CS341: ALGORITHMS (F23)
 Lecture 1

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

TABLE OF CONTENTS

Course mechanics
Models of computation
Worked example: Bentley's problem
Multiple solutions,
demonstrating different algorithm design techniques
Analyzed in different models of computation

COURSE MECHANICS

COURSE MECHANICS

In person
Lectures
"Lab" section is for tutorials
Course website: https://student.cs.uwaterloo.ca/~cs341/
Syllabus, calendar, policies, slides, assignments...
Read this and mark important dates.
Keep up with the lectures: Material builds over time...
Piazza: For questions and announcements.

ASSESSMENTS

All sections have same assignments, midterm and final Sections are roughly synchronized to ensure necessary content is taught
Tentative plan is 5 assignments, midterm, final See website for grading scheme, etc.

TEXTBOOK

Available for free via library website!
You are expected to know entire textbook sections, as listed on course website all the material presented in lectures (unless we explicitly say you aren' \dagger responsible for it)

Some other textbooks cover some material better... see www

ACADEMIC OFFENSES

Beware plagiarism

High level discussion

about solutions with individual students is OK

Don't take written notes away from such discussions
Class-wide discussion of solutions is not OK (until deadline+2 days)

MODELS OF COMPUTATION

WHY IS CS341 IMPORTANT FOR YOU?

Algorithms is the heart of CS
It appears often in later courses It dominates technical interviews Master this material.. make your interviews easy!
Designing algorithms is creative work
Useful for some of the more interesting jobs out there

WHAT IS A COMPUTATIONAL PROBLEM?

Informally: A description of input, and the desired output

WHAT IS AN ALGORITHM?

Informally: A well-defined procedure (sequence of steps) to solve a computational problem

But how do we know how much time M will take on input I ?

Depends on the model of computation

Others: I/O, network bandwidth/messages, locks... (not covered in this course)
Analysis is the study of how many resources an algorithm uses
Usually using big-O notation (to ignore constant factors)

Running Time of a Program: $T_{M}(1)$ denotes the running time

$$
\text { of a program } M \text { on a problem instance } I \text {. }
$$

Worst-case Running Time as a Function of Input Size: $T_{M}(n)$ denotes the maximum running time of program M on instances of size n :

$$
T_{M}(n)=\max \left\{T_{M}(I): \operatorname{Size}(I)=n\right\} .
$$

Average-case Running Time as a Function of Input Size:
$T_{M}^{a v g}(n)$ denotes the average running time of program M over all instances of size n :
When your interviewer asks for the
time complexity of your algorithm but you have no idea what that means

Big Oof notatio
.
今 12
 -

$$
T_{M}^{\text {avg }}(n)=\frac{1}{|\{I: \operatorname{Size}(l)=n\}|} \sum_{\{l: \operatorname{Size}(l)=n\}} T_{M}(l)
$$

MODELS OF COMPUTATION

Make analysis possible
Ones covered in this course
Unit cost model
Word RAM model
Bit complexity model

UNIT COST MODEL

Each variable (or array entry) is a word
Words can contain unlimited bits
Basic operations on words take $O(1)$ time
Read/write a word in O(1)
Add two words in O(1)
Multiply two words in O(1)
Space complexity is the number of words used
(excluding the input)

BUT SOMETIMES WE CARE ABOUT WORD SIZE

Suppose we want to limit the size of words	n in decimal	n in binary	$\left\lfloor\log _{2} n\right\rfloor+1$
	1	1	$\|0\|+1=1$
	2	10	[1] $+1=2$
Must consider how many bits are needed to represent a number \boldsymbol{n}	3	11	$\lfloor 1.58\rfloor+1=2$
	4	100	[2] $+1=3$
	5	101	$\lfloor 2.32\rfloor+1=3$
	6	110	[2.58] $+1=3$
	7	111	$\lfloor 2.81\rfloor+1=3$
Need $\left\lfloor\log _{2} n\right\rfloor+1$ bits to store n	8	1000	$\lfloor 3\rfloor+1=4$
	9	1001	[3.17] $+1=4$
i.e., $\boldsymbol{\Theta}(\log n)$ bits	10	1010	$\lfloor 3.32\rfloor+1=4$
	11	1011	[3.46] $+1=4$
	12	1100	【3.58] $+1=4$

WORD RAM MODEL

Key difference: we care about the size of words Words can contain $\mathbf{O}(\boldsymbol{I g} \mathbf{n})$ bits, where \mathbf{n} is the number of words in the input Word size depends on input size! Intuition: if the input is an array of \mathbf{n} words, a word is large enough to store an array index

Basic operations on words still take $\mathrm{O}(1)$ time

(but the values they can contain are limited)

BIT COMPLEXITY MODEL

Each variable (or array entry) is a bit string
Size of a variable \mathbf{x} is the number of bits it needs It takes $\mathbf{O}(\log \mathbf{v})$ bits to represent a value \mathbf{v} So if \mathbf{v} is stored in \mathbf{x}, the size of \mathbf{x} must be $\Omega(\lg v)$ bits
Basic operations are performed on individual bits Read/write a bit in $\mathrm{O}(1)$
Add/multiply two bits in O(1)
Space complexity is the total number of bits used (excluding the input)

WHY $A[i \ldots j]$ IS MAXIMAL

Suppose not for contradiction
Then some $A\left[i^{\prime} \ldots j^{\prime}\right]$ that crosses the partition has a larger sum

COMPLEXITY OF ADDITION

ANALYSIS IN THE BIT COMPLEXITY MODEL

28

ADDING SUM AND A[K] sum := sum + $\mathrm{A}[\mathrm{k}]$;

Recall size $($ sum $) \in O(\log k M), \quad \operatorname{size}(\mathrm{A}[k]) \in O(\log A[k])$ bits
Adding them takes
$O(\log (k M)+\log A[k])$ bit operations
And since $\log A[k] \leq \log M$ we get: $O(\log (k M)+\log M)$
And the first term asymptotically dominates:
$O(\log k M)$

ACCOUNTING FOR THE OUTER LOOPS

k loop is repeated
at most n^{2} times
Each time taking at most
$O(n \log n M)$ time
So total runtime is
$O\left(n^{3} \log n M\right)$ time

```
for i := 1 to n do
    for j:= i to n do
    // compute A[i] + \ldots.+ A[j]
    // compute
    sum := 0;
    for k := i to j do
        sum := sumf + A[k];
    // compare to maximum sum observed so far
    if sum > max then max := sum;
```

 Difference is due to
 (1) growth in variable sizes and
 (2) cost of bitwise addition

HOW ABOUT WORD RAM?

If each variable fits in a single word,
the analysis (and result) is as in the unit cost model
Since there are n input words,
each $A[k]$ will fit in one word only if $\operatorname{size}(A[k]) \in O(\log n)$

$$
\text { i.e., if } 0(\log A[k])=0(\log n)
$$

If a variable is too big to fit in a word,
it is stored in multiple words,
and analysis looks more like bit complexity model

BENTLEY'S SOLUTIONS: RUNTIME IN PRACTICE

Consider solutions implemented in C

Some values measured on a Threadripper 3970x Red values extrapolated from measurements
0 represents time under 0.01 s

-notation:

$f(n) \in O(g(n))$ if there exist constants $c>0$ and $n_{0}>0$ such that $0 \leq f(n) \leq \operatorname{cg}(n)$ for all $n \geq n_{0}$
Here the complexity of f is not higher than the complexity of g.

Ω-notation:
$f(n) \in \Omega(g(n))$ if there exist constants $c>0$ and $n_{0}>0$ such that
$0 \leq \operatorname{cg}(n) \leq f(n)$ for all $n \geq n_{0}$.
Here the complexity of f is not lower than the complexity of g.

37
Θ-notation:
$f(n) \in \Theta(g(n))$ if there exist constants $c_{1}, c_{2}>0$ and $n_{0}>0$ such that
$0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$
Here f and g have the same complexity.

${ }^{38}$
o-notation:
$f(n) \in o(g(n))$ if for all constants $c>0$, there exists a constant $n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$. Here f has lower complexity than g
w-notation:
$f(n) \in \omega(g(n))$ if for all constants $c>0$, there exists a constant $n_{0}>0$ such that $0 \leq \operatorname{cg}(n) \leq f(n)$ for all $n \geq n$
Here f has higher complexity than g.

$f(n) \in \omega(g(n))$
implies
$f(n) \in \Omega(g(n))$
:---:
vice versa

EXERCISE

Which of the following are true?

$n^{2} \in O\left(n^{3}\right)$
$n^{2} \in o\left(n^{3}\right)$
$n^{3} \in \omega\left(n^{3}\right)$
$\log n \in o(n)$
$n \log n \in \Omega(n)$
$n \log n^{2} \in \omega(n \log n)$
$n \in \Theta(n \log n)$

EXERCISE

Which of the following are true?
$n^{2} \in O\left(n^{3}\right) \quad$ YES
$n^{2} \in o\left(n^{3}\right) \quad$ YES
$n^{3} \in \omega\left(n^{3}\right) \quad$ NO
$\log n \in o(n) \quad$ YES
$n \log n \in \Omega(n) \quad$ YES
$n \log n^{2} \in \omega(n \log n)$ NO
$n \in \Theta(n \log n) \quad$ NO
you vs. the guy she tells you not to

Some Common Growth Rates（in increasing order）

LIMIT TECHNIQUE

FOR COMPARING GROWTH RATES

Suppose that $f(n)>0$ and $g(n)>0$ for all $n \geq n_{0}$ ．Suppose that

$$
L=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} .
$$

Then

$$
f(n) \in \begin{cases}o(g(n)) & \text { if } L=0 \\ \Theta(g(n)) & \text { if } 0<L<\infty \\ \omega(g(n)) & \text { if } L=\infty\end{cases}
$$

I IMAIT RIII FS つ／३

 exist）：```
 \mp@subsup{\operatorname{lim}}{x->a}{{a}[f(x)g(x)]=\mp@subsup{\operatorname{lim}}{x->a}{}f(x)\cdot\mp@subsup{\operatorname{lim}}{x->a}{}g(x).
```

```
Quotient Rule
The limit of quotient of two functions is the quotient of their limits, provided that the limit in the
denominator function is not zero:
 \mp@subsup{\operatorname{lim}}{x->a}{<a}\frac{f(x)}{g(x)}=\frac{\mp@subsup{\operatorname{lim}}{x->a}{g(x)}}{\mp@subsup{\operatorname{lim}}{x->a}{}g(x)},\mathrm{ if }\mp@subsup{\operatorname{lim}}{x->a}{}g(x)\not=0.
```

All of the identities shown hold only if the limits exist

IIAATCDIICC マノマ
Power Rule
$\lim _{x \rightarrow a}[f(x)]^{p}=\left[\lim _{x \rightarrow a} f(x)\right]^{p}$,

Limit of an Exponential Function
$\lim _{x \rightarrow a} b^{f(x)}=b_{x \rightarrow a}^{\lim _{x \rightarrow a} f(x)}$

## Limit of a Logarithm of a Function

$\lim _{x \rightarrow a} \log _{b} f(x)=\log _{b} \lim _{x \rightarrow a} f(x)$
（Where base $b>0$ ）

## L＇HOSPITAL＇S RULE

Often we take the limit of $\frac{f(n)}{g(n)}$ where
both $f(n)$ and $g(n)$ tend to $\infty$ ，or both $f(n)$ and $g(n)$ tend to 0
Such limits require L＇Hospital＇s rule
This rule says the limit of $\boldsymbol{f}(\boldsymbol{n}) / \boldsymbol{g}(\boldsymbol{n})$ in this case is the same as the limit of the derivative

In other words， $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{\frac{d}{d n} f(n)}{d n} g(n)$

USING THE LIMIT METHOD: EXERCISE 1
Compare growth rate of $n^{2}$ and $n^{2}-7 n-30$
$\lim _{n \rightarrow \infty} \frac{n^{2}-7 n-30}{n^{2}}$
$=\lim _{n \rightarrow \infty}\left(1-\frac{7}{n}-\frac{30}{n^{2}}\right)$
$=1$
So $n^{2}-7 n-30 \in \Theta\left(n^{2}\right)$
USING THE LIMIT METHOD: EXERCISE 2
Compare growth rate of $(\ln n)^{2}$ and $n^{1 / 2}$
$\lim _{n \rightarrow \infty} \frac{(\underline{n} n)^{2}}{n^{1 / 2}}=\lim _{n \rightarrow \infty} \frac{\frac{d}{d n}(\ln n)^{2}}{d n^{n} n^{1 / 2}}$


50

USING THE LIMIT METHOD: EXERCISE 2
Compare growth rate of $(\ln n)^{2}$ and $n^{1 / 2}$

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \frac{\frac{d}{d n}(\ln n)^{2}}{\frac{d}{d n} n^{1 / 2}} & =\lim _{n \rightarrow \infty} \frac{\frac{d}{d n} \ln n}{\frac{d}{d n} n^{1 / 2}} \\
=\lim _{n \rightarrow \infty} \frac{2 \ln n(1 / n)}{\frac{1}{2} n^{-1 / 2}} & =\lim _{n \rightarrow \infty} \frac{4 / n}{\frac{1}{2} n^{-1 / 2}} \\
=\lim _{n \rightarrow \infty} \frac{4 \ln n}{n^{1 / 2}} & =\lim _{n \rightarrow \infty} \frac{8}{n^{1 / 2}} \\
& =0 \\
& \text { So, }(\ln n)^{2} \in o\left(n^{1 / 2}\right)
\end{array}
$$

## Additional Exercises

1 Compare the growth rate of the functions $\left(3+(-1)^{n}\right) n$ and $n$.

2 Compare the growth rates of the functions $f(n)=n|\sin \pi n / 2|+1$ and $g(n)=\sqrt{n}$.


Algebra of Order Notations
"Maximum" rules: Suppose that $f(n)>0$ and $g(n)>0$ for all $n \geq n_{0}$. Then:
$O(f(n)+g(n))=O(\max \{f(n), g(n)\})$ $\Theta(f(n)+g(n))=\Theta(\max \{f(n), g(n)\})$ $\Omega(f(n)+g(n))=\Omega(\max \{f(n), g(n)\})$

This is included for your notes
"Summation" rules: Supose $I$ is a finite set. Then
$o\left(\sum_{i \in I} f(i)\right)=\sum_{i \in I} O(f(i))$
$\Theta\left(\sum_{i \in I} f(i)\right)=\sum_{i \in I} \theta(f(i))$
$\Omega\left(\sum_{i \in I} f(i)\right)=\sum_{i \in I} \Omega(f(i))$

## SEQUENCES

Summation rules are commonly used in loop analysis.
Example:

$$
\begin{aligned}
\sum_{i=1}^{n} O(i) & =O\left(\sum_{i=1}^{n} i\right) \\
& =O\left(\frac{n(n+1)}{2}\right) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

$$
\sum_{i=0}^{n-1}(a+d i)=n a+\frac{d n(n-1)}{2} \in \Theta\left(n^{2}\right) .
$$

Geometric sequence:

$$
\sum_{i=0}^{n-1} a r^{i}= \begin{cases}a \frac{r^{n}-1}{r-1} \in \Theta\left(r^{n}\right) & \text { if } r>1 \\ n a \in \Theta(n) & \text { if } r=1 \\ a \frac{1-r^{n}}{1-r} \in \Theta(1) & \text { if } 0<r<1\end{cases}
$$



## SEQUENCES CONTINUED

This is included for your notes
Arithmetic-geometric sequence:

$$
\sum_{i=0}^{n-1}(a+d i) r^{i}=\frac{a}{1-r}-\frac{(a+(n-1) d) r^{n}}{1-r}+\frac{d r\left(1-r^{n-1}\right)}{(1-r)^{2}}
$$

provided that $r \neq 1$.
Harmonic sequence:

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i} \in \Theta(\log n)
$$

Miscellaneous Formulae
This is included for your notes
$n!\in \Theta\left(n^{n+1 / 2} e^{-n}\right)$
$\log n!\in \Theta(n \log n)$
Another useful formula is

$$
\sum_{i=1}^{\infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{6}
$$

which implies that

$$
\sum_{i=1}^{n} \frac{1}{i^{2}} \in \Theta(1)
$$

A sum of powers of integers when $c \geq 1$ :

$$
\sum_{i=1}^{n} i^{c} \in \Theta\left(n^{c+1}\right) .
$$

Logarithm Formulae
${ }^{1} \log _{b} x y=\log _{b} x+\log _{b} y$
${ }^{2} \log _{b} x / y=\log _{b} x-\log _{b} y$
$3 \log _{b} 1 / x=-\log _{b} x$
$4 \log _{b} x^{y}=y \log _{b} x$
${ }_{5} \log _{b} a=\frac{1}{\log _{a} b}$
$6 \log _{b} a=\frac{\log _{c} a}{\log _{c} b}$
$7 a^{\log _{b} c}=c^{\log _{b} a}$

## LOGARITHM RULES

## BASE OF LOGARITHM DOES NOT MATTER!

Big-O notation does not distinguish between log bases Proof:

Fix two constant logarithm bases b and c
From log rules, we can change from $\log _{c}$ to $\log _{b}$
by using formula: $\log _{\mathrm{b}} x=\log _{c} x$
$\begin{aligned} & \text { But } \log _{c} b \text { is a constant! }\end{aligned} \begin{gathered}\text { We typically omit the base } \\ \text { and just write } \boldsymbol{\theta}(\log x)\end{gathered}$
So $\log _{c} x \in \Theta\left(\log _{b} x\right)$ for this reason

## LOOP ANALYSIS

## META-ALGORITHM FOR ANALYZING LOOPS

Identify operations that require only constant time
The complexity of a loop is the sum of the complexities of all iterations
Analyze independent loops separately and add the results If loops are nested, it often helps to start at the innermost, and proceed outward... but,
sometimes you must express several nested loops together in a single equation (using nested summations),
and actually evaluate the nested summations... (can be hard)

## TWO BIG-O ANALYSIS STRATEGIES

## Strategy 1

Prove a O-bound and a matching $\Omega$-bound separately to get a $\Theta$-bound. $\Sigma$ Often easier

## Strategy 2

 but not always)Use $\Theta$-bounds throughout the analysis and thereby obtain a $\Theta$-bound for the complexity of the algorithm

## EXAMPLE 1

Algorithm: LoopAnalysis1 ( $n$ : integer
(1) sum $\leftarrow 0$
(2) for $i \leftarrow 1$ to $n$
do $\left\{\begin{array}{l}\text { for } j \leftarrow 1 \text { to } i \\ \text { do }\left\{\begin{array}{l}\text { sum } \leftarrow \text { sum }+(i-j)^{2} \\ \text { sum } \leftarrow\lfloor\text { sum } / i\rfloor\end{array}\right.\end{array}\right.$
(3) return (sum)

## Strategy 1: big-O and big- $\Omega$ bounds

We focus on the two nested for loops (i.e., (2)).
The total number of iterations is $\sum_{i=1}^{n} i$, with $\Theta(1)$ time per
Upper bound:

$$
\sum_{i=1}^{n} O(i) \leq \sum_{i=1}^{n} O(n)=O\left(n^{2}\right) .
$$

$$
\sum_{i=1}^{n} \Omega(i) \geq \sum_{i=n / 2}^{n} \Omega(i) \geq \sum_{i=n / 2}^{n} \Omega(n / 2)=\Omega\left(n^{2} / 4\right)=\Omega\left(n^{2}\right) .
$$

Since the upper and lower bounds match, the complexity is $\Theta\left(n^{2}\right)$

Strategy 2: use $\Theta$-bounds throughout the analysis
Algorithm: LoopAnalysis 1 ( $n$ : integer)
(1) sum $\leftarrow 0$
(2) for $i \leftarrow 1$ to $n$
do $\left\{\begin{array}{l}\text { for } j \leftarrow 1 \text { to } i \\ \text { do }\left\{\begin{array}{l}\text { sum } \leftarrow \text { sum }+(i-j)^{2} \\ \text { sum } \leftarrow\lfloor\text { sum } / i\rfloor\end{array}\right.\end{array}\right.$
(3) return (sum)
$\theta$-bound analysis
$\sum_{=1}^{\infty} \theta(\omega)-\theta\left(\sum_{=1}^{+}\right)-\Theta\left(\frac{n(n+1)}{2}\right)-\theta\left(m^{2}\right)$,
(1) $\Theta(1)$
(2) Complexity of inner for loop: $\Theta(i)$
(3) $\quad \Theta(1)$
total $\Theta(1)+\Theta\left(n^{2}\right)+\Theta(1)=\Theta\left(n^{2}\right)$


## Strategy 1: big-O and big- $\Omega$ bounds

$$
T(n) \in \Theta(1)+\sum_{i=1}^{n} \sum_{j=i}^{n}\left(\Theta(1)+\sum_{k=i}^{j} \Theta(1)+\Theta(1)\right)
$$

$$
T(n) \in \sum_{i=1}^{n} \sum_{j=i}^{n} \boldsymbol{\Theta}(j-i) \in \Theta\left(\sum_{i=1}^{n} \sum_{j=i}^{n}(j-i)\right)
$$

$$
T(n) \in O\left(\sum_{i=1}^{n} \sum_{j=i}^{n}(j-i)\right) \leq O\left(\sum_{i=1}^{n} \sum_{j=i}^{n} \boldsymbol{n}\right)
$$


$T(n) \in O\left(n^{3}\right)$

EXAMPLE 2

68


EXAMPLE 3 (BENTLEY'S PROBLEM, SOLUTION 1)

```
max := 0;
for i := 1 to n do
 for j:= i to }n\mathrm{ do
 sum := 0;
 for k := i to j do
 sum := sum + A[k];
 if sum > max then max := sum
```

One possible solution is given in these slides..


## BONUS

Study-song of the day
Tool - Descending
youtu.be/PcSoLwFisaw

