CS341: ALGORITHMS (F23)

Lecture 1

Trevor Brown https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

TABLE OF CONTENTS

- Course mechanics
- Models of computation
- Worked example: Bentley's problem
- Multiple solutions, demonstrating **different algorithm design techniques** Analyzed in different models of computation

3

5

COURSE MECHANICS

COURSE MECHANICS

In person

- Lectures
- "Lab" section is for tutorials
- Course website: https://student.cs.uwaterloo.ca/~cs341/
- Syllabus, calendar, policies, slides, assignments...
 Read this and mark important dates.
- Keep up with the lectures: Material builds over time...
- Piazza: For questions and announcements.

ASSESSMENTS

- All sections have same assignments, midterm and final
- Sections are roughly synchronized to ensure necessary content is taught
- Tentative plan is 5 assignments, midterm, final
- See website for grading scheme, etc.

TEXTBOOK

- Available for free via library website!
- You are expected to know
- entire textbook sections, as listed on course website
- all the material presented in lectures (unless we explicitly say you aren't responsible for it)
- Some other textbooks cover some material better... see www

ACADEMIC OFFENSES

Beware plagiarism

- High level discussion about solutions with individual students is OK
- Don't take written notes away from such discussions
- Class-wide discussion of solutions is **not** OK (until deadline+2 days)

WHAT IS A COMPUTATIONAL PROBLEM?

 Informally: A description of input, and the desired output

WHAT IS AN ALGORITHM?

Informally: A well-defined **procedure** (sequence of steps) to solve a **computational problem**

ANALYSIS OF ALGORITHMS

- Every program uses resources
 - CPU instructions / cycles → time
 - Memory (RAM) → space
 - Others: I/O, network bandwidth/messages, locks... (not covered in this course)
- **Analysis** is the study of **how many** resources an algorithm uses Usually using big-O notation (to ignore constant factors)

MODELS OF COMPUTATION

When your interviewer asks for the

time complexity of your algorithm but you have no idea what that mean

12

11

DaCobalt • 1d

Big Oof notation

$$T_{M}^{avg}(n) = \frac{1}{|\{I : \text{Size}(I) = n\}|} \sum_{\{I : \text{Size}(I) = n\}} T_{M}(I)$$

16

MODELS OF COMPUTATION

- Make analysis possible
- Ones covered in this course
 - Unit cost model
 - Word RAM model
 - Bit complexity model

UNIT COST MODEL

- Each variable (or array entry) is a word
- Words can contain unlimited bits
- Basic operations on words take O(1) time
 - Read/write a word in O(1)
 - Add two words in O(1)
 - Multiply two words in O(1)

Space complexity is the number of words used (excluding the input)

BUT SOMETIMES WE CARE ABOUT WORD SIZE

Suppose we want to limit	n in decimal	n in binary	$[\log_2 n] + 1$
the size of words	1	1	[0] + 1 = 1
	2	10	[1] + 1 = 2
Must consider how many	3	11	[1.58] + 1 = 2
bits are needed to represent	4	100	[2] + 1 = 3
a number n	5	101	[2.32] + 1 = 3
	6	110	[2.58] + 1 = 3
	7	111	[2.81] + 1 = 3
Need $ \log_2 n + 1$ bits to store n	8	1000	[3] + 1 = 4
	9	1001	[3.17] + 1 = 4
i.e., $\Theta(\log n)$ bits	10	1010	[3.32] + 1 = 4
	11	1011	[3.46] + 1 = 4
	12	1100	[3.58] + 1 = 4

WORD RAM MODEL

- Key difference: we care about the size of words
- Words can contain O(lg n) bits,
- where **n** is the **number of words in the input**
- Word size depends on input size!
- Intuition: if the input is an array of n words, a word is large enough to store an array index

Basic operations on words still take O(1) time

(but the values they can contain are limited)

BIT COMPLEXITY MODEL

- Each variable (or array entry) is a bit string
- Size of a variable **x** is the number of bits it needs
- It takes O(log v) bits to represent a value v
- So if **v** is stored in **x**, the size of **x** must be $\Omega(\lg v)$ bits
- Basic operations are performed on individual bits Read/write a bit in O(1) Add/multiply two bits in O(1)
- **Space complexity** is the total **number of bits** used (excluding the input)

BENTLEY'S PROBLEM

A worked example to demonstrate algorithm design & analysis

13

15

23

22

- Suppose not for contradiction
- Then some A[i' ... j'] that crosses the **partition** has a **larger** sum

 Find: maximum
 A
 1
 -7
 4
 0
 2
 -1
 3
 0

 subarray going over the middle partition
 A
 1
 -7
 4
 0
 2
 -1
 3
 0

 find i that maximizes the sum over $i \dots n/2$ i
 j
 We can prove $A[i \dots j]$ is the maximum subarray going over sum over $(\frac{n}{2} + 1) \dots j$ We can prove $A[i \dots j]$

-	function solveDnC(A)	
1.2		-7 4 0 2 -1 3 0
2		
3		0 R 2 -1 3 0
4		
3	if n == 1 then return max(0, A[1]) 7 m	maxL = 4 maxR = 4
2		
1.00	<pre>maxL = solveDnC(A[1 n/2])</pre>	
.9	<pre>maxR = solveDnC(A[n/2+1 n])</pre>	maxM = maxl + maxJ = 8
10		
13		
12		-7 4 0 2 -1 3 0
13	maxI = 0 Index	
14	for i = n/2 1	
15	tempSum = tempSum + A[1]	
16	if tempSum > maxI then maxI = tempSum	→ maxl = 4
17		max J = 4
18	tempSum = 0	
19	maxJ = 0	
20	for $j = n/2+1 \dots n$	
22		
22	if tempSum > maxJ then maxJ = tempSum	
23		
24		
25		
6.21	recurn max (maxb, maxk, maxh)	
		teturn max(4, 4, 8) = 8
	× K	
		26

ZOOMING OUT TO THE K LOOP

The addition happens for all values of k

- Total time for the loop is at most $\sum_{k=i}^{j} O(\log kM)$
- Complicated to sum for $k = i \dots j$
- so get an upper bound with $k = 1 \dots n$
- $\sum_{k=1}^{n} O(\log kM) = O(\log M + \log 2M + \log 3M + \dots + \log nM)$ And similarly
 for this...

for k := i to j do

sum := sum + A[k];

Careful to check this does not affect the θ complexity (much). (Check by finding similar Ω result.)

31

33

35

- $\subseteq O(\log nM + \log nM + \log nM + \dots + \log nM)$
- $= O(n \log n M)$

ACCOUNTING FOR THE OUTER LOOPS

max := 0; k loop is repeated for i := 1 to n do for j := i to n do at most n^2 times // compute A[i] + ... + A[j] Each time taking at most sum := 0; for k := i to j do $O(n \log nM)$ time sum := sum + A[k]; So total runtime is // compare to maximum sum observed so far $O(n^3 \log nM)$ time if sum > max then max := sum; Difference is due to Compare to unit cost model: (1) growth in variable sizes and $O(n^3)$ time (2) cost of bitwise addition log-factor difference is common.. 32

HOW ABOUT WORD RAM?

- If each variable fits in a single word, the analysis (and result) is as in the unit cost model
- Since there are *n* input words, each A[k] will fit in one word only if size $(A[k]) \in O(\log n)$
 - i.e., if $O(\log A[k]) = O(\log n)$
- If a variable is too big to fit in a word, it is stored in multiple words, and analysis looks more like bit complexity model

BENTLEY'S SOLUTIONS: RUNTIME IN PRACTICE

100

- Consider solutions implemented in C
 - Some values measured on a Threadripper 3970x
 - Red values extrapolated from measurements

1,000	0	0	0	0.12
10,000	0	0	0. 036	2 minutes
100, 000	0	0.002	3. 582	33 hours
11	0.001	0.017	6 minutes	4 years
100	0.012	0.195	12 hours	3700 years
1001	0.112	2.168	50 days	3.7M years
1 billion	1.124	24.57	1.5 years	> age of life
10 billion	19, 15	5 minutes	150 years	> age of universe

n Sol.4 O(n) Sol.3 O(n lg n) Sol.2 O(n²) Sol.1 O(n³)

34

34

0 represents time under 0.01s

HOMEWORK: BIG-O REVIEW & EXERCISES

-notation:

 $\begin{array}{l} f(n)\in O(g(n)) \text{ if there exist constants } c>0 \text{ and } n_0>0 \text{ such that} \\ 0\leq f(n)\leq cg(n) \text{ for all } n\geq n_0. \end{array}$ Here the complexity of f is not higher than the complexity of g.

Ω -notation

 $\begin{array}{l} f(n)\in\Omega(g(n)) \text{ if there exist constants } c>0 \text{ and } n_0>0 \text{ such that } \\ 0\leq cg(n)\leq f(n) \text{ for all } n\geq n_0. \end{array}$ Here the complexity of f is not lower than the complexity of g.

 $\begin{array}{l} \hline e \text{-notation:} \\ f(n) \in \Theta(g(n)) \text{ if there exist constants } c_1, c_2 > 0 \text{ and } n_0 > 0 \text{ such that } \\ 0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0. \end{array} \\ \hline e \text{Here } f \text{ and } g \text{ have the same complexity.} \end{array}$

o-notation:

 $f(n) \in o(g(n))$ if for all constants c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$. $f(n) \in o(g(n))$

Here f has lower complexity than g.

$(n) \in o(g(n))$ implies $(n) \in O(g(n))$	But NOT vice versa	
---	-----------------------	--

ω -notation:

 $f(n) \in \omega(g(n))$ if for all constants c > 0, there exists a constant $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$. Here f has higher complexity than g . f(n) ir f(n)	$ \begin{array}{c c} \in \omega(g(n)) \\ \text{mplies} \\ \in \Omega(g(n)) \end{array} \text{But NOT} \\ \text{vice verse} \end{array} $	2
--	---	---

39

41

37

EXERCISE

Which of the following are true?

- $n^2 \in O(n^3)$
- $n^2 \in o(n^3)$
- $n^3 \in \omega(n^3)$
- $\log n \in o(n)$
- $n \log n \in \Omega(n)$
- $n\log n^2 \in \omega(n\log n)$
- $n \in \Theta(n \log n)$

you vs. the guy she tells you not to worry about O(n²) O(n log n)

40

EXERCISE

Which of the following are true?

$n^2 \in O(n^3)$	YES
$n^2 \in o(n^3)$	YES
$n^3 \in \omega(n^3)$	NO
$\log n \in o(n)$	YES
$n \log n \in \Omega(n)$	YES
$n\log n^2\in \omega(n\log n)$	NO
$n \in \Theta(n \log n)$	NO

COMPARING GROWTH RATES

LIMIT TECHNIQUE FOR COMPARING GROWTH RATES

Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$. Suppose that

 $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}.$

 $f(n) \in \begin{cases} o(g(n)) & \text{ if } L = 0 \\ \Theta(g(n)) & \text{ if } 0 < L < \infty \\ \omega(g(n)) & \text{ if } L = \infty. \end{cases}$

Then

44

46

48

LIMIT RULES 1/3

Constant Function Rule The limit of a constant function is the constant: $\lim_{x \to a} C = C.$

Sum Rule

This rule states that the limit of the sum of two functions is equal to the sum of their limits: $\lim_{x \to 0} [f(x) + g(x)] = \lim_{x \to 0} f(x) + \lim_{x \to 0} g(x).$

All of the identities shown	
hold only if the limits exist	

45

LIMIT RULES 2/3

Product Rule This rule says that the limit of the product of two functions is the product of their limits (if they exist):

 $\lim_{x
ightarrow a} \left[f\left(x
ight)g\left(x
ight)
ight] = \lim_{x
ightarrow a} f\left(x
ight) \cdot \lim_{x
ightarrow a} g\left(x
ight).$

Q	Puotient Rule
Т	he limit of quotient of two functions is the quotient of their limits, provided that the limit in th
d	enominator function is not zero:
	$\lim_{x \to a} \frac{f\left(x\right)}{g\left(x\right)} = \frac{\lim_{x \to a} f\left(x\right)}{\lim_{x \to a} g\left(x\right)}, \text{if} \lim_{x \to a} g\left(x\right) \neq 0.$

L'HOSPITAL'S RULE

- Often we take the limit of $\frac{f(n)}{g(n)}$ where both f(n) and g(n) tend to ∞ , or both f(n) and g(n) tend to 0
- Such limits require L'Hospital's rule
- This rule says the limit of f(n)/g(n) in this case is the same as the limit of the **derivative**

In other words,
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{d}{dn}f(n)}{\frac{d}{dn}g(n)}$$

Power Rule

 $\lim_{x
ightarrow a}\left[f\left(x
ight)
ight]^{p}=\left[\lim_{x
ightarrow a}f\left(x
ight)
ight]^{p},$

Limit of an Exponential Function $\lim_{x \to a} b^{f(x)} = b_{x \to a}^{\lim f(x)}$

Limit of a Logarithm of a Function $\lim_{x \to a} \log_b f(x) = \log_b \lim_{x \to a} f(x)$

(Where base b > 0)

USING THE LIMIT METHOD: EXERCISE 1 Compare growth rate of n^2 and $n^2 - 7n - 30$

- $\lim_{n \to \infty} \frac{n^2 7n 30}{n^2}$
- $= \lim_{n \to \infty} (1 \frac{7}{n} \frac{30}{n^2})$
- = 1
- So $n^2 7n 30 \in \Theta(n^2)$

USING THE LIMIT METHOD: EXERCISE 2 Compare growth rate of $(\ln n)^2$ and $n^{1/2}$

50

52

USING THE LIMIT METHOD: EXERCISE 2

 Compare grow 	wth rate of $(\ln n)^2$ and $n^{1/2}$
$\lim_{n \to \infty} \frac{\frac{d}{dn} (\ln n)^2}{\frac{d}{dn} n^{1/2}}$	$= \lim_{n \to \infty} \frac{\frac{d}{dn} 4 \ln n}{\frac{d}{dn} n^{1/2}}$
$= \lim_{n \to \infty} \frac{2 \ln n (1/n)}{\frac{1}{2} n^{-1/2}}$	$=\lim_{n\to\infty}\frac{4/n}{\frac{1}{2}n^{-1/2}}$
$= \lim_{n \to \infty} \frac{4 \ln n}{n^{1/2}}$	$= \lim_{n \to \infty} \frac{8}{n^{1/2}}$
	= 0 So, $(\ln n)^2 \in o($
	$50, (11 n) \in 0$

/	
$= \lim_{n \to \infty} \frac{1}{n}$	$m_{\to\infty} \frac{\frac{d}{dn} 4 \ln n}{\frac{d}{dn} n^{1/2}}$
$= \lim_{n \to \infty} \frac{1}{n}$	$m_{\to\infty} \frac{4/n}{\frac{1}{2}n^{-1/2}}$
$= \lim_{n \to \infty} \frac{1}{n}$	$m_{\to\infty} \frac{8}{n^{1/2}}$
= 0	
So.	$(\ln n)^2 \in o(n^{1/2})$

51

Additional Exercises

Try these at home...

- ¹ Compare the growth rate of the functions $(3 + (-1)^n)n$ and n.
- $^{\rm 2}~$ Compare the growth rates of the functions $f(n)=n\left|\sin\pi n/2\right|+1$ and $g(n) = \sqrt{n}$.

Summation rules are commonly used in loop analysis. Example:

$$\sum_{i=1}^{n} O(i) = O\left(\sum_{i=1}^{n} i\right)$$
$$= O\left(\frac{n(n+1)}{2}\right)$$
$$= O(n^{2}).$$

55

This is included for your notes

58

60

- $2 \quad \log_b x/y = \log_b x \log_b y$
- 3 $\log_b 1/x = -\log_b x$
- 4 $\log_b x^y = y \log_b x$ 5 $\log_b a = \frac{1}{\log_a b}$
- $\log_b a = \frac{\log_a b}{\log_c b}$
- 7 $a^{\log_b c} = c^{\log_b a}$

LOGARITHM RULES

64

66

BASE OF LOGARITHM DOES NOT MATTER!

- Big-O notation does not distinguish between log bases Proof:
 - Fix two constant logarithm bases b and c
 - From log rules, we can change from \log_c to \log_b by using formula: $\log_b x = \log_c \frac{\gamma - \log_c h}{\gamma - \log_c h}$
 - But $\log_c b$ is a **constant!** So $\log_c x \in \Theta(\log_b x)$ We typically omit the base, and just write $\theta(\log x)$ for this reason

61

META-ALGORITHM FOR ANALYZING LOOPS

- Identify operations that require only constant time
- The complexity of a **loop** is the **sum** of the complexities of **all iterations**
- Analyze independent loops separately and add the results
- If loops are nested, it often helps to start at the innermost, and proceed outward... but,
- sometimes you must express several nested loops together in a single equation (using nested summations),
- and actually evaluate the nested summations... (can be hard)

63

65

TWO BIG-O ANALYSIS STRATEGIES

Strategy 1

Strategy 2

LOOP ANALYSIS

- Prove a O-bound and a matching Ω -bound separately to get a θ -bound. Often easier
 - (but not always)
- Use 0-bounds throughout the analysis and thereby obtain a 0-bound for the complexity of the algorithm

Since the upper and lower bounds ${\rm match},$ the complexity is $\Theta(n^2).$

Strategy 2	: use θ-bounds throughout the analysis
Algorithm: L	oopAnalysis1(n: integer)
(1) $sum \leftarrow$	0
(2) for $i \leftarrow$	1 to n
do do	$ \begin{array}{l} \leftarrow 1 \text{ to } i \\ sum \leftarrow sum + (i - j)^2 \\ sum \leftarrow sum/i \end{array} $
(3) return (sum)
θ-bound anal	/sis $\sum_{i=1}^{n} \Theta(i) = \Theta\left(\sum_{i=1}^{n} i\right) = \Theta\left(\frac{n(n+1)}{2}\right) = \Theta(n^2).$
(1)	$\Theta(1)$
	Complexity of inner for loop: $\Theta(i)$
	Complexity of outer for loop: $\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$
(3)	$\Theta(1)$
total	$\Theta(1) + \Theta(n^2) + \Theta(1) = \Theta(n^2)$

enlsay

69

Olive Garden waiter: Sir. you've already

67

... ANOTHER EXERCISE IN LOOP ANALYSIS?

EXAMPLE 3 (BENTLEY'S PROBLEM, SOLUTION 1)

<pre>max := 0; for i := 1 to n do</pre>	Try to analyze this yourself! One possible solution is given in these slides
<pre>for j := i to n do sum := 0; for k := i to j do</pre>	
<pre>sum := sum + A[k]; if sum > max then max := sum</pre>	;

75

BONUS

- Study-song of the day
- Tool Descending
- youtu.be/PcSoLwFisaw