) + g (x)] = lim £ (=) + lim g (=) .

All of the identities shown
hold only if the limits exist

IINAIT DI EC 272
Power Rule

T |f (=) = [lim £ (=)]",

T

Limit of an Exponential Function
lim b/ = i/
x—=a
Limit of a Logarithm of a Function
lim log,, f (x) = log, lim f(x)

(Where base b > 0)

2023-09-13

LIMIT TECHNIQUE
FOR COMPARING GROWTH RATES

Suppose that f(n) > 0 and g(n) > 0 for all n > ng. Suppose that

L = lim /(").

n—o0 g(n)

Then
o(g(n)) fL=0

f(n) € {O(g(n)) fO<L <o
w(g(n)) if L =o0.

I IMIT RIITFS 2/3
Product Rule
This rule says that the limit of the produet of two functions is the product of their limits (if they

exist):
Lim [f () g(z)] = lim f (z) - im g(z) .
Quotient Rule

The limit of quotient of two functions is the quotient of their limits, provided that the limit in the

denominator function is not zero:

1@ _ Rl
Hm Tmew A0

L'HOSPITAL'S RULE
Often we take the limit of % where
both f(n) and g(n) tend to o, or
both f(n) and g(n) tend to 0
Such limits require L'Hospital's rule

This rule says the limit of f(n)/g(n) in this case
is the same as the limit of the derivative

a
In other words, lim L2 = lim "f,Lm)
n-o g(n) n-e0 2g(n)

USING THE LIMIT METHOD: EXERCISE 1

Compare growth rate of n? and n? — 7n — 30

. n?-7n-30
lim ———
n-co n

. 730
_111—{?0(1 n n?

=1
Son?—7n-30 € 0(n?)

USING THE LIMIT METHOD: EXERCISE 2

Compare growth rate of (Inn)? and n'/?

i(lnn)z — i di"“nn
111—2}0 dninuz e %nl/2
_ .o 2lnn(@/m) = lim =&
=TT e
4lnn = lim L
= JHEQW n-oon1/2
=0
So, (Inn)? € o(n'/?)
51
SUMMATIONS
AND SEQUENCES

USING THE LIMIT METHOD: EXERCISE 2

Compare growth rate of (Inn)? and n'/?

2023-09-13

2 < (Inn)2
lim & = jjy a2

n-ooo ni/2 n-owo dn1/z
dn

When you derive e*
S

When you derive e*
wro AB

Try these at home..

1 Compare the growth rate of the functions (3 + (—1)")n and n.

z Compare the growth rates of the functions f(n) = n|sin7n/2| + 1

and g(n) = y/n.

Suppose that f(n) > 0 and g(n) > 0 for all n > ng.

Then:
O(f(n) + g(n)) = O(max{f(n),g(n)})
O(f(n) + g(n)) = ©(max{f(n),g(n)})
Qf(n) + g(n)) = Qmax{f(n), 9(n)})
Supose [is a set. Then
o (z/(f)> =Y 0(s()
i€l €l

6 (Z f(i)> =)
i€l

=

Q <Z /m) =3"Q(f(@)
i€l €l

Thi cluded for
your notes

Summation rules are commonly

used in loop analysis.

- o(ti)

= On?).
SEQUENCES CONTINUED
your notes
= LG (a+ (n—1)d)yr" dr(l -1
Dlakdit =g = a—r7

provided that r # 1.

t
Ho=%" 3 € O(logn)

LOGARITHM RULES

SEQUENCES

n-1
o -1 r
Z(a +di) = na + H(HT) € en?).
i=0
1 ur:__ll cO(™) ifr>1
Za?“ = qna € B(n) ifr=1
=0 el eo(1) fo<r<l.

L€ @ (/)
logn! € B(nlogn)
Another useful formula is

which implies that

Z% call).
=1

A sum of powers of integers when ¢ > 1

Miceem)

1 logy, zy = logy, = + log, y
2 log, z/y = log, z —log, y
3 logy1/z = —log, =

4 Jog,z¥ = ylog, =

5 log,a= lu-gl,,‘ﬁ

log, a

Tog b
7 o8¢ = clogpa

6 log,a=

2023-09-13

This is included for
your notes

10

BASE OF LOGARITHM DOES NOT MATTER!

Big-O notation does not distinguish between log bases
Proof:
Fix two constant logarithm bases b and ¢

From log rules, we can change from log, to log,
h

by using formula: logy, x = log, x£
i We typically omit the base,
and just write @(log x)
for this reason

But log, b is a constant!
So log. x € ©(logy, x)

META-ALGORITHM FOR ANALYZING LOOPS

Identify operations that require only constant time

The complexity of a loop is the sum of
the complexities of all iterations

Analyze independent loops separately and add the results

If loops are nested, it often helps to start at the innermost,
and proceed outward... but,

sometimes you must express several nested loops together in a
single equation (using nested summations),

and actually evaluate the nested summations... (can be hard)

EXAMPLE 1

Algorithm:
(1) sum + 0
(2) fori+ lton
for j« 1toi
do do {:mru — sum +"(1‘ — 4
sum + [sumn/i|
(3) return (sum)

(n :integer)

2023-09-13

LOOP ANALYSIS

TWO BIG-O ANALYSIS STRATEGIES

Strategy 1

Prove a O-bound and a matching Q-bound

separately fo get a © -bound. Offen easier

Use ©-bounds throughout the analysis and thereby obtain
a ©-bound for the complexity of the algorithm

Strategy 1: big-O and big-Q bounds ‘ Algorithm: (n : integer)
(1) sum 0

We focus on the two nested for loops (i.e., (2)) (2) fori+ lton

The total number of iterations is 3_7; i, with ©(1) time per i forj+ 1toi

Upper bound: do do [Fum + sum+ (i—§)?

n » R sumn + |sum/i]

S 06) < ¥ 0n) = 0(n?)
= i

(3) return (sum)

Lower bound:

Sz Y o> Y 0m/2) = Qn /) = 0n?).
=1

Since the upper and lower bounds match, the complexity is ©(n?).

11

‘ Strategy 2: use ©-bounds throughout the analysis

Algorithm: (n : integer)
(1) sum+ 0
(2) fori+ 1ton
for j« 1toi
do do {.‘HUH — sum + (i —j)?
surmn ¢« |sum/fi|
(3) return (sum)

o(3) = () o]

(m) e /
(2) Complexity of inner for loop: O(i)
Complexity of outer for loop: 3_7 | ©(i) = ©(n*)
(3) e
total O(1) + O(n?) + ©(1) = O(n?)

Olive Garden waiter: Sir, you've already
had 5 baskets of breadsticks

Me:

... ANOTHER EXERCISE
IN LOOP ANALYSIS?

Strategy 1: big-O and big-Q bounds ‘ e

- » J for i := 1 to n do =

for j i to n do
TV €0() + . [8(1) +). (1) +8(1) o i
i=1 j=i k=i for k ite jdo
n n n n =R E (. (1)
s r > & if sum > max then max := sum;

T(n) EZZB([—!) €0 ZZ(]—L)

i=1j=i i=1 j=i o)

n n
This is the maximum number of
<0 ZZ" iterations that could be
i=1j= performed in this loop

2023-09-13

EXAMPLE 2

sum := 0;

for i
i=

while j >= 1 do

sum:= sum + i/j;

j = floor(j/2);

print (sum) __

Lo]

Consider thisloop alone...

number of loop iterations2

j starts at i and is repeatedly divided by
2... this can happen only ©(log i) fimes

So inner loop has runtime ©(log i)

And the entire inner loop is
executed fori=12,..,n

So, we have T(n) € O(T}L, log i)

T(m e U<Zlngx> c O<Zlngn> Comlogn) || T(me n(z 10gi> c ﬂ(Zlog;) < a(nlogn)
& & & =]

EXAMPLE 3 (BENTLEY'S PROBLEM, SOLUTION 1)

max := 0

Try fo analyze this yourselft
One possible solution is
givenin these slides..

for i := 1 to n do
for j := i to n do
sum := 0;
for k := i to j do
sum := sum + A[k];
if sum > max then max := sum;

Proving a big-Q bound...

n n
T(n) €0 Z U-0 o

i=1j=i for k := i to j do

sum := sum + A[k];

Ly if sum > max then max := sum;
rmeal Y Y G- —

lala Intuition: j — i is Q(n) in some iterations. How

i=1j=i many iterations? Lots2

n/2 n

>0 2 2(}' —1) To get a good Q-bound, we ask questions like:
=E When do our loops have many iterations2
When is our dominant term large?

n/2 n
=Q Z Z G-1) Many iterations: when our j loop does Q(n)
=S iterations! For example, wheni < n/2...

Large dominant term: when j is much
larger than i (i.e., by a factor of n)

72

12

I Proving a big-Q bound... continued | max := 0;
. = :=1 ton do
o for j := i to n do
T(n) €Q Z Z(j—i) sum := 0;
= iS5 for k := i to j do
sum := sum + A[k];
8B & e w if sum > max then max := sum;
=0 —_——
— 4 2 "
i=1 j=3n/4 Smallest possible value of j — i
/2 n for these bounds on i, j
(35w . .
VAR We will perform at least this much
t=1 J=Bnjt work in every iteration!
m nn 3
2 Q(E e Z) =Q(n%) This term does not depend on the

loop indexes, so just multiply by the
total number of loop iterations...

Since we have 0(n*) and Q(n®), we have proved 0(n?)

73

BONUS

Study-song of the day
Tool - Descending
youtu.be/PcSolLwFisaw

2023-09-13

13

youtu.be/PcSoLwFisaw

