

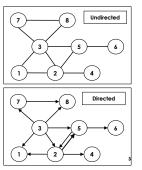
GRAPHS

Lecture 10: graph algorithms I Readings: see website

Trevor Brown https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

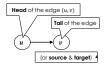
GRAPHS

- A graph is a pair G = (V, E)
- V contains vertices
- E contains edges
- An edge uv connects two **distinct** vertices u, vAlso denoted (u, v)
- Graphs can be **undirected**
- ... or directed
 - meaning $(u, v) \neq (v, u)$



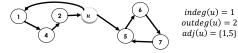
PROPERTIES OF GRAPHS

- Number of vertices n = |V|
- Number of edges $m = |E| \le n(n-1)$
- Note *m* is in $\mathcal{O}(n^2)$ but **not necessarily** $\Omega(n^2)$
- For undirected graphs, $m \le \frac{n(n-1)}{2}$ (Asymptotically, no different)
- Other common terminology: vertices = nodes edges = arcs



A FEW MORE TERMS

- The **indegree** of a node u, denoted indeg(u), is the number of edges **directed into** u
- The **outdegree**, denoted outdeg(u), is the number of edges **directed out from** u
- The neighbours of u are the nodes u points to
 Also called the nodes adjacent to u, denoted adj(u)



or simply deg(u) in an undirected graph

5

DATA STRUCTURES FOR GRAPHS

- Two main representations
 - Adjacency matrix
 - Adjacency list
- Each has pros & cons

6

tail

10

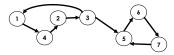
12

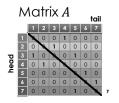
ADJACENCY MATRIX REPRESENTATION

 $n \times n$ matrix $A = (a_{uv})$

rows & columns indexed by V

- $a_{uv} = 1$ if (u, v) is an edge
- $a_{uv} = 0$ if (u, v) is a **non-edge**
- Diagonal = 0 (no self edges)

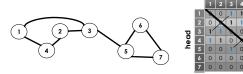




ADJACENCY MATRIX REPRESENTATION

For undirected graphs

 $a_{uv} = 1$ if (u, v) or (v, u) is an edge Matrix is symmetric $A^T = A$

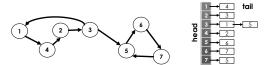


IMPLEMENTING AN ADJACENCY MATRIX

- Suppose we are loading a graph from input
- Assume nodes are labeled 0...n-1
 2D array **bool adi[n][n]**
- What if nodes are not labeled 0...n-1?
- Rename them in a preprocessing step
- What if you don't have 2D arrays?
 - Transform 2D array index into 1D index
 - adj[u][v] \rightarrow adj[u*n + v] (can simplify with macros in C)

ADJACENCY LIST REPRESENTATION

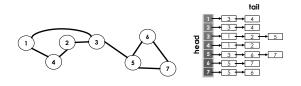
- n linked lists, one for each node
- $^{\circ}$ We write adj[u] to denote the list for node u
- adj[u] contains the labels of nodes it has edges to



ADJACENCY LIST REPRESENTATION

For undirected graphs

If adj[u] contains v then adj[v] also contains u



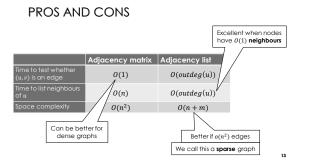
IMPLEMENTING ADJACENCY LISTS

Suppose we are loading a graph from input

- Assume nodes are labeled 0..n-1
- Array of lists adj[n]

11

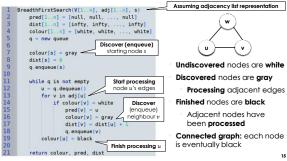
(In C++, something like an array of vector<int> would work)

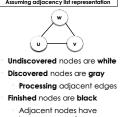


BREADTH FIRST SEARCH

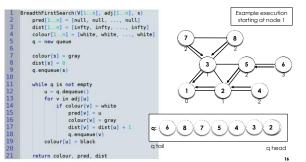
A simple introduction to graph algorithms

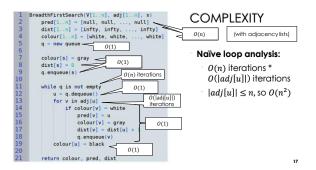
14





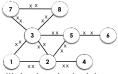
15





Smarter loop analysis:

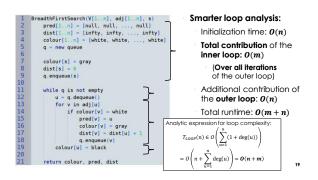
For each u, iterate over all neighbours

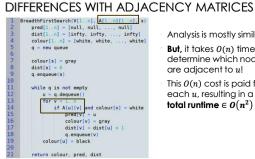


We touch each edge twice (doing $\theta(1)$ work each time)

Total contribution of the inner loop to the runtime: O(m)18

22





Analysis is mostly similar

But, it takes O(n) time to determine which nodes are adjacent to u! This O(n) cost is paid for

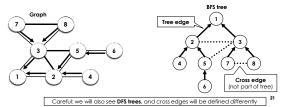
each u, resulting in a total runtime $\in O(n^2)$

BFS TREE

dist[s] = 0

Disconnected? Forest...

- Connected graph: the pred[] array induces a tree
- The edges induced by pred[] are called tree edges
- Edges in the graph, but not in pred, are cross edges

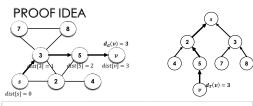


BFS: PROOF OF OPTIMAL DISTANCES

DISTANCE IN GRAPH G AND BFS TREE T

- Denote $d_G(v)$ as the (optimal) distance between s and v in G Denote $d_T(v)$ as the distance between s and v in the BFS tree T
- Recall: dist[v] is a value set by BFS for each node v G $d_{G}(v) = 3$ 3 5 tst[5] = 2dist[v] = 3t[3] =(4) 5

23

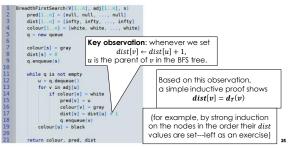


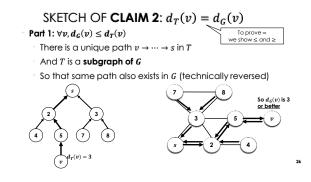
Want to show: at the end of BFS, $dist[v] = d_G(v)$ for all v

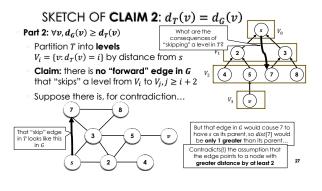
Plan: prove this in two parts Claim 1: $dist[v] = d_T(v)$ Claim 2: $d_T(v) = d_G(v)$

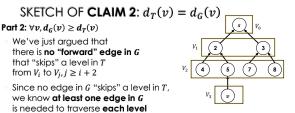
24

SKETCH OF **CLAIM 1**: $dist[v] = d_T(v), \forall v \in V$

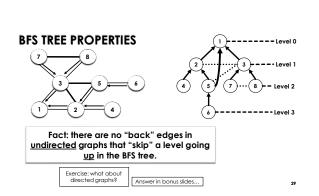




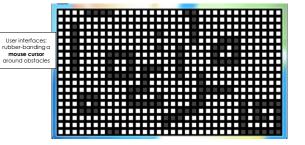




between $s \in V_0$ and $v \in V_{d_T(v)}$ There are $d_{T(v)}$ such levels, so $d_G(v) \ge d_T(v)$

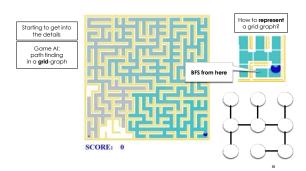


APPLICATION: FINDING SHORTEST PATHS



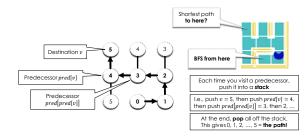
33

35



HOW TO OUTPUT AN ACTUAL PATH

- Suppose you want to output a **path** from s to v with minimum distance (not just the **distance** to v)
- Algorithm (what do you think?)
 - Similar to extracting an answer from a DP array!Work backwards through the predecessors
 - Note: this will print the path in reverse! Solution?



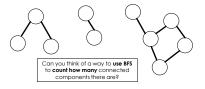
34



APPLICATION: UNDIRECTED CONNECTED COMPONENTS

CONNECTED COMPONENTS

• Example: undirected graph with three components

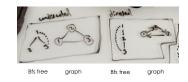


36

BONUS SLIDES

38

ANSWER TO BFS TREE PROPERTY EXERCISE...



39

Dotted = back edge