CS 341: ALGORITHMS

Lecture 10: graph algorithms I
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

GRAPHS

GRAPHS

A graph is a pair $G=(V, E)$
V contains vertices
E contains edges
An edge $\boldsymbol{u} \boldsymbol{v}$ connects two distinct vertices u, v

Also denoted (u, v)
Graphs can be undirected
... or directed
meaning $(u, v) \neq(v, u)$

PROPERTIES OF GRAPHS

Number of vertices $n=|\mathrm{V}|$
Number of edges $m=|E| \leq n(n-1)$
Note m is in $O\left(n^{2}\right)$ but not necessarily $\Omega\left(n^{2}\right)$

12 edges
$n(n-1)=4 \cdot 3$
For undirected graphs, $m \leq \frac{n(n-1)}{2}$
(Asymptotically, no different)

Other common terminology:
vertices $\boldsymbol{=}$ nodes edges $=$ arcs

A FEW MORE TERMS

The indegree of a node \boldsymbol{u}, denoted indeg (u), is the number of edges directed into u
The outdegree, denoted outdeg (u), is the number of edges directed out from u
The neighbours of u are the nodes u points to
Also called the nodes adjacent to \boldsymbol{u}, denoted $\operatorname{adj}(u)$

$$
\begin{gathered}
\operatorname{indeg}(u)=1 \\
\operatorname{outdeg}(u)=2 \\
\operatorname{adj}(u)=\{1,5\}
\end{gathered}
$$

DATA STRUCTURES FOR GRAPHS

Two main representations
Adjacency matrix

Adjacency list

Each has pros \& cons

ADJACENCY MATRIX REPRESENTATION

$n \times n$ matrix $A=\left(a_{u v}\right)$
rows \& columns indexed by V
$\boldsymbol{a}_{\boldsymbol{u} v}=\mathbf{1}$ if (u, v) is an edge
$\boldsymbol{a}_{\boldsymbol{u} v}=\mathbf{0}$ if (u, v) is a non-edge
Diagonal $=0$ (no self edges)

Matrix A
tail

		1	2	3	4	5	6	7	
	1		0	0	1	0	0	0	
	2	0		1	0	0	0	0	
ర	3	1	0		0	1	0	0	
0	4	0	1	0		0	0	0	
ع	5	0	0	0	0		1	0	
	6	0	0	0	0	0		1	
	7	0	0	0	0	1	0		

ADJACENCY MATRIX REPRESENTATION

For undirected graphs
$\boldsymbol{a}_{\boldsymbol{u} v}=\mathbf{1}$ if (u, v) or $(\boldsymbol{v}, \boldsymbol{u})$ is an edge
Matrix is symmetric $A^{T}=A$

$\begin{aligned} & \mathbf{O} \\ & \mathbf{O} \\ & \mathbf{(1)} \end{aligned}$		1	2	3	4	5	6	7
	1	1 0 1 0 \times 1			1	0	0	0
	2				1	0	0	0
	3	1	1		0	1	0	0
	4	1	1	0		0	0	0
	5	0	0	1	0			1
	6	0	0	0	0	1		1
	7	0	0	0	0	1		

IMPLEMENTING AN ADJACENCY MATRIX

Suppose we are loading a graph from input
Assume nodes are labeled 0..n-1
2D array bool adj[n][n]
What if nodes are not labeled 0..n-1?

- Rename them in a preprocessing step

What if you don't have 2D arrays?
Transform 2D array index into 1D index
$\operatorname{adj}[u][v] \rightarrow \operatorname{adj}\left[u^{*} n+v\right]$
(can simplify with macros in C)

ADJACENCY LIST REPRESENTATION

n linked lists, one for each node
We write $\operatorname{adj}[u]$ to denote the list for node u
$\operatorname{adj}[u]$ contains the labels of nodes it has edges to

ADJACENCY LIST REPRESENTATION

For undirected graphs

If $\operatorname{adj}[u]$ contains v then $\operatorname{adj}[v]$ also contains u

IMPLEMENTING ADJACENCY LISTS

Suppose we are loading a graph from input
Assume nodes are labeled 0..n-1
Array of lists adj[n]
(In C++, something like an array of vector<int> would work)

PROS AND CONS

BREADTH FIRST SEARCH

A simple introduction to graph algorithms

```
pred[1..n] = [null, null, ..., null]
```

dist[1..n] = [infty, infty, ..., infty]
colour[1..n] $=$ [white, white, ..., white]
q = new queue
colour[s] $=$ gray starting node s
dist[s] = 0
q.enqueue(s)
while q is not empty
$\mathrm{u}=\mathrm{q}$. dequeue()
for v in adj[u]
if colour[v] = white
pred[v] = u
colour[v] = gray
dist[v] = dist[u]
q.enqueue(v)
colour[u] = black
Finish processing u
return colour, pred, dist

Undiscovered nodes are white Discovered nodes are gray

Processing adjacent edges
Finished nodes are black
Adjacent nodes have been processed

Connected graph: each node is eventually black
BreadthFirstSearch(V[1..n], adj[1..n], s)
pred[1..n] $=$ [null, null, ..., null]
dist[1..n] = [infty, infty, ..., infty]
colour[1..n] $=$ [white, white, ..., white]
q = new queue
colour[s] = gray
dist[s] = 0
q.enqueue(s)
while q is not empty
$u=q$.dequeue()
for v in adj[u]
if colour[v] = white
$\operatorname{pred}[v]=u$
colour[v] = gray
$\operatorname{dist}[\mathbf{v}]=\operatorname{dist}[\mathbf{u}]+1$
q.enqueue(v)
colour[u] = black

q tail

[^0]BreadthFirstSearch(V[1..n], adj[1..n], s)

COMPLEXITY

pred[1..n] $=$ [null, null, ..., null] dist[1..n] = [infty, infty, ..., infty] colour[1..n] = [white, white, ..., white]

```
q = new queue
```



```
q = new queue }
```


while q is not empty
$\mathrm{u}=\mathrm{q}$. dequeue()

for v in adj[u]

$$
\text { if colour }[v]=\text { white }
$$

$$
\operatorname{pred}[\mathbf{v}]=\mathbf{u}
$$ colour[v] = gray dist[v] = dist[u] + q.enqueue(v)

colour[u] = black
return colour, pred, dist
(with adjacency lists)

Naïve loop analysis:

$O(n)$ iterations * $O(|\operatorname{adj}[u]|)$ iterations

$$
|\operatorname{adj}[u]| \leq n, \text { so } O\left(n^{2}\right)
$$

```
l BreadthFirstSearch(V[1..n], adj[1..n], s)
    pred[1..n] = [null, null, ..., null]
    dist[1..n] = [infty, infty, ..., infty]
    colour[1..n] = [white, white, ..., white]
    q = new queue
    colour[s] = gray
    dist[s] = 0
    q.enqueue(s)
    while q is not empty
        u = q.dequeue()
        for v in adj[u]
        if colour[v] = white
            pred[v] = u
            colour[v] = gray
            dist[v] = dist[u] + 1
            q.enqueue(v)
    colour[u] = black
return colour, pred, dist
```


Smarter loop analysis:

For each u,
iterate over all neighbours

We touch each edge twice (doing $O(1)$ work each time)

Total contribution of the inner loop to the runtime: $O(m)$

BreadthFirstSearch(V[1..n], adj[1..n], s)

```
    pred[1..n] = [null, null, ..., null]
```

 dist[1..n] = [infty, infty, ..., infty]
 colour[1..n] \(=\) [white, white, ..., white]
 \(q=\) new queue
 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)
 while \(q\) is not empty
 \(u=q\).dequeue()
 for \(v\) in adj[u]
 if colour[v] = white
 pred[v] \(=u\)
 colour[v] = gray
 dist[v] = dist[u] + 1
 q.enqueue(v)
 colour[u] = black
 return colour, pred, dist

Smarter loop analysis:

Initialization time: $\boldsymbol{O}(\boldsymbol{n})$
Total contribution of the inner loop: $\mathbf{O}(\mathrm{m})$
(Over all iterations of the outer loop)
Additional contribution of the outer loop: $\boldsymbol{O}(n)$
Total runtime: $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$
Analytic expression for loop complexity:

$$
\begin{aligned}
& T_{L O O P}(n) \in O\left(\sum_{u=1}^{n}(1+\operatorname{deg}(u))\right) \\
& =O\left(n+\sum_{u=1}^{n} \operatorname{deg}(u)\right)=\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})
\end{aligned}
$$

DIFFERENCES WITH ADJACENCY MATRICES

```
```

BreadthFirstSearch(V[1..n], A[1..n][1..n], s)

```
```

BreadthFirstSearch(V[1..n], A[1..n][1..n], s)
pred[1..n] = [null, null, ..., null]
pred[1..n] = [null, null, ..., null]
dist[1..n] = [infty, infty, ..., infty]
dist[1..n] = [infty, infty, ..., infty]
colour[1..n] = [white, white, ..., white]
colour[1..n] = [white, white, ..., white]
q = new queue
q = new queue
colour[s] = gray
colour[s] = gray
dist[s] = 0
dist[s] = 0
q.enqueue(s)
q.enqueue(s)
while q is not empty
while q is not empty
u = q.dequeue()

```
```

 u = q.dequeue()
    ```
```



```
```

 return colour, pred, dist
    ```
```

```
```

 return colour, pred, dist
    ```
```

Analysis is mostly similar But, it takes $O(n)$ time to determine which nodes are adjacent to u !

This $O(n)$ cost is paid for each u, resulting in a total runtime $\in \boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$

BFS TREE

Connected graph: the pred[] array induces a tree The edges induced by pred[] are called tree edges Edges in the graph, but not in pred, are cross edges

BFS tree

BFS: PROOF OF OPTIMAL DISTANCES

DISTANCE IN GRAPH G AND BFS TREE T

Denote $d_{G}(v)$ as the (optimal) distance between s and v in G Denote $d_{T}(v)$ as the distance between s and v in the BFS tree T Recall: dist $[v]$ is a value set by BFS for each node v

PROOF IDEA

Want to show: at the end of BFS, $\operatorname{dist}[v]=d_{G}(v)$ for all v
Plan: prove this in two parts
Claim 1: $\operatorname{dist}[v]=d_{T}(v)$
Claim 2: $d_{T}(v)=d_{G}(v)$

SKETCH OF CLAIM 1: $\operatorname{dist}[v]=d_{T}(v), \forall v \in V$

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
    pred[1..n] = [null, null, ..., null]
    dist[1..n] = [infty, infty, ..., infty]
    colour[1..n] = [white, white, ..., white]
```

 \(\mathrm{q}=\) new queue
 colour[s] = gray
 dist[s] = 0
 q.enqueue(s)
 Key observation: whenever we se \dagger
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+1$,
u is the parent of v in the BFS tree.
while q is not empty
$\mathrm{u}=\mathrm{q}$. dequeue()
for v in adj[u]
if colour[v] = white
pred[v] = u
colour[v] = gray
dist[v] = dist[u]
q.enqueue(v)
colour[u] = black

Based on this observation, a simple inductive proof shows

$$
\operatorname{dist}[v]=d_{T}(v)
$$

(for example, by strong induction on the nodes in the order their dist values are set---left as an exercise)

SKETCH OF CLAIM 2: $d_{T}(v)=d_{G}(v)$
Part 1: $\forall v, d_{G}(v) \leq d_{T}(v)$
There is a unique path $v \rightarrow \cdots \rightarrow s$ in T
And T is a subgraph of \boldsymbol{G}
So that same path also exists in G (technically reversed)

SKETCH OF CLAIM 2: $d_{T}(v)=d_{G}(v)$

Part 2: $\forall v, d_{G}(v) \geq d_{T}(v)$ Partition T into levels $V_{i}=\left\{v: d_{T}(v)=i\right\}$ by distance from s Claim: there is no "forward" edge in \boldsymbol{G} that "skips" a level from V_{i} to $V_{j}, j \geq i+2$ Suppose there is, for contradiction...

That "skip" edge in T looks like this in G

But that edge in G would cause 7 to have s as its parent, so dist[7] would be only 1 greater than its parent...
Contradicts(!) the assumption that the edge points to a node with greater distance by at least 2

SKETCH OF CLAIM 2: $d_{T}(v)=d_{G}(v)$

Part 2: $\forall v, d_{G}(v) \geq d_{T}(v)$
We've just argued that
there is no "forward" edge in \boldsymbol{G}
that "skips" a level in T
from V_{i} to $V_{j}, j \geq i+2$
Since no edge in G "skips" a level in T, we know at least one edge in \boldsymbol{G}
 is needed to traverse each level between $\boldsymbol{s} \in \boldsymbol{V}_{\mathbf{0}}$ and $\boldsymbol{v} \in \boldsymbol{V}_{\boldsymbol{d}_{\boldsymbol{T}}(\boldsymbol{v})}$
There are $d_{T(v)}$ such levels, so $d_{G}(v) \geq d_{T}(v)$

BFS TREE PROPERTIES

Fact: there are no "back" edges in undirected graphs that "skip" a level going up in the BFS tree.

APPLICATION: FINDING SHORTEST PATHS

User interfaces:
rubber-banding a mouse cursor
around obstacles

| Starting to get into
 the details |
| :---: |

| Game Al: |
| :---: |
| path finding |
| in a grid-graph | path finding in a grid-graph

SCORE: 0

How to represent a grid graph?

HOW TO OUTPUT AN ACTUAL PATH

Suppose you want to output a path from s to v with minimum distance (not just the distance to v)
Algorithm (what do you think?)
Similar to extracting an answer from a DP array!
Work backwards through the predecessors
Note: this will print the path in reverse! Solution?

Shortest path

 to here?

Each time you visit a predecessor, push it into a stack
I.e., push $v=5$, then push pred $[v]=4$, then push pred $[\operatorname{pred}[v]]=3$, then $2, \ldots$

At the end, pop all off the stack.
This gives $0,1,2, \ldots, 5=$ the path!

APPLICATION: UNDIRECTED CONNECTED COMPONENTS

CONNECTED COMPONENTS

Example: undirected graph with three components

Can you think of a way to use BFS to count how many connected components there are?

CONNECTED COMPONENTS

BreadthFirstSearch(V, adj, 1)
BreadthFirstSearch(V, adj, 3)
BreadthFirstSearch(V, adj, 4)

Modified BFS that (1) reuses the same colour array for consecutive calls and (2) sets comp[U] = compNum for each node u it visits

BONUS SLIDES

ANSWER TO BFS TREE PROPERTY EXERCISE...

Dotted = back edge

[^0]: 1
 2

