Constructing Optimum Binary Search Trees

Given items 1..n and probabilities $p_1..p_n$, construct a binary search tree to minimize the search cost $\sum_i p_i \text{ProbeDepth}(i)$.

e.g., $p_1 = \cdots = p_5 = \frac{1}{5}$

\[
\text{search cost} = 1 \cdot \frac{1}{5} + 2 \cdot 2 \cdot \frac{1}{5} + 2 \cdot 3 \cdot \frac{1}{5} = \frac{7}{5}
\]

e.g., $p_1 = 0.6$, $p_2 = p_3 + p_4 = p_5 = 0.1$

\[
\text{cost} = 1(0.1) + 2 \cdot 2(0.1) + 3(0.6) + 3(0.1) = 2.6
\]

To apply dynamic programming:

- subproblems: optimal binary search tree for items $i..j$
- order subproblems by # items (i.e., by $j - i$) to solve $i..j$
Details

\[M[i, j] = \min_{k=1..j} \{ M[i, k-1] + M[k+1, j] \} + \sum_{t=i}^{j} p_t \]

How to compute \(\sum_{t=i}^{j} p_t \)

First compute \(P[i] = \sum_{j=1}^{i} p_j \quad P[0] = 0 \)

then we can get \(\sum_{t=i}^{j} p_t \) as \(P[j] - P[i-1] \).

\[
\begin{align*}
\text{for } i & \text{ from } 1 \text{ to } n \text{ do} \\
M[i, i] & := p_i \\
M[i, i-1] & := 0 \\
\text{od}
\end{align*}
\]

\[
\begin{align*}
\text{for } d & \text{ from } 1 \text{ to } n-1 \text{ do} \quad \# \ d \ \text{is} \ j - i \ \text{in above} \\
\text{for } i & \text{ from } 1 \text{ to } n - d \\
\# \ \text{solve for} \ M[i, i + d] \\
\text{best} & := \infty \quad \# \ \text{or a very large number} \\
\text{for } k & \text{ from } i \text{ to } i + d \text{ do} \\
\text{temp} & := M[i, k-1] + M[k+1, i + d] \\
\text{if} \ \text{temp} \ < \ \text{best} \ \text{then} \ \text{best} := \text{temp} \ \text{fi;} \\
\text{od} \\
M[i, i + d] & := \text{best} + P[i + d] - P[i - 1] \\
\text{od}
\end{align*}
\]

\[
\begin{align*}
\text{Runtime } O(n^2 \cdot n) = O(n^3)
\end{align*}
\]
Dynamic Programming for 0-1 Knapsack

Recall the knapsack problem:

Given items 1, 2, ..., n, where item i has weight \(w_i \) and value \(v_i \) (\(w_i, v_i \in \mathbb{Z} \)) choose a subset \(S \) of items such that \(\sum_{i \in S} w_i \leq W \) and \(\sum_{i \in S} v_i \) is maximized.

Recall that we considered the fractional version (can use fractions of items, e.g., flour, rice) where greedy algorithm works. Here we consider the 0-1 version where items are indivisible (e.g., flashlight, tent).

First attempt: Like weighted interval scheduling, distinguish whether item \(n \) is IN or OUT.

- if \(n \notin S \) — look for optimal solution for 1..\(n-1 \)
- if \(n \in S \) — want subset \(S \) of 1..\(n-1 \) with

\[
\sum_{i \in S} w_i \leq W - w_n
\]

\(\Rightarrow \) we must solve a subproblem with different weight capacity
Subproblems: one for each pair i, w, $i = 0..n$, $w = 0..W$

Find subset $S \subseteq \{1..i\}$ s.t.

$$\sum_{i \in S} w_i \leq w \quad \text{and} \quad \sum_{i \in S} v_i \text{ is maximized}$$

Let $M(i, w) = \max \sum_{i \in S} v_i$.

To find $M(i, w)$

- if $w_i > w$ then $M(i, w) := M(i - 1, w)$
- else $M(i, w) := \max \left\{ M(i - 1, w) \# \text{don’t use } i, v_i + M(i - 1, w - w_i) \# \text{use } i \right\}$

Pseudocode and ordering of subproblems:

Use matrix $M[0..n, 0..W]$

Initialize $M[0, w] := 0$ for $w = 0..W$

for i from 1 to n do

for w from 0 to W do

compute $M[i, w]$ using $*$

od

od

Analysis: $n \cdot W \cdot c$\quad constant work for $*$

loop for w

So $O(n \cdot W)$

This is not a polynomial time algorithm. It is pseudo-polynomial time.

The input is $w_1..w_n$, $v_1..v_n$, W. The size of the input is sum of # bits.
W is one of the numbers in the input. The size of the inputs counts the size of W — let’s say it has \(k \) bits: \(k \in \Theta(\log W) \).

But the algorithm takes \(O(n \cdot W) \) — that’s \(O(n \cdot 2^k) \) so it’s exponential in the input size. Runtime is polynomial in the value of W rather than the size of W.

Finding the actual solution for knapsack. Two methods:

1. Backtracking: Use \(M \) to recover solution

 \[i := n; w := W; S := \emptyset \]

 \[\text{while } i > 0 \text{ do} \]

 \[\text{if } M(i, w) = M(i - 1, w) \quad \# \text{ didn’t use } i \]
 \[i := i - 1 \]

 \[\text{else} \quad \# \text{ used } i \]
 \[S := S \cup \{i\}; \quad i := i - 1; \quad w := w - w_i \]

 \[\text{fi} \]

 \[\text{od} \]

2. Enhance original code: when we set \(M(i, w) \) also set Flag\((i, w)\)

 — do we use item \(i \) or not to get \(M(i, w) \) (we still need backtracking)

 Or even store Soln\((i, w)\)

 — list of items to get \(M(i, w) \) (no backtracking needed)

Trade-offs: (2) uses more space

(1) duplicates tests used to compute \(M \)
Memoization:

- use recursion, rather than explicitly solving all subproblems bottom-up as we’ve been doing so far.

- danger — that you solve the same subproblem over and over (possibly taking exponential time, e.g., $T(n) = 2T(n - 1) + O(1)$ is exponential.)

- fix — when you solve a subproblem, store the solutions. Before (re)-solving, check if you have a stored solution. Solutions can be stored in a matrix or in a hash table. Example: “option remember” in Maple

```maple
fib := proc(n)
    option remember;
    if n = 0 then return 0
    elif n = 1 then return 1
    else return fib(n - 1) + fib(n - 2)
    end if
end proc
```

- advantage — maybe you don’t solve all subproblems.

- disadvantages
 - harder to analyze runtime
 - overhead of recursive approach takes more time
Common subproblems in dynamic programming

1. input $x_1..x_n$
 subproblems $x_1..x_i$
 # subproblems n

2. input $x_1..x_n$
 subproblems $x_i..x_j$
 # subproblems $O(n^2)$
 optimal binary search tree

3. input $x_1..x_n \ y_1..y_m$
 subproblems $x_1..x_i$ and $y_1..y_j$
 # subproblems $O(nm)$
 edit distance