
CS 341: ALGORITHMS
Lecture 11: graph algorithms II – finishing BFS, depth first search

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

BFS APPLICATION:

TESTING WHETHER A GRAPH IS BIPARTITE

2

(UNDIRECTED) BIPARTITE GRAPHS AND BFS

3

4

5 6

7 8

3

1 2

• A graph is bipartite if the nodes can be partitioned

into sets 𝑅 and 𝐵 such that each edge has

one endpoint in 𝑅 and one endpoint in 𝐵

4

5

6

7 8

3

1

2

𝐺
𝑅 𝐵

4

5

7

1
6

8

3

2

CRUCIAL PROPERTY:
NO ODD CYCLES

4

4

5 6

7 8

3

1 2

• Claim: a graph is bipartite if and only if

it does not contain an odd length cycle

4

5

6

7 8

3

1

2

𝐺
𝑅 𝐵

What happens if I create

an odd length cycle?

4

5

7

1
6

8

3

2

Edge with both

endpoints in 𝑩!

PROOF
PART 1: ODD CYCLE ⇒ NOT BIPARTITE

• Suppose there is an odd length cycle 𝑣1, 𝑣2, … , 𝑣2𝑘+1, 𝑣1

5

𝒗𝟐

𝒗𝟐𝒌+𝟏

𝒗𝟏

𝒗𝟔

𝒗𝟕

𝒗𝟓

𝒗𝟒

𝒗𝟑

𝒗𝟐𝒌

…

WLOG let 𝑣1 ∈ 𝑅

Then we must have 𝑣2 ∈ 𝐵

And 𝑣3 ∈ 𝑅
(or there will be an edge (𝑣1, 𝑣2)

with two endpoints in 𝑅)

And 𝑣4 ∈ 𝐵

And so on,

alternating…

until 𝑣2𝑘 ∈ 𝐵

And finally 𝑣2𝑘+1 ∈ 𝑅 !!

Both endpoints in 𝑹!

Contradiction!

𝒗𝟏

𝒗𝟑

𝒗𝟓

𝒗𝟕

𝒗𝟐

𝒗𝟒

𝒗𝟔

𝒗𝟐𝒌

𝒗𝟐𝒌+𝟏

PROOF
PART 2: ALL CYCLES HAVE EVEN LENGTH ⇒ BIPARTITE

• Let 𝑣𝑖 be any node, and 𝒅(𝒗) be the distance from 𝒗𝒊 to 𝒗

• Partition nodes by even vs odd distances

6

4

5 6

𝒗𝒊 8

3

1 2

𝐺

𝑑 𝑣𝑖 = 0 𝑑 = 1

𝑑 = 1

𝑑 = 2

𝑑 = 2

𝑑 = 3

𝑑 = 3

𝑑 = 4

𝑅 = odd 𝑑(𝑣) 𝐵 = even 𝑑 𝑣

𝒗𝒊8

3 5

16

2 4

𝒗𝒊 8

3

1

5

2

6

4

WTP: no edge between red nodes

no edge between blue nodes

BAD EDGES MEAN ODD CYCLES

• Claim: if there were an edge between red nodes,

or between blue nodes, there would be an odd length cycle

• WLOG suppose for contradiction 𝒖, 𝒗 ∈ 𝑬 where 𝒖, 𝒗 ∈ 𝑹

• Since 𝑢, 𝑣 ∈ 𝑅, distances 𝒅(𝒖) and 𝒅(𝒗) from 𝒗𝒊 are both odd

7

𝒗𝒊

𝒖

𝒗

…

…

Recall 𝒅(𝒖) = length of shortest path 𝒗𝒊 → ⋯ → 𝒖

𝒅(𝒖) = odd

𝒅(𝒗) = odd

…and 𝒅(𝒗) the shortest path 𝒗𝒊 → ⋯ → 𝒗

The combined path

𝒗𝒊 → ⋯ → 𝑢 → 𝑣 → ⋯ → 𝒗𝒊

forms a cycle

And its length is

 𝑑 𝑢 + 1 + 𝑑 𝑣
which is odd!

So there is no edge 𝒖, 𝒗 where 𝒖, 𝒗 ∈ 𝑹 (case 𝑩 is similar)

ALGORITHM FOR TESTING BIPARTITENESS

8

Call BFS on each

component to calculate

distances for each node

Modified BFS that reuses

the same colour array

and same dist array

If both even or both odd

Return an actual

bipartition

Runtime

complexity?

Can be done

in 𝑂(𝑛 + 𝑚)

DEPTH FIRST SEARCH

9

Bread first

search

Depp first

search

DEPTH-FIRST SEARCH OF A DIRECTED GRAPH

10

11

5

1 2

3 6

4

Example execution

starting at node 1

1 2

3

1 4

5

2

3

4

65 6

d[1]=1

DEPTH FIRST SEARCH ALGORITHM

time = 0time = 1time = 2

d[2]=2

time = 3

d[3]=3

not white

time = 4

f[3]=4

time = 5

d[4]=5

time = 6

f[4]=6

time = 7

d[5]=7

time = 8

f[5]=8

time = 9

f[2]=9

time = 10

f[1]=10

time = 11

d[6]=11

time = 12

f[6]=12

DFSVisit(1) DFSVisit(6)

not white

not whitenot white

DFS TREE / FOREST

12

5

1 2

3 6

41 2

3

1 4

5

2

3

4

65 6

d[1]=1 d[2]=2

d[3]=3
f[3]=4

d[4]=5
f[4]=6

d[5]=7
f[5]=8

f[2]=9f[1]=10

d[6]=11

f[6]=12

Graph DFS forest

1

2

3 4 5

6

• As in breadth first search, 𝒑𝒓𝒆𝒅[] array induces a forest

• Let’s match the graph’s edge directions (opposite from pred)

Each top level DFSVisit

call is the root of a tree
Recall:

DFSVisit(1),

DFSVisit(6)

Could draw BFS forest

this way also…

tree 1

tree 2

BASIC DFS PROPERTIES TO REMEMBER

• Nodes start white

• A node 𝑣 turns gray when it is discovered,

which is when the first call to 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑣) happens

• After 𝑣 is turned gray, we recurse on its neighbours

• After recursing on all neighbours, we turn 𝑣 black

• Recursive calls on neighbours end

before 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑣) does, so the

neighbours of 𝑣 turn black before 𝑣

Also gets a

discovery time
𝑑[𝑣] at this point

Also gets a finish time
𝑓[𝑣] at this point

13

14

RUNTIME COMPLEXITY OF DFS (FOR ADJ. LISTS)

Home exercise:

complexity with

adjacency matrix?

𝑂(𝑛)

Only called on a white

node, and immediately

colours the node gray

So called once per node!

Each call iterates over the neighbours.

Effectively: “for each node, for each

neighbour, do O(1) work + recurse.”

Total O(n+m) iterations over all

recursive calls. Total O(n+m) runtime!

CLASSIFYING EDGE IN DFS
• If 𝒑𝒓𝒆𝒅 𝒗 = 𝒖, then: (𝑢, 𝑣) is a tree edge

• Else if 𝒗 is a descendent of 𝒖 in the DFS forest: forward edge

• Else if 𝒗 is an ancestor of 𝒖 in the DFS forest: back edge

• Else: (𝑢, 𝑣) is a cross edge

15

5

1 2

3 6

41 2

3

1 4

5

2

3

4

65 6

d[1]=1 d[2]=2

d[3]=3
f[3]=4

d[4]=5
f[4]=6

d[5]=7
f[5]=8

f[2]=9f[1]=10

d[6]=11

f[6]=12

Graph

DFS forest

1

2

3 4 5

6

𝒖 𝒗

Can we classify edges without inspecting the DFS forest?

Perhaps using 𝒅[…], 𝒇 … , 𝒄𝒐𝒍𝒐𝒖𝒓[…]?

DEFINITIONS
• Definition: we use 𝑰𝒖 to denote (𝑑[𝑢],𝑓[𝑢]),

which we call the interval of 𝒖

• Definition: 𝒗 is white-reachable from 𝒖 if there is a

path from 𝑢 to 𝑣 containing only white nodes (excluding 𝑢)

2

𝒖 4 9

1 8 10

3

12

13

11

5

6

7

16

EXPLORING D[], F[] AND COLOUR[]
• Observe: every node 𝑣 that is white-reachable from 𝑢 when we

first call 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢) becomes gray after 𝒖 and black before 𝒖
(so 𝐼𝑣 is nested inside 𝐼𝑢)

𝒖𝒖

Start 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢),

colour 𝑢 grey, and

set 𝑢’s discovery time

Perform 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡 calls

recursively…

Colour 𝑢 black,

set 𝑢’s finish time

and return from

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢)

𝒖

Consider the tree of recursive calls

rooted at 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢).

𝑣 is discovered by a call in this tree

iff 𝑰𝒗 is nested inside 𝑰𝒖

17

d=7

d=8

d=9

d=10
f=11

f=12

f=13

f=14

iff 𝒗 is a descendent of 𝒖
in the DFS forest

iff 𝒗 is white-reachable from 𝒖
when 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢) is called

iff 𝒗 turns grey after 𝒖 and black

before 𝒖

SUMMARIZING IN A THEOREM

• Theorem: Let 𝒖, 𝒗 be any nodes.

The following statements are all equivalent.

• (𝑣 is white-reachable from 𝑢 when we call 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢))

• (𝑣 turns grey after 𝑢 and black before 𝑢)

• (discovery/finish time interval 𝐼𝑣 is nested inside 𝐼𝑢)

• (𝑣 is discovered during 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢))

• (𝑣 is a descendant of 𝒖 in the DFS forest)

18

DFS inspects every edge in the graph.
When DFS inspects an edge {𝒖, 𝒗}, the colour of 𝑣
and relationship between the intervals of 𝑢 and 𝑣
determine the edge type.

Q2?

Recall: (𝑣 is discovered during 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢))

 ⇔ (𝑣 is white-reachable from 𝑢 when we call 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢))

 ⇔ (𝑣 is a descendant of 𝒖 in the DFS forest)

 ⇔ (𝑣 turns grey after 𝑢 and black before 𝑢)

 ⇔ (𝐼𝑣 nested inside 𝐼𝑢)

Q8?

𝑣 is a descendent of 𝑢

𝑣 is not a descendent,

and not an ancestor

Q4?

Q6? 𝑣 is an ancestor of 𝑢

Q3?

Q1?

Q5?

Q7?

𝒖 𝒗

CLASSIFYING EDGE TYPES IN DFS

𝑣 is a child of 𝑢
in the DFS tree

𝑣 discovered during 𝑫𝑭𝑺𝑽𝒊𝒔𝒊𝒕(𝒖)

… by another recursive call

that 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢) makes when

it inspects a previous edge

but not directly from 𝑢 (or

{𝑢, 𝑣} would be a tree edge)

So when DFSVisit(u) inspects

{𝑢, 𝑣}, 𝑣 cannot be white

𝑣 is already discovered!

That call terminates before

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢) inspects {𝑢, 𝑣}

And it colors 𝑣 black! 19

USEFUL FACT: PARENTHESIS THEOREM
• Theorem: for each pair of nodes 𝑢, 𝑣

the intervals of 𝑢 and 𝑣 are either disjoint or nested

• Proof: Suppose the intervals are not disjoint.

• Then either 𝑑 𝑣 ∈ 𝐼𝑢 or 𝑑[𝑢] ∈ 𝐼𝑣

• WLOG suppose 𝑑 𝑣 ∈ 𝐼𝑢

• Then 𝑣 is discovered during 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢)

• So, 𝑣 must turn gray after 𝑢 and black before 𝑢

• So 𝑓 𝑣 < 𝑓[𝑢]

• So the intervals are nested. QED

𝑫𝑭𝑺𝑽𝒊𝒔𝒊𝒕(𝒖)𝑑[𝑢] 𝑓[𝑢]

𝑑[𝑣] 𝑓[𝑣]

𝑓[𝑣]

20

DFS inspects every edge in the graph.
When DFS inspects an edge {𝒖, 𝒗}, the colour of 𝑣
and relationship between the intervals of 𝑢 and 𝑣
determine the edge type.

Recall: (𝑣 is discovered during 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢))

 ⇔ (𝑣 is white-reachable from 𝑢 when we call 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢))
 ⇔ (𝑣 is a descendant of 𝒖 in the DFS forest)

 ⇔ (𝑣 turns grey after 𝑢 and black before 𝑢)

 ⇔ (𝐼𝑣 nested inside 𝐼𝑢)

Q8? 𝑣 is not a descendent,

and not an ancestor

Q7?

𝒖 𝒗

CLASSIFYING EDGE TYPES IN DFS

Intervals 𝑰𝒖 and 𝑰𝒗 must be disjoint.

But which is earlier?

If 𝐼𝑢 were earlier, then 𝑣 would be

discovered before 𝒖 finishes

(because of edge {𝑢, 𝑣}),
so intervals would not be disjoint!

So, 𝐼𝑣 must be earlier.

21

DFS inspects every edge in the graph.
When DFS inspects an edge {𝒖, 𝒗}, the colour of 𝑣
and relationship between the intervals of 𝑢 and 𝑣
determine the edge type.

Recall: (𝑣 is discovered during 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢))

 ⇔ (𝑣 is white-reachable from 𝑢 when we call 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑢))
 ⇔ (𝑣 is a descendant of 𝒖 in the DFS forest)

 ⇔ (𝑣 turns grey after 𝑢 and black before 𝑢)

 ⇔ (𝐼𝑣 nested inside 𝐼𝑢)

𝑣 is not a descendent,

and not an ancestor

𝒖 𝒗

CLASSIFYING EDGE TYPES IN DFS

Intervals 𝑰𝒖 and 𝑰𝒗 must be disjoint.

But which is earlier?

If 𝐼𝑢 were earlier, then 𝑣 would be

discovered before 𝒖 finishes

(because of edge {𝑢, 𝑣}),
so intervals would not be disjoint!

So, 𝐼𝑣 must be earlier.

22

APPLICATION OF DFS (OR BFS):

STRONG CONNECTEDNESS
Testing existence of all-to-all paths

23

STRONG CONNECTEDNESS

• In a directed graph,

• 𝒗 is reachable from 𝒘 if there is a path from 𝑤 to 𝑣

• we denote such a path 𝑤⇝𝑣

• A graph G is strongly connected iff

every node is reachable from every other node

• More formally: ∀𝑤,𝑣 ∃ 𝑤⇝𝑣

𝒗…𝒘

Compare: we use

𝑤 → 𝑣 to denote an

edge from 𝑤 to 𝑣

24

STRONG CONNECTEDNESS

• Is this graph strongly connected?

• How about this one?

d

cba No path from c to

other nodes.

d

cba

Yes. One big cycle.

25

STRONG CONNECTEDNESS

• How about this graph?

• How about this one?

d

c

ba
Yes. Multiple

intersecting cycles.

d

cba

e

f
g

e

f

g

No. Two cycles with only a

one-directional path

between them.

26

OTHER APPLICATIONS OF

CHECKING STRONG CONNECTEDNESS

• You gain some symmetry from knowing a graph is

strongly connected

• For example, you can start a graph traversal at any

node, and know the traversal will reach every node

• Without strong connectedness, if you want to run a

graph traversal that reaches every node in a single

pass, you would have to do additional processing to

determine an appropriate starting node

27

OTHER APPLICATIONS OF

CHECKING STRONG CONNECTEDNESS

• Useful as a sanity check!

• Suppose you want to run an algorithm that requires

strong connectedness, and you believe your input

graph is strongly connected

• Validate your input by testing whether this is true!

• Subtle, difficult-to-detect bugs often result if such an

algorithm is run only on one component of a graph

• [More concrete applications once we generalize and

talk about strongly connected components…]

28

A USEFUL LEMMA
• Lemma: a graph is strongly connected

• iff for any node 𝑠,

• all nodes are reachable from 𝑠,

and 𝒔 is reachable from all nodes

𝒔
𝒔

Proof: (⇒) Suppose G is

strongly connected. Then for

all 𝑢, 𝑣 we have 𝑢⇝𝑣. Fix any 𝑠.

Node 𝑠 is reachable from all

nodes, and vice versa.

(⇐) Suppose some 𝑠 is reachable

from all nodes and vice versa.

For any 𝑢, 𝑣, we have 𝑢⇝𝑠⇝𝑣,

and 𝑣⇝𝑠⇝𝑢. So G is strongly conn.

29

CREATING AN ALGORITHM
• How to use DFS to determine whether

every node is reachable from a given node 𝑠?

• How to use DFS to determine whether

s is reachable from every node?

𝒔
𝒔

DFS from 𝑠 and see if

every node turns black

What if we first reverse the

direction of every edge?

Then 𝑠⇝𝑣 in this new graph IFF

𝑣⇝𝑠 in the original graph
DFS from 𝑠

30

• 𝐼𝑠𝑆𝑡𝑟𝑜𝑛𝑔𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝐺 = {𝑉, 𝐸}) where 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛

• (𝑐𝑜𝑙𝑜𝑢𝑟, 𝑑, 𝑓) ≔ 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑣1, 𝐺)

• for 𝑖 ≔ 1. . 𝑛

• if 𝑐𝑜𝑙𝑜𝑢𝑟 𝑣𝑖 ≠ 𝑏𝑙𝑎𝑐𝑘 then return 𝑓𝑎𝑙𝑠𝑒

• Construct graph 𝐻 by reversing all edges in 𝐺

• (𝑐𝑜𝑙𝑜𝑢𝑟, 𝑑, 𝑓) ≔ 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑣1, 𝑯)

• for 𝑖 ≔ 1. . 𝑛

• if 𝑐𝑜𝑙𝑜𝑢𝑟 𝑣𝑖 ≠ 𝑏𝑙𝑎𝑐𝑘 then return 𝑓𝑎𝑙𝑠𝑒

• return 𝑡𝑟𝑢𝑒

How?

31

THE ALGORITHM

EXAMPLE EXECUTION 1

d

cba

e

f

g

a

d

b c

e

f

g

Every node is

black. Next step!

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) in 𝐺
(𝑎 is arbitrary)

e
g

f
cb

d

a

32

EXAMPLE EXECUTION 1

Every node is

black. Next step!

d

cba

e

f

g

construct graph 𝑯

a

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) in 𝐺
(𝑎 is arbitrary)

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) in 𝐻

cb

dd

a

e
g

ff

g
e

b c

d

cba

e

f

g

a

d

b c

e

f

g
e

g

f
cb

d

a

Every node is black.

So 𝐺 is strongly

connected!

33

EXAMPLE EXECUTION 2

d

cba

e

f

g

a

d

b c

e

f

gg

f

e

cb

d

a

Every node is

black. Next step!

d

cba

e

f

g

construct graph 𝑯

a

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) in 𝐺
(𝑎 is arbitrary)

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) in 𝐻

cb

dd

b ca Some nodes are

not black

No path from

those nodes to 𝑎
So 𝐺 is not strongly

connected!

Could the result

change if we started

at a different node?

34

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

35

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

36

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

37

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

1

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

38

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

1

1

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

39

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

1

1

1

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

40

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

1

1

1

1

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

41

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

1

1

1

1 1

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

42

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

1

1

1

1 1

1

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

43

REVERSING EDGES:

ADJACENCY MATRIX
1

1

1 1

1

1

1

1

d

cba

e

f

g

a b c d e f g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

1

1

1

1

1 1

1

1

a b c d e f g

a

b

c

d

e

f

g

reverse all edges

𝑀𝐸

𝑀𝐸
𝑇

Can do matrix

transpose, or can

just treat rows as

columns and vice
versa in your code

Complexity?

44

REVERSING EDGES: ADJACENCY LISTS

d

cba

e

f

g

a

b

c

d

e

f

g

so
u

rc
e

target

d

cba

e

f

g

reverse edges

d

c

a e

b

f

g

e

a

b

c

d

e

f

g

d

c

a

e

b

f

c g

Complexity?

45

• 𝐼𝑠𝑆𝑡𝑟𝑜𝑛𝑔𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝐺 = {𝑉, 𝐸}) where 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛

• (𝑐𝑜𝑙𝑜𝑢𝑟, 𝑑, 𝑓) ≔ 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑣1, 𝐺)

• for 𝑖 ≔ 1. . 𝑛

• if 𝑐𝑜𝑙𝑜𝑢𝑟 𝑣𝑖 ≠ 𝑏𝑙𝑎𝑐𝑘 then return 𝑓𝑎𝑙𝑠𝑒

• Construct graph 𝐻 by reversing all edges in 𝐺

• (𝑐𝑜𝑙𝑜𝑢𝑟, 𝑑, 𝑓) ≔ 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑣1, 𝑯)

• for 𝑖 ≔ 1. . 𝑛

• if 𝑐𝑜𝑙𝑜𝑢𝑟 𝑣𝑖 ≠ 𝑏𝑙𝑎𝑐𝑘 then return 𝑓𝑎𝑙𝑠𝑒

• return 𝑡𝑟𝑢𝑒

𝑂(𝑛 + 𝑚)

46

RUNTIME COMPLEXITY
FOR ADJACENCY LIST REPRESENTATION?

