CS 341: ALGORITHMS

Lecture 10: graph algorithms I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

GRAPHS

GRAPHS

- A graph is a pair G = (V, E)
- V contains vertices
- E contains edges
 - An edge uv connects
 two distinct vertices u, v
 - Also denoted (u, v)
- Graphs can be undirected
- ... or directed
 - meaning $(u, v) \neq (v, u)$

PROPERTIES OF GRAPHS

- Number of vertices n = |V|
- Number of edges $m = |E| \le n(n-1)$
 - Note m is in $O(n^2)$ but **not necessarily** $\Omega(n^2)$

12 edges $n(n-1) = 4 \cdot 3$

- For undirected graphs, $m \leq \frac{n(n-1)}{2}$
 - (Asymptotically, no different)

- Other common terminology:
 - vertices = nodes edges = arcs

A FEW MORE TERMS

- The **indegree** of a node u, denoted indeg(u), is the number of edges **directed into** u
- The **outdegree**, denoted outdeg(u), is the number of edges **directed out from** u

or simply deg(u) in an undirected graph

- \circ The **neighbours** of u are the nodes u points to
 - Also called the **nodes adjacent to** u, denoted adj(u)

indeg(u) = 1 outdeg(u) = 2 $adj(u) = \{1,5\}$

DATA STRUCTURES FOR GRAPHS

- Two main representations
 - Adjacency matrix
 - Adjacency list
- Each has pros & cons

ADJACENCY MATRIX REPRESENTATION

- $n \times n$ matrix $A = (a_{uv})$
 - rows & columns indexed by V
- $a_{uv} = 1$ if (u, v) is an edge
- $a_{uv} = 0$ if (u, v) is a non-edge
- Diagonal = 0 (no self edges)

Matrix A tail

ADJACENCY MATRIX REPRESENTATION

- For undirected graphs
- $a_{uv} = 1$ if (u, v) or (v, u) is an edge
- Matrix is symmetric $A^T = A$

IMPLEMENTING AN ADJACENCY MATRIX

- Suppose we are loading a graph from input
 - Assume nodes are labeled 0..n-1
 - 2D array bool adj[n][n]
- What if nodes are not labeled 0..n-1?
 - Rename them in a preprocessing step
- What if you don't have 2D arrays?
 - Transform 2D array index into 1D index
 - adj[u][v] → adj[u*n + v]
 (can simplify with macros in C)

ADJACENCY LIST REPRESENTATION

- \circ *n* linked lists, one for each node
- We write adj[u] to denote the list for node u
- \circ adj[u] contains the labels of nodes it has edges to

ADJACENCY LIST REPRESENTATION

- For undirected graphs
- If adj[u] contains v then adj[v] also contains u

IMPLEMENTING ADJACENCY LISTS

- Suppose we are loading a graph from input
 - Assume nodes are labeled 0..n-1
 - Array of lists adj[n]
 - (In C++, something like an array of vector<int> would work)

PROS AND CONS

have O(1) neighbours Adjacency list Adjacency matrix Time to test whether O(outdeg(u))O(1)(u, v) is an edge Time to list neighbours O(n)O(outdeg(u))of u $O(n^2)$ Space complexity O(n+m)Can be better for dense graphs Better if $o(n^2)$ edges We call this a **sparse** graph

Excellent when nodes

BREADTH FIRST SEARCH

A simple introduction to graph algorithms

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
 2
         pred[1..n] = [null, null, ..., null]
 3
         dist[1..n] = [infty, infty, ..., infty]
 4
         colour[1..n] = [white, white, ..., white]
         q = new queue
                                  Discover (enqueue)
 6
                                    starting node s
         colour[s] = gray
 8
         dist[s] = 0
 9
         q.enqueue(s)
10
11
         while q is not empty
                                      Start processing
12
                                      node u's edges
             u = q.dequeue()
13
             for v in adj[u]
14
                 if colour[v] = white
                                             Discover
15
                     pred[v] = u
                                            (enqueue)
                                           neighbour v
16
                     colour[v] = gray /
17
                     dist[v] = dist[u] + 1
18
                     q.enqueue(v)
19
             colour[u] = black
20
                                      Finish processing u
21
         return colour, pred, dist
```

Assuming adjacency list representation

- Undiscovered nodes are white
- **Discovered** nodes are **gray**
 - Processing adjacent edges
- Finished nodes are black
 - Adjacent nodes have been processed
- Connected graph: each node is eventually black

```
1
     BreadthFirstSearch(V[1..n], adj[1..n], s)
                                                                                Example execution
 2
                                                                                starting at node 1
         pred[1..n] = [null, null, ..., null]
 3
         dist[1..n] = [infty, infty, ..., infty]
 4
         colour[1..n] = [white, white, ..., white]
 5
         q = new queue
 6
 7
         colour[s] = gray
 8
         dist[s] = 0
 9
         q.enqueue(s)
10
11
         while q is not empty
12
             u = q.dequeue()
13
             for v in adj[u]
14
                 if colour[v] = white
15
                     pred[v] = u
16
                     colour[v] = gray
17
                     dist[v] = dist[u] + 1
                                                             8
                                                  q:
18
                     q.enqueue(v)
19
             colour[u] = black
                                                  q tail
20
                                                                                          q head
21
         return colour, pred, dist
```

16

1 BreadthFirstSearch(V[1..n], adj[1..n], s) 2 pred[1..n] = [null, null, ..., null] 3 dist[1..n] = [infty, infty, ..., infty] 4 colour[1..n] = [white, white, ..., white] 5 q = new queue -0(1)6 colour[s] = gray 0(1)8 dist[s] = 09 q.enqueue(s) O(n) iterations 10 11 while q is not empty 0(1)12 u = q.dequeue()O(|adj[u]|)13 for v in adj[u] iterations 14 if colour[v] = white 15 pred[v] = u16 colour[v] = gray 0(1)17 dist[v] = dist[u] + 18 q.enqueue(v) 19 colour[u] = black 0(1)20 21 return colour, pred, dist

COMPLEXITY

O(n)

(with adjacency lists)

Naïve loop analysis:

- O(n) iterations * O(|adj[u]|) iterations
- $|adj[u]| \leq n$, so $O(n^2)$

```
1
     BreadthFirstSearch(V[1..n], adj[1..n], s)
 2
         pred[1..n] = [null, null, ..., null]
 3
         dist[1..n] = [infty, infty, ..., infty]
 4
         colour[1..n] = [white, white, ..., white]
 5
         q = new queue
 6
 7
         colour[s] = gray
 8
         dist[s] = 0
 9
         q.enqueue(s)
10
11
         while q is not empty
12
             u = q.dequeue()
13
             for v in adj[u]
14
                 if colour[v] = white
15
                     pred[v] = u
16
                     colour[v] = gray
17
                     dist[v] = dist[u] + 1
18
                     q.enqueue(v)
19
             colour[u] = black
20
21
         return colour, pred, dist
```

Smarter loop analysis:

• For each u, iterate over all neighbours

- We touch each edge twice (doing 0(1) work each time)
- **Total contribution** of the inner loop to the runtime: O(m)

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
 2
         pred[1..n] = [null, null, ..., null]
 3
         dist[1..n] = [infty, infty, ..., infty]
         colour[1..n] = [white, white, ..., white]
         q = new queue
 6
         colour[s] = gray
 8
         dist[s] = 0
 9
         q.enqueue(s)
10
11
         while q is not empty
12
             u = q.dequeue()
13
             for v in adj[u]
14
                 if colour[v] = white
15
                     pred[v] = u
16
                     colour[v] = gray
17
                     dist[v] = dist[u] + 1
18
                     q.enqueue(v)
19
             colour[u] = black
20
21
         return colour, pred, dist
```

Smarter loop analysis:

- Initialization time: O(n)
- Total contribution of the inner loop: O(m)
 - (Over all iterations of the outer loop)
- Additional contribution of the **outer loop**: O(n)
- Total runtime: O(m+n)

Analytic expression for loop complexity:

$$T_{LOOP}(n) \in O\left(\sum_{u=1}^{n} (1 + \deg(u))\right)$$

$$= O\left(n + \sum_{u=1}^{n} \deg(u)\right) = \mathbf{O}(n + \mathbf{m})$$

DIFFERENCES WITH ADJACENCY MATRICES

```
BreadthFirstSearch(V[1..n], A[1..n][1..n], s)
         pred[1..n] = [null, null, ..., null]
 3
         dist[1..n] = [infty, infty, ..., infty]
 4
         colour[1..n] = [white, white, ..., white]
         q = new queue
 6
         colour[s] = gray
         dist[s] = 0
 9
         q.enqueue(s)
10
11
         while q is not empty
12
             u = q.dequeue()
13
             for v = 1...
14
                 if A[u][v] and colour[v] = white
15
                     pred[v] = u
16
                     colour[v] = gray
17
                     dist[v] = dist[u] + 1
18
                     q.enqueue(v)
19
             colour[u] = black
20
21
         return colour, pred, dist
```

- Analysis is mostly similar
- But, it takes O(n) time to determine which nodes are adjacent to u!
- This O(n) cost is paid for each u, resulting in a total runtime $\in O(n^2)$

BFS TREE

- Disconnected? Forest...
- Connected graph: the pred[] array induces a trée
- The edges induced by pred[] are called tree edges
- Edges in the graph, but not in pred, are cross edges

BFS: PROOF OF OPTIMAL DISTANCES

DISTANCE IN GRAPH G AND BFS TREE T

- \circ Denote $d_G(v)$ as the (optimal) distance between s and v in G
- Denote $d_T(v)$ as the distance between s and v in the BFS tree T
- Recall: dist[v] is a value set by BFS for each node v

PROOF IDEA

Want to show: at the end of BFS, $dist[v] = d_G(v)$ for all v

Plan: prove this in two parts

Claim 1: $dist[v] = d_T(v)$

Claim 2: $d_{T}(v) = d_{G}(v)$

SKETCH OF **CLAIM 1**: $dist[v] = d_T(v), \forall v \in V$

```
BreadthFirstSearch(V[1..n], adj[1..n], s)
 2
         pred[1..n] = [null, null, ..., null]
 3
         dist[1..n] = [infty, infty, ..., infty]
 4
         colour[1..n] = [white, white, ..., white]
 5
         q = new queue
 6
         colour[s] = gray
 8
         dist[s] = 0
 9
         q.enqueue(s)
10
11
         while q is not empty
12
             u = q.dequeue()
13
             for v in adj[u]
14
                 if colour[v] = white
15
                     pred[v] = u
16
                     colour[v] = gray
17
                     dist[v] = dist[u] + 1
18
                     q.enqueue(v)
19
             colour[u] = black
20
21
         return colour, pred, dist
```

Key observation: whenever we set $dist[v] \leftarrow dist[u] + 1$, u is the parent of v in the BFS tree.

Based on this observation, a simple inductive proof shows $dist[v] = d_T(v)$

(for example, by strong induction on the nodes in the order their *dist* values are set---left as an exercise)

SKETCH OF CLAIM 2: $d_T(v) = d_G(v)$

- Part 1: $\forall v, d_G(v) \leq d_T(v)$
 - There is a unique path $v \rightarrow \cdots \rightarrow s$ in T
 - And T is a subgraph of G
 - \circ So that same path also exists in G (technically reversed)

To prove =

we show \leq and \geq

SKETCH OF CLAIM 2: $d_T(v) = d_G(v)$

- Part 2: $\forall v, d_G(v) \geq d_T(v)$
 - Partition T into **levels** $V_i = \{v: d_T(v) = i\} \text{ by distance from } s$
 - Claim: there is no "forward" edge in G that "skips" a level from V_i to V_j , $j \ge i + 2$
 - Suppose there is, for contradiction...

What are the consequences of "skipping" a level in T?

Trom s lge in G v_2 v_4 v_5 v_7 v_8 v_9 v_9

But that edge in *G* would cause 7 to have *s* as its parent, so *dist*[7] would be **only 1 greater** than its parent...

Contradicts(!) the assumption that the edge points to a node with greater distance by at least 2

SKETCH OF CLAIM 2: $d_T(v) = d_G(v)$

- Part 2: $\forall v, d_G(v) \geq d_T(v)$
 - We've just argued that there is **no** "**forward**" **edge in** Gthat "skips" a level in Tfrom V_i to V_j , $j \ge i + 2$
 - Since no edge in G "skips" a level in T, we know **at least one edge in G** is needed to traverse **each level** between $S \in V_0$ and $v \in V_{d_T(v)}$
 - There are $d_{T(v)}$ such levels, so $d_G(v) \ge d_T(v)$

BFS TREE PROPERTIES

Fact: there are no "back" edges in undirected graphs that "skip" a level going up in the BFS tree.

Exercise: what about directed graphs?

Answer in bonus slides...

APPLICATION: FINDING SHORTEST PATHS

User interfaces: rubber-banding a **mouse cursor** around obstacles

Starting to get into the details

Game AI: path finding in a **grid**-graph

HOW TO **OUTPUT** AN **ACTUAL PATH**

- $^{\circ}$ Suppose you want to output a **path** from s to v with minimum distance (not just the **distance** to v)
- Algorithm (what do you think?)
 - Similar to extracting an answer from a DP array!
 - Work backwards through the predecessors
 - Note: this will print the path in reverse! Solution?

This gives 0, 1, 2, ..., 5 =**the path!**

APPLICATION: UNDIRECTED CONNECTED COMPONENTS

CONNECTED COMPONENTS

Example: undirected graph with three components

CONNECTED COMPONENTS

BreadthFirstSearch(V, adj, 1)

BreadthFirstSearch(V, adj, 3)

BreadthFirstSearch(V, adj, 4)

Modified BFS that (1) reuses the same colour array for consecutive calls and (2) sets comp[u] = compNum for each node u it visits

BONUS SLIDES

ANSWER TO BFS TREE PROPERTY EXERCISE...

