CS 341: ALGORITHMS

Lecture 10: graph algorithms I

Readings: see website

Trevor Brown

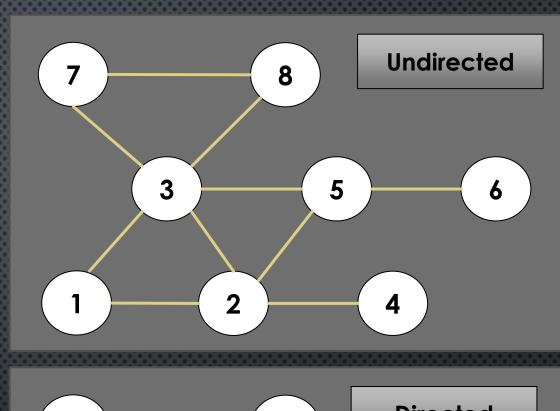
https://student.cs.uwaterloo.ca/~cs341

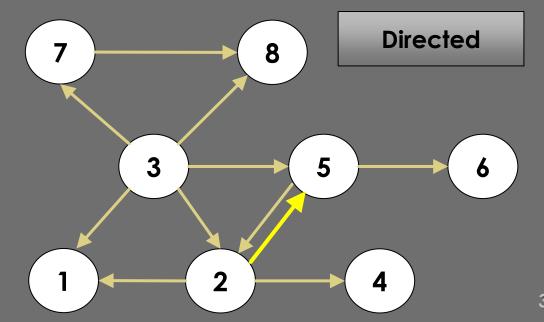
trevor.brown@uwaterloo.ca

GRAPHS

GRAPHS

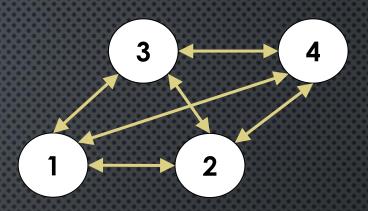
- A graph is a pair G = (V, E)
- V contains vertices
- E contains edges
 - An edge uv connects
 two distinct vertices u, v
 - Also denoted (u, v)
- Graphs can be undirected
- ... or directed
 - meaning $(u, v) \neq (v, u)$





PROPERTIES OF GRAPHS

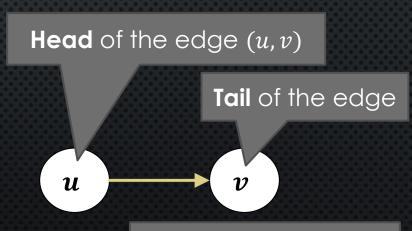
- Number of vertices n = |V|
- Number of edges $m = |E| \le n(n-1)$
 - Note m is in $O(n^2)$ but **not necessarily** $\Omega(n^2)$



12 edges $n(n-1) = 4 \cdot 3$

- For undirected graphs, $m \leq \frac{n(n-1)}{2}$
 - (Asymptotically, no different)

- Other common terminology:
 - vertices = nodes edges = arcs

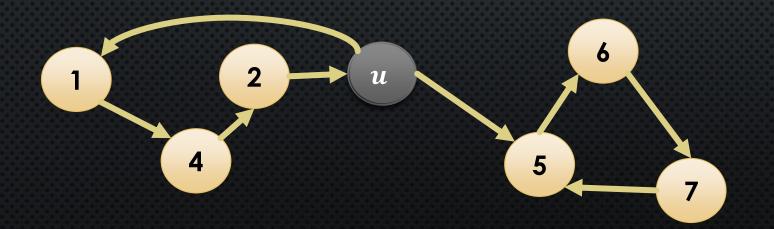


A FEW MORE TERMS

- The **indegree** of a node u, denoted indeg(u), is the number of edges **directed into** u
- The **outdegree**, denoted outdeg(u), is the number of edges **directed out from** u

or simply deg(u) in an undirected graph

- The **neighbours** of u are the nodes u points to
 - Also called the **nodes adjacent to** u, denoted adj(u)



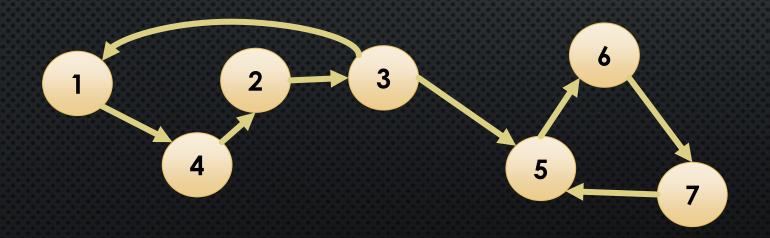
indeg(u) = 1 outdeg(u) = 2 $adj(u) = \{1,5\}$

DATA STRUCTURES FOR GRAPHS

- Two main representations
 - Adjacency matrix
 - Adjacency list
- Each has pros & cons

ADJACENCY MATRIX REPRESENTATION

- $n \times n$ matrix $A = (a_{uv})$
 - rows & columns indexed by V
- $a_{uv} = 1$ if (u, v) is an edge
- $a_{uv} = 0$ if (u, v) is a non-edge
- Diagonal = 0 (no self edges)



Matrix A

 1
 2
 3
 4
 5
 6
 7

 1
 2
 0
 0
 1
 0
 0
 0

 2
 0
 2
 1
 0
 0
 0
 0

 3
 1
 0
 2
 0
 1
 0
 0

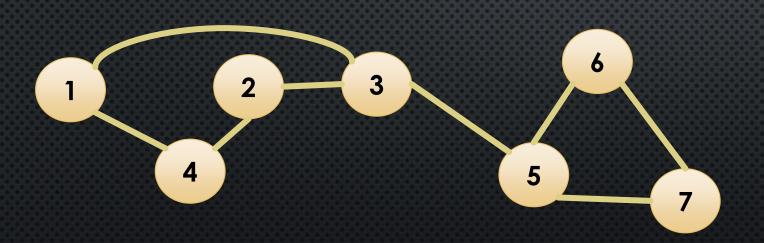
 4
 0
 1
 0
 2
 0
 0
 0

 5
 0
 0
 0
 0
 0
 1
 0

 6
 0
 0
 0
 0
 0
 1
 0

ADJACENCY MATRIX REPRESENTATION

- For undirected graphs
- $a_{uv} = 1$ if (u, v) or (v, u) is an edge
- Matrix is symmetric $A^T = A$



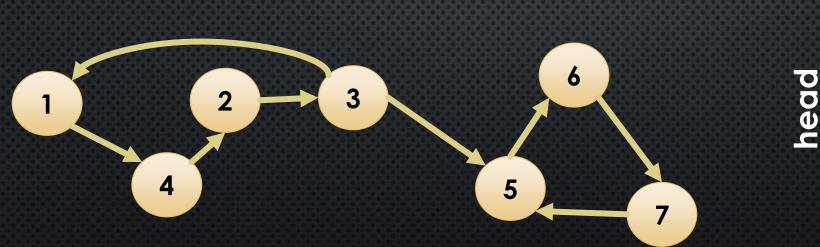
	50000	66660	96565	86666	0000			
		1	2	3	4	5	6	7
	1	0	0	_1	1	0	0	0
	2	0	B	1	1	0	0	0
ס	3	1	1	2	0	_1	0	0
6	4	1	1	0	X	0	0	0
4	5	0	0	1	0	2	_1	1
	6	0	0	0	0	1	2	1
	7	0	0	0	0	1	1	2
	3 4 5	0 1 1 0 0	1 1 0 0	1 0 0 0	1 0 0 0 0	0 0 1 0	0	0

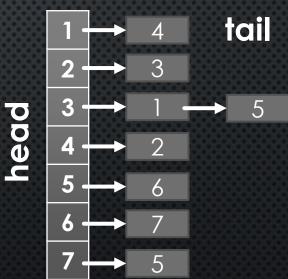
IMPLEMENTING AN ADJACENCY MATRIX

- Suppose we are loading a graph from input
 - Assume nodes are labeled 0..n-1
 - 2D array bool adj[n][n]
- What if nodes are not labeled 0..n-1?
 - Rename them in a preprocessing step
- What if you don't have 2D arrays?
 - Transform 2D array index into 1D index
 - adj[u][v]
 adj[u*n + v]
 (can simplify with macros in C)

ADJACENCY LIST REPRESENTATION

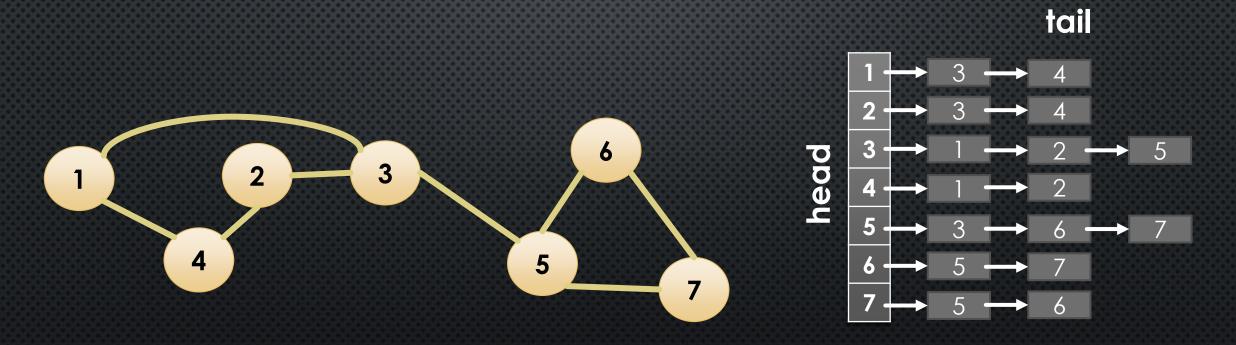
- n linked lists, one for each node
- We write adj[u] to denote the list for node u
- adj[u] contains the labels of nodes it has edges to





ADJACENCY LIST REPRESENTATION

- For undirected graphs
- If adj[u] contains v then adj[v] also contains u



IMPLEMENTING ADJACENCY LISTS

- Suppose we are loading a graph from input
 - Assume nodes are labeled 0..n-1
 - Array of lists adj[n]
 - (In C++, something like an array of vector<int> would work)

PROS AND CONS

Excellent when nodes have O(1) neighbours

	Adjacency matrix	Adjacency list
Time to test whether (u, v) is an edge	0(1)	O(outdeg(u))
Time to list neighbours of $\it u$	O(n)	O(outdeg(u))
Space complexity	$O(n^2)$	O(n+m)

Can be better for dense graphs

Better if $o(n^2)$ edges

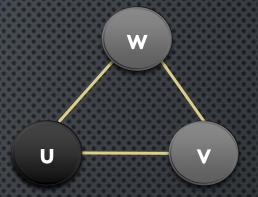
We call this a **sparse** graph

BREADTH FIRST SEARCH

A simple introduction to graph algorithms

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
         pred[1..n] = [null, null, ..., null]
         dist[1..n] = [infty, infty, ..., infty]
         colour[1..n] = [white, white, ..., white]
         q = new queue
 6
                                 Discover (enqueue)
                                    starting node s
         colour[s] = gray -
 8
         dist[s] = 0
         q.enqueue(s)
10
11
                                      Start processing
         while q is not empty
                                      node u's edges
12
             u = q.dequeue()
13
             for v in adj[u]
14
                                            Discover
                 if colour[v] = white
15
                                            (enqueue)
                      pred[v] = u
                                           neighbour v
16
                     colour[v] = gray 🦳
17
                      dist[v] = dist[u] + 1
18
                      q.enqueue(v)
19
             colour[u] = black ___
                                     Finish processing u
20
21
         return colour, pred, dist
```

Assuming adjacency list representation



- Undiscovered nodes are white
- Discovered nodes are gray
 - Processing adjacent edges
- Finished nodes are black
 - Adjacent nodes have been processed
- Connected graph: each node is eventually black

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
                                                                              Example execution
         pred[1..n] = [null, null, ..., null]
                                                                               starting at node 1
 3
         dist[1..n] = [infty, infty, ..., infty]
 4
         colour[1..n] = [white, white, ..., white]
 5
         q = new queue
 6
         colour[s] = gray
 8
         dist[s] = 0
 9
         q.enqueue(s)
                                                                                              3
10
11
         while q is not empty
12
             u = q.dequeue()
13
             for v in adj[u]
                                                                                      2
14
                 if colour[v] = white
15
                     pred[v] = u
16
                     colour[v] = gray
                                                            8
17
                                                 q:
                     dist[v] = dist[u] + 1
18
                     q.enqueue(v)
19
             colour[u] = black
                                                 q tail
                                                                                         q head
20
21
         return colour, pred, dist
                                                                                               16
```

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
    pred[1..n] = [null, null, ..., null]
    dist[1..n] = [infty, infty, ..., infty]
    colour[1..n] = [white, white, ..., white]
    q = new queue
                          0(1)
    colour[s] = gray
                              0(1)
    dist[s] = 0
    q.enqueue(s)
                                O(n) iterations
                                    0(1)
    while q is not empty
        u = q.dequeue()
                                         O(|adj[u]|)
        for v in adj[u]
                                         iterations
            if colour[v] = white
                pred[v] = u
                                            0(1)
                colour[v] = gray
                dist[v] = dist[u] +
                q.enqueue(v)
        colour[u] = black
                                  O(1)
    return colour, pred, dist
```

3

4

6

8

10

11

12

13

14

15

16

17

18

19

20

21

COMPLEXITY

O(n)

(with adjacency lists)

Naïve loop analysis:

- O(n) iterations * O(|adj[u]|) iterations
- $|adj[u]| \le n$, so $O(n^2)$

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
    pred[1..n] = [null, null, ..., null]
   dist[1..n] = [infty, infty, ..., infty]
    colour[1..n] = [white, white, ..., white]
    q = new queue
    colour[s] = gray
   dist[s] = 0
    q.enqueue(s)
   while q is not empty
        u = q.dequeue()
        for v in adj[u]
            if colour[v] = white
                pred[v] = u
                colour[v] = gray
                dist[v] = dist[u] + 1
                q.enqueue(v)
        colour[u] = black
    return colour, pred, dist
```

3

4

6

8

10

11

12

13

14

15

16

17

18

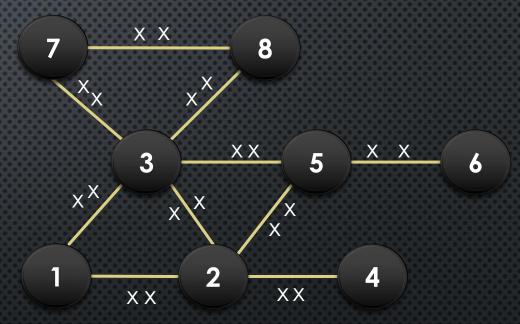
19

20

21

Smarter loop analysis:

• For each u, iterate over all neighbours



- We touch each edge twice (doing O(1) work each time)
- **Total contribution** of the inner loop to the runtime: O(m)

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
    pred[1..n] = [null, null, ..., null]
   dist[1..n] = [infty, infty, ..., infty]
    colour[1..n] = [white, white, ..., white]
    q = new queue
    colour[s] = gray
   dist[s] = 0
    q.enqueue(s)
   while q is not empty
        u = q.dequeue()
        for v in adj[u]
            if colour[v] = white
                pred[v] = u
                colour[v] = gray
                dist[v] = dist[u] + 1
                q.enqueue(v)
        colour[u] = black
    return colour, pred, dist
```

6

8

10

11

12

13

14

15

16

17

18

19

20

21

- Smarter loop analysis:
 - Initialization time: O(n)
 - Total contribution of the inner loop: O(m)
 - (Over all iterations of the outer loop)
 - Additional contribution of the outer loop: O(n)
 - Total runtime: O(m + n)

Analytic expression for loop complexity:

$$T_{LOOP}(n) \in O\left(\sum_{u=1}^{n} (1 + \deg(u))\right)$$

$$= O\left(n + \sum_{u=1}^{n} \deg(u)\right) = \mathbf{O}(n + \mathbf{m})$$

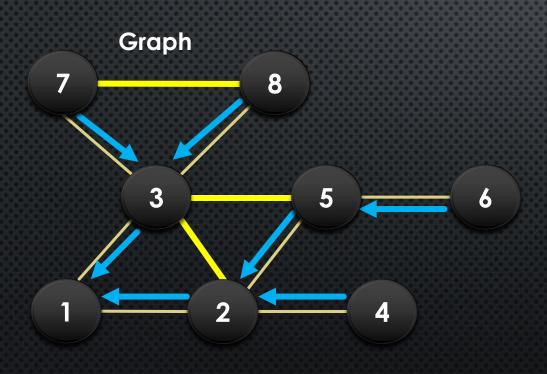
DIFFERENCES WITH ADJACENCY MATRICES

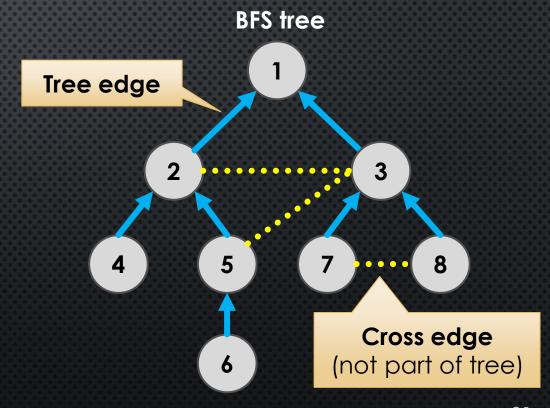
```
BreadthFirstSearch(V[1..n], A[1..n][1..n] s)
         pred[1..n] = [null, null, ..., null]
 3
         dist[1..n] = [infty, infty, ..., infty]
         colour[1..n] = [white, white, ..., white]
         q = new queue
 6
         colour[s] = gray
 8
         dist[s] = 0
         q.enqueue(s)
10
11
         while q is not empty
12
             u = q.dequeue()
13
            for v = 1..n
14
                 if A[u][v] and colour[v] = white
15
                     pred[v] = u
16
                     colour[v] = gray
17
                     dist[v] = dist[u] + 1
18
                     q.enqueue(v)
19
             colour[u] = black
20
         return colour, pred, dist
```

- Analysis is mostly similar
- But, it takes O(n) time to determine which nodes are adjacent to u!
- This O(n) cost is paid for each u, resulting in a total runtime $\in O(n^2)$

BFS TREE

- Connected graph: the pred array induces a tree
- The edges induced by pred[] are called tree edges
- Edges in the graph, but not in pred, are cross edges

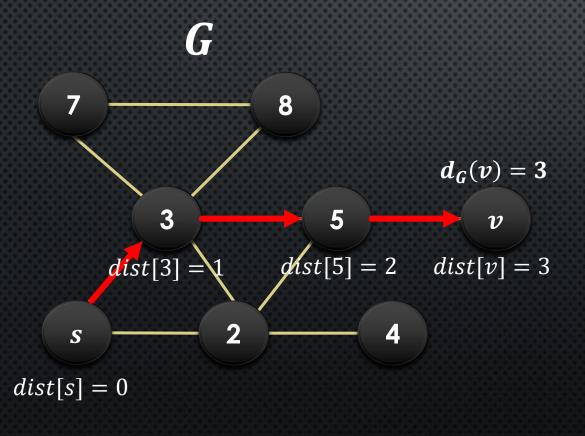


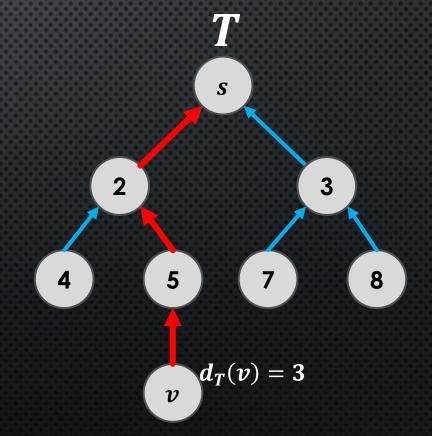


BFS: PROOF OF OPTIMAL DISTANCES

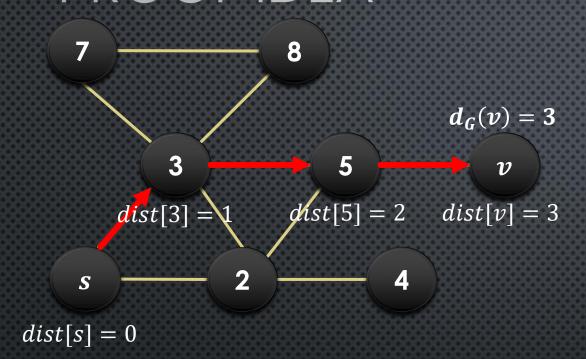
DISTANCE IN GRAPH G AND BFS TREE T

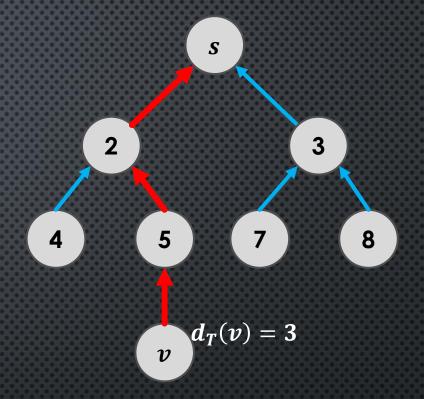
- Denote $d_G(v)$ as the (optimal) distance between s and v in G
- Denote $d_T(v)$ as the distance between s and v in the BFS tree T
- Recall: dist[v] is a value set by BFS for each node v





PROOF IDEA





Want to show: at the end of BFS, $dist[v] = d_G(v)$ for all v

Plan: prove this in two parts

Claim 1: $dist[v] = d_T(v)$

Claim 2: $d_T(v) = d_G(v)$

SKETCH OF CLAIM 1: $dist[v] = d_T(v), \forall v \in V$

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
         pred[1..n] = [null, null, ..., null]
         dist[1..n] = [infty, infty, ..., infty]
         colour[1..n] = [white, white, ..., white]
         q = new queue
         colour[s] = gray
         dist[s] = 0
         q.enqueue(s)
10
11
         while q is not empty
12
             u = q.dequeue()
13
             for v in adj[u]
14
                 if colour[v] = white
15
                     pred[v] = u
16
                     colour[v] = gray
17
                     dist[v] = dist[u] + 1
18
                     q.enqueue(v)
19
             colour[u] = black
20
21
         return colour, pred, dist
```

```
Key observation: whenever we set dist[v] \leftarrow dist[u] + 1, u is the parent of v in the BFS tree.
```

Based on this observation, a simple inductive proof shows $dist[v] = d_T(v)$

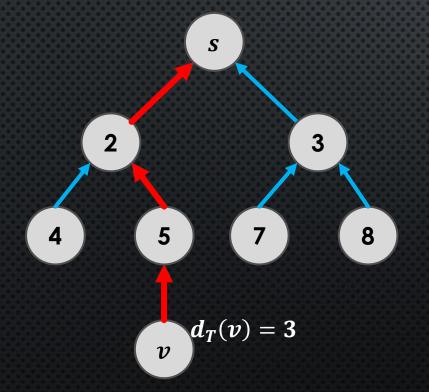
(for example, by strong induction on the nodes in the order their *dist* values are set---left as an exercise)

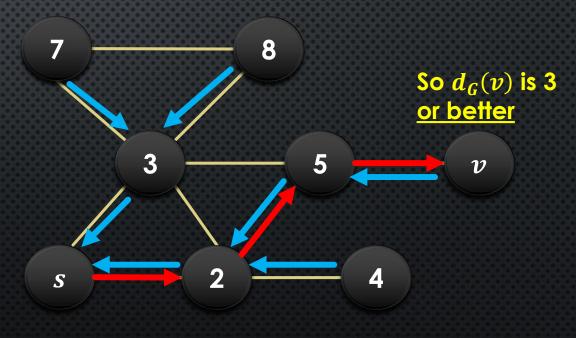
SKETCH OF CLAIM 2: $d_T(v) = d_G(v)$

• Part 1: $\forall v, d_G(v) \leq d_T(v)$

To prove = $\text{we show} \leq \text{and} \geq$

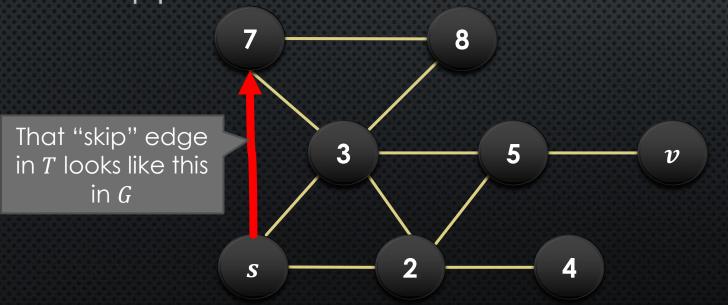
- There is a unique path $v \to \cdots \to s$ in T
- And T is a subgraph of G
- So that same path also exists in G (technically reversed)



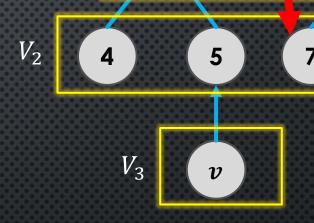


SKETCH OF CLAIM 2: $d_T(v) = d_G(v)$

- Part 2: $\forall v, d_G(v) \geq d_T(v)$
 - Partition T into **levels** "skippin $V_i = \{v: d_T(v) = i\}$ by distance from s
 - Claim: there is no "forward" edge in G that "skips" a level from V_i to V_j , $j \ge i + 2$
 - Suppose there is, for contradiction...



What are the consequences of "skipping" a level in *T*?

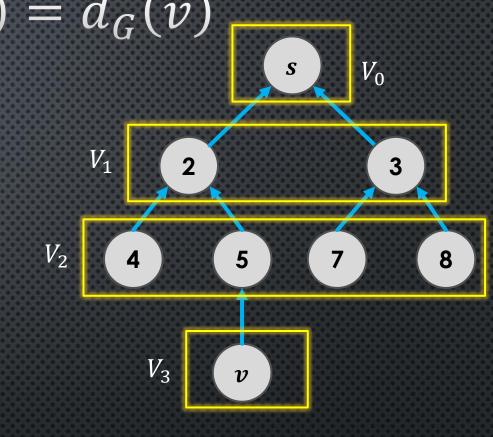


But that edge in G would cause 7 to have S as its parent, so dist[7] would be **only 1 greater** than its parent...

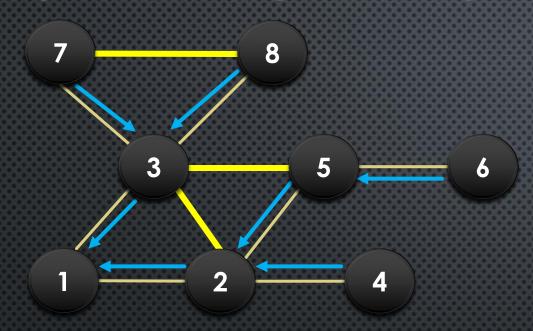
Contradicts(!) the assumption that the edge points to a node with greater distance by at least 2

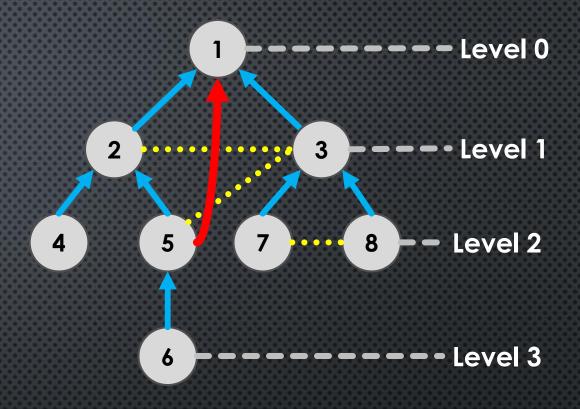
SKETCH OF CLAIM 2: $d_T(v) = d_G(v)$

- Part 2: $\forall v, d_G(v) \geq d_T(v)$
 - We've just argued that there is **no** "**forward**" **edge in** Gthat "skips" a level in Tfrom V_i to V_j , $j \ge i + 2$
 - Since no edge in G "skips" a level in T, we know at least one edge in G is needed to traverse each level between s ∈ V₀ and v ∈ V_{dr(v)}
 - There are $d_{T(v)}$ such levels, so $d_G(v) \ge d_T(v)$



BFS TREE PROPERTIES





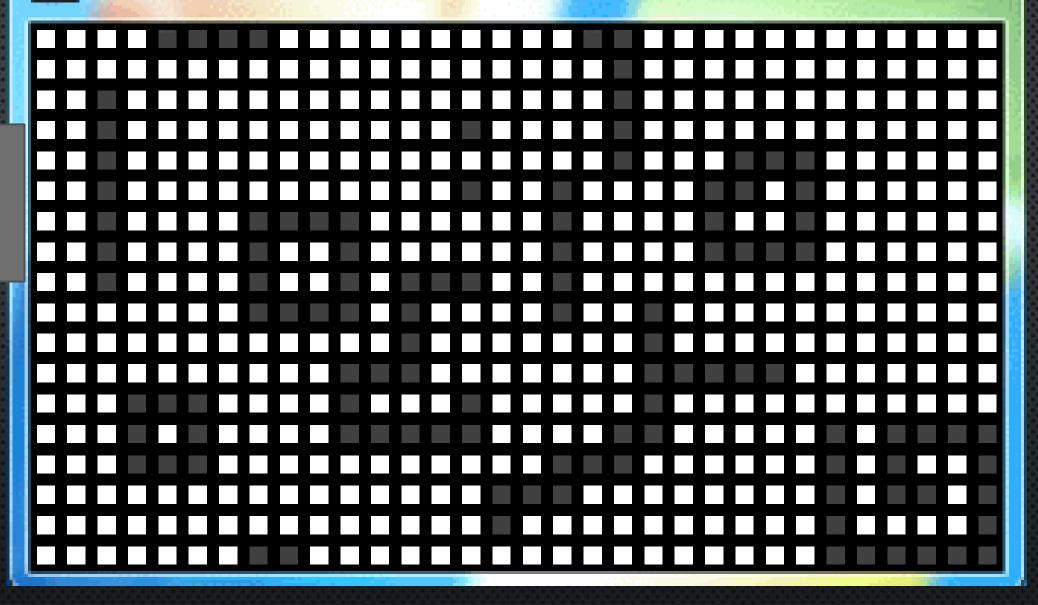
Fact: there are no "back" edges in undirected graphs that "skip" a level going up in the BFS tree.

Exercise: what about directed graphs?



APPLICATION: FINDING SHORTEST PATHS

User interfaces: rubber-banding a **mouse cursor** around obstacles

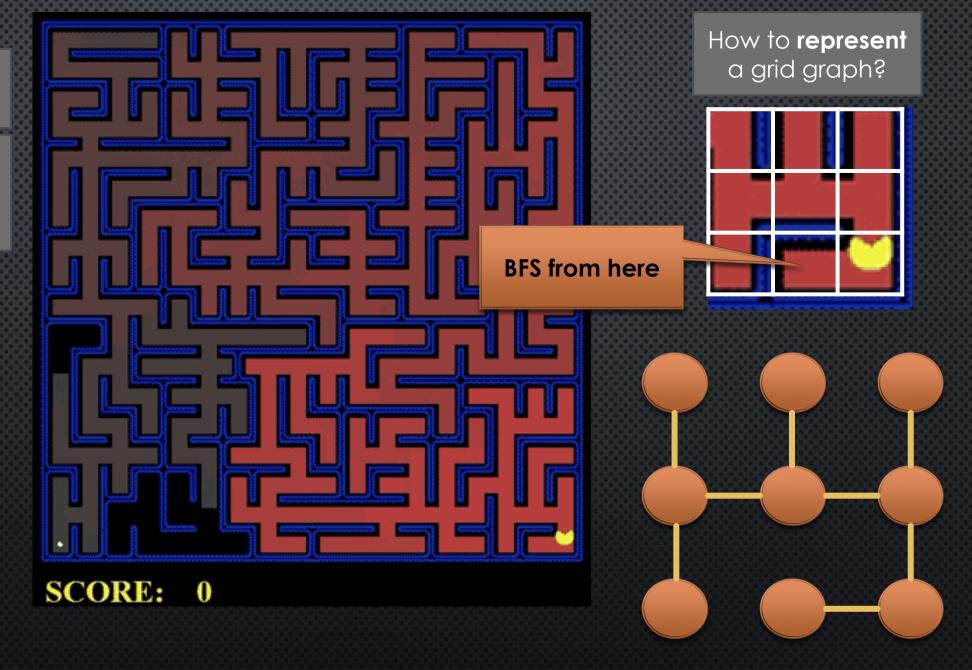


Starting to get into the details

Game AI:

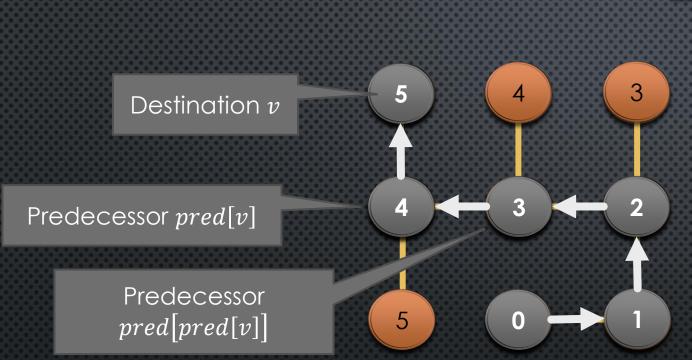
path finding

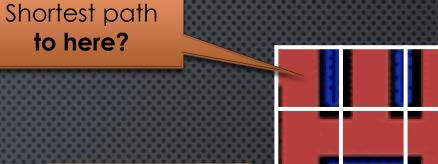
in a **grid**-graph



HOW TO OUTPUT AN ACTUAL PATH

- Suppose you want to output a path from s to v with minimum distance (not just the distance to v)
- Algorithm (what do you think?)
 - Similar to extracting an answer from a DP array!
 - Work backwards through the predecessors
 - Note: this will print the path in reverse! Solution?



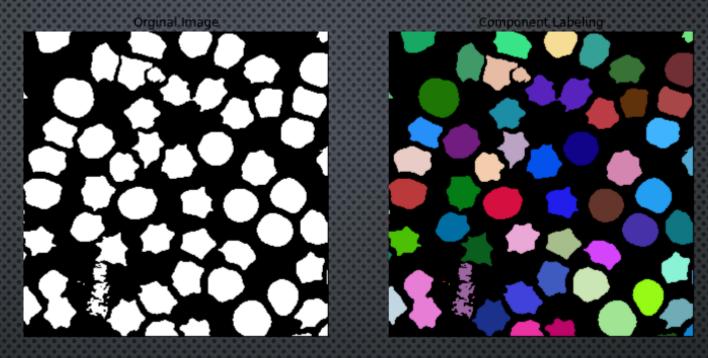


BFS from here

Each time you visit a predecessor, push it into a **stack**

I.e., push v = 5, then push pred[v] = 4, then push pred[pred[v]] = 3, then 2, ...

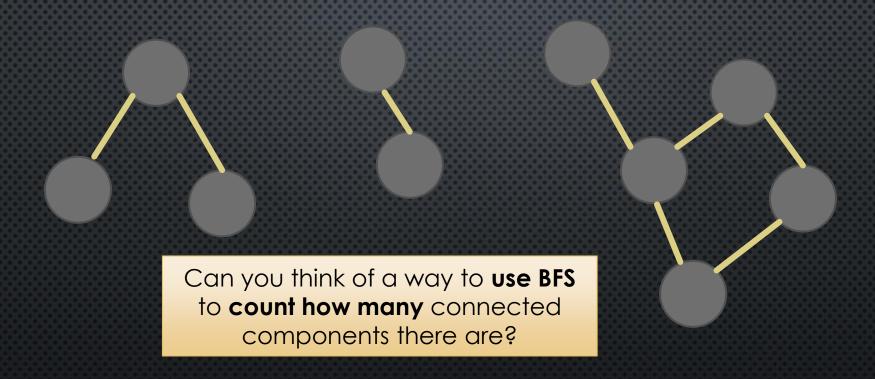
At the end, **pop** all off the stack. This gives 0, 1, 2, ..., 5 = **the path!**



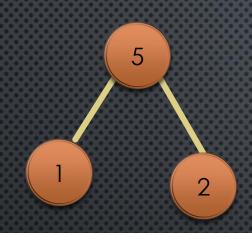
APPLICATION: UNDIRECTED CONNECTED COMPONENTS

CONNECTED COMPONENTS

Example: undirected graph with three components



CONNECTED COMPONENTS

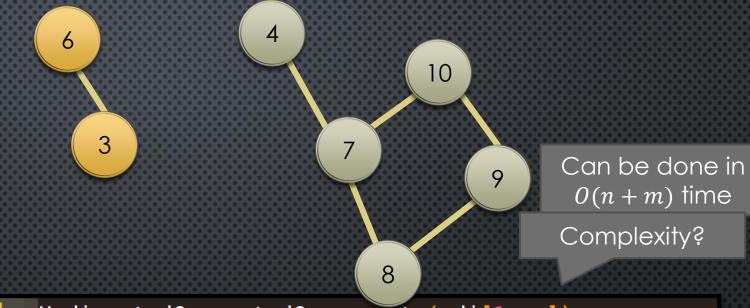


BreadthFirstSearch(V, adj, 1)

BreadthFirstSearch(V, adj, 3)

BreadthFirstSearch(V, adj, 4)

Modified BFS that (1) reuses the same colour array for consecutive calls and (2) sets comp[u] = compNum for each node u it visits



```
UndirectedConnectedComponents(adj[1..n])
colour[1..n] = [white, ..., white]
comp[1..n] = [0, ..., 0]
compNum = 1
for start = 1..n
if colour[start] is white

BFS(adj, start, colour, comp, compNum)
compNum = compNum + 1
return comp
```

BONUS SLIDES

ANSWER TO BFS TREE PROPERTY EXERCISE...

