CS 341: ALGORITHMS

Lecture 11: graph algorithms Il - finishing BFS, depth first search

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

BFS A

D

TESTING WHETHER A GRAP

PLICATION:

S BIPARTITE

(UN

DIRECTE

D) BIPARTITE GRAPHS AN

EBES

« A graph is bipartite if the nodes can be partitioned
Info sets R and B such that each edge has
one endpoint in R and one endpoint in B

7

\3
.

1

8

5

.

G

2

CRUCIAL PROPERTY:
NO ODD CYCLES

« Claim: a graph is bipartite if and only if
It does not confain an odd length cycle Edge with both

endpoints in B!
7 -
3 5 ¢ I—

2

1

4

G

PROOF

PART 1: ODD CYCLE = NOT BIPARTITE

« Suppose there is an odd length cycle vy, v,, ..., Vor 11, V1

v7 P=9:0:9.929.0.9 01 \QUHT”UZREB
o o
/ v AN finolly Vors+1 ER !
And so on, .
alternating...

\ / Vs WLOG letv; ER
And v, € B e /Q Then we must have v, € B
4

U3
(or there will be an edge (v, v,)

And vz € R with two endpointsin R) s

PROOF

PART 2: ALL CYCLES HAVE EVEN LENGTH = BIPARTITE
« Let v; be any node, and d(v) be the distance from v; to v
« Parfition nodes by even vs odd distances

d(v;) =0 d=1
/9 8
\dzl d=2 d=3
G 3 @ 3
d=2/ d:3/ d=4
@ 2 /?l

x

WTP: no edge between red nodes
no edge between blue nodes

BAD E

DGES MEAN O

B)

SRl T ERS

» Claim: if there were an edge between red nodes,
or between blue nodes, there would be an odd length cycle

« WLOG suppose for contradiction (u,v) € E where

» SinCe u,v € R, distances d(u) and d(v) from v; are both odd

Recall d(u) =

g
7

\/“/\/

et

length of shortest pa’rh vl

...and d(v) the shortest path v; —»

U

, d(u) =odd

, d(v) =odd

-V

So there is no edge (u,v) where

The combined path

v > e

SUDV D DD
forms a cycle

And its length is
dlu)+1+dw)
which is odd!

(case B is similar)

7

Ooo~NNOUEWNK

ALGORITHM FOR TESTING BIPARTITENESS

Bipartition(adj[l..n])
colour[l..n] = [white, ..., white]
dist[1l..n] = [1infty, ..., infty]
for start = 1..n

if colour[start] is white
é BFS(adj, start, colour, dist)

for édge 1n adj

let u and v be endpoints of edge

if (dist[u]%2) == (dist[v]%2) then —Ifofhevenorbothodd

return NotBipartite

B = hodes u with even dist[u]
R = nodes u with odd dist[u] -

return B, R

Bread first) y O Depp first
search (YW search

DEPTH FIRST SEARCH

DEPTH-FIRST SEARCH OF A DIRECTED GRAPH

A depth-first search uses a stack (or recursion) instead of a queue.
We define predecessors and colour vertices as in BFS.

It is also useful to specify a discovery time d[v] and a finishing time f|v]
for every vertex v.

We increment a time counter every time a value d|v| or f|v] is assigned.

We eventually visit all the vertices, and the algorithm constructs a
depth-first forest.

10

DEPTH FIRST SEARCH ALGORITHM

1 global variables:

2 pred[1..n] = [null, null, ..., null]

3 colour[1l..n] = [white, white, ..., white] -

4 d[1..n] = [0, O, ..., 0] // discovery times

) f[l..n] = [0, 0, ..., 0] // finish times

6 time = 0 /\ I

7 ~ not white

8 DepthFirstSearch(adj[1..n]) 3 —— § <«— 6

9 for v = 1..n

10 if colour[v] == white /ﬁw] x d[6]=11
ﬁ ~ DFSVisit(v) _ [3] =4 5] 8 _7 f[6]=12
13 DFSVisit(adj[l..n], v) — 2 —/—— 4

14 colour[v] = gra

15 time =[t:]i.me -?' 1y d[1]=1 d[2]=2 d[4]=5

16 dlv] = time f1]=10 f[2]=9 f[4]=6

17

18 for each w in adj[v]

19 if colour[w] == white

21 ~ DFSVisit(w)

23 colour[v] = black

24 time = time + 1

25 S| = 4ee 1

DFS TREE / FOREST sy oo
« As In breadth first search, array induces a forest

* Let's match the graph's edge directions (opposite from pred)

Graph DFS forest

P ® 0 © |[O
d[3] ?\ (51=7 d6]=11
f[3] 4 f[5]=8 fl6]=12 tree 2
A o
d[1]=1 d[2]=2 d[4]=5
f[1]=10 f[2]=9 f[4]=6 e 0 °
DepthFirstSearch(adj[1..n]) tree]
o = |
if colour[v] == white Each top level DFSVisit Recall:
DFSVisit(v) call is the roof of a free DFSVisit(1),

DFSVisit(6) i

BASIC DFS PROPERTIES TO REMEMBER

Also gets a

« Nodes start white discovery time
d[v] at this point

* A node v furns gray when it is discovered,
which is when the first call fo DFSVisit(v) happens

» After v is furned gray, we recurse on ifs neighbours
« Affer recursing on all neighbours, we turn v black

« Recursive calls on neighbours end
before DFSVisit(v) does, so the
neighbours of v turn black before v

Also gets a finish time
fv] at this point

13

RUNTIME COMPLEXITY OF DFS (FOR ADJ. LISTS)

1 global variables:

2 pred[1..n] = [null, null, ..., null]

3 colour[1l..n] = [white, white, ..., white]

4 d[1..n] = [0, O, ..., 0] // discovery times >‘-

) f[l..n] = [0, 0, ..., 0] // finish times

6 time = 0

- o i

8 DepthFirstSearch(adj[1..n]))

9 for v = 1..n Home exercise:
10 if colour[v] == white : :
= eena C.omplexfry W|’rh
12 adjacency matrixe
13 DFSvisit(adj[1..n], v)

14 colour[v] = gray

15 time = time + 1

17

18 for each w in adj[v]

19 if colour[w] == white

pAC | pred[w] = v

21 ~ DFSVisit(w)

22 |

: III

colohr[v] = black
24 time = time + 1
25 f[v] = time

14

CLASSIFYING EDGE @—@© IN DFS

* If pred|v] = u, then: (u,v) Is a free edge
 Else if vis a descendent of u in the DFS forest:

 Else if v is an ancestor of u in the DFS forest: back edge
DFS forest

Graph | 9 | °
‘?E’f s e i

—> 2 — 4

d[1]=1 d[2]=2 d[4]=5
f[11=10 f12]=9 f[4]=6

 Else: (u,v) Is a cross edge

Can we classify edges without inspecting the DFS forest?
Perhaps using d|...], fl...], colour]...]¢ 15

DEFINITIONS

 Definition: we use I,, to denote (d|ul],f[u]).
which we call the interval of u

» Definition: v is white-reachable from u if there is @
path from u to v containing only white nodes (excluding u)

yam
L

8§ e 10

16

EXPLORING DI, F[

AND COLOUR]]

 Observe: every node v

‘hat is white-reachable from u when we

first call DFSVisit(u) becomes gray after u and black before u

(so I, is nested inside [,)

Start DESVisit(u),
colour u grey, and
set u's discovery fime

Performm DFSVisit calls
recursively...

Colour u black,

set u’s finish time

and refurn from
DFSVisit(u)

Consider the tree of recursive calls
rooted at DFSVisit(u).

v is discovered by a call in this tree
iff I, is nested inside I,

iff v is a descendent of u
in the DFS forest

iff v turns grey after u and black
before u

iff v is white-reachable from u
when DFSVisit(u) is called

17

SUMMARIZING IN A THEOREM

 Theorem: Let u, v be any nodes.
The following statements are all equivalent.

* (v is white-reachable from u when we call DFSVisit(u))
* (v furns grey after u and black before u)
 (discovery/finish time interval I, is nested inside)

» (vis discovered during DESVisit(u))

* (vis a descendant of u in the DFS forest)

18

CLASSIFYING E

DFS inspects every edge in ’rhe graph
When DFS inspects an edge {u, v}, the colour of v
and relationship between the intfervals of u and v

determine the edge type. M

v is a child of u
in the DFS free

v is a descendent of u

v is an ancestor of u

edge type | colour of v discovery /finish times
tree Qle Q22
forward Q42 Q32
back Q62 Q52
Cross Q8¢ Q7¢

v is not a descendent,

and not an ancestor

USEFUL FACT: PARENTHESIS THEOREM

 Theorem: for each pair of nodes u, v
the infervals of u and v are either disjoint or nested [u] brsvisiea) f[u]

« Proof: Suppose the intervals are not disjoint. W
i ’ d[v] I
« Then either d|v] € I, or d[u] € I, fv]
WLOG suppose d|v] € I,
Then v is discovered during DFSVisit(u)

SO, v must furn gray after u and black before u

So flv] < flu]

So the intervals are nested. QED

20

CLASSIFYING EDGE TYPES IN DFES

DFS inspects every edge in the graph.
When DFS inspects an edge {u, v}, the colour of v | |
and relationship between the intervals of u and v e It m ke

So, I, must be earlier.

determine the edge type. _(because of edge {u, v}),
so intervals would not be disjoint!
edge type | colour of v discovery /finish times
tree white dlu] < d[v] < flv] < flu Intervals I,, and I,, must be disjoint.
forward black | d[u] < d[v] < flv] < flu But which is earlier?
back gray dlv] < du] < flu] < f[v]
Cross Q82 Q/? v is not a descendent,
o . and not an ancestor

Recall: (v is discovered during DFSVisit(u))

& (v is white-reachable from u when we call DESVisit(u))
& (v is a descendant of u in the DFS forest)

& (v turns grey after u and black before u)

& (I, nested inside [,

21

CLASSIFYING EDGE TYPES IN DFES

DFS inspects every edge in the graph.
When DFS inspects an edge {u, v}, the colour of v

So, I, must be earlier.

If I, were earlier, then v would be

and relationship between the intervals of u and v discovered before u finishes
determine the edge type. _(because of edge {u, v}),
so intervals would not be disjoint!
edge type | colour of v discovery /finish times
tree white dlu] < d[v] < flv] < flu Intervals I,, and I,, must be disjoint.
forward black | d[u] < d[v] < f[v] < f[u] But which is earliers
back gray dlv] < du] < flu] < f[v]
Cross black d“U < f[“U < du < fu v is not a descendent,
o : and not an ancestor

Recall: (v is discovered during DFSVisit(u))

& (v is white-reachable from u when we call DESVisit(u))
& (v is a descendant of u in the DFS forest)

& (v turns grey after u and black before u)

& (I, nested inside [,

22

APPLICATION OF DFS (OR BFS):
STRONG CONNECTEDNESS

Testing existence of all-to-all paths

23

STRONG CONNECTEDNESS

 In a directed graph,
* v is reachable from w if there is a path from w 1o v

Compare: we use

« we denote such a path wwuv - v 1o denote an

edge fromw to v

» A graph G is strongly connected iff
every node is reachable from every other node

» More formally: v,, , 3 wwv

24

STRONG CONNECTEDNESS

* |s this graph strongly connected?

» How about this oneg [Yes.Onebigeycie.

No path from c to
other nodes.

25

STRONG CONNECTEDNESS

 How about this graph?

Yes. Multiple
intersecting cycles.

No. Two cycles with only a
one-directional path
between them.

26

OTHER APPLICATIONS OF
CHECKING STRONG CONNECTEDNESS

* YOU gain some symmetry from knowing a graph is
sfrongly connected

« For example, you can start a graph traversal at any
node, and know the fraversal will reach every node

» Without strong connectedness, if you want to run @
graph traversal that reaches every node in a single
paAss, you would have to do additional processing to
deftermine an appropriate starting node

27

OTHER APPLICATIONS OF
CHECKING STRONG CONNECTEDNESS

« Useful as a sanity check!

« SUpPOSsSe you want to run an algorithm that requires
strong connectedness, and you believe your input
graph is strongly connected

« Validate your input by testing whether this is fruel

» Subtle, difficult-to-detect bugs often result if such an
algorithm is run only on one component of a graph

* [More concrete applications once we generalize and
talk about strongly connected components...]

28

A USEFUL LEMMA Proof: (=) Suppose G is
strongly connected. Then for
% : : all u, v we have uwwv. Fix any s.
Lemma: a graph is strongly connecied =8 & s chable from al

. iff for any node s nodes, and vice versa.

&) Suppose some s is reachable
 all nodes are reachable from s, (fr)om 'Z'ﬁ nodes and vice versa.

and s is reachable from all nodes For any u, v, we have uwswuv,
and vwswu. So G is strongly conn.

@ .-

\/\,.

29

CREAT'NG AN ALGOR'T_”\/\ DFS from s and see if

: every node furns black
e How to use DFS 1o determine whether
every node is reachable from a given node s¢

« How to use DFS to defermine whether What if we first reverse the
* direction of every edge?
s is reachable from every node?
Then sw»v in this new graph IFF DFS from s

vw»s in the original grop‘h/\’

\/\,.

30

THE ALGORITHM

» IsStronglyConnected(G = {V,E}) where V = v,,v,, ..., v,
* (colour,d, f) = DFSVisit(v,,G)
e fori:=1..n
o if colour|v;] # black then return false
« Construct graph H by reversing all edges in G
* (colour,d, f) = DFSVisit(v{, H)
wforil i =Ftxn
o if colour|v;] # black then return false

 return true

How?e

31

EXAMPLE EXECUTION 1

EXAMPLE EXECUTION 1

a b =% c
\dJ \ e/ \ -
o=l g

; construct graph H
a b C
e

EXAMPLE EXECUTION 2

[y f
- > % \ VA \
: : W
G—
e

X

EETE

target

REVERSING EDGES:
ADJACENCY MATRIX

ENE &

EETE

target

REVERSING EDGES:
ADJACENCY MATRIX

ENE &

EETE

target

REVERSING EDGES:
ADJACENCY MATRIX

ENE &

REVERSING EDGES:
ADJACENCY MATRIX

sovurce

EETE

target

/E 0B

©3IN0S

REVERSING EDGES:
ADJACENCY MATRIX

ENE &

EETE

target

/E 0B

©3IN0S

REVERSING EDGES:
ADJACENCY MATRIX

ENE &

REVERSING EDGES:
ADJACENCY MATRIX

sovurce

fm'm -

target

REVERSING EDGES:
ADJACENCY MATRIX

IIIIHIB

REVERSING EDGES:
ADJACENCY MATRIX

sovurce

target

N [T]
NG

REVERSING EDGES:
ADJACENCY MATRIX

sovurce

REVERSING EDGES: ADJACENCY LISTS [ei—+rar target
b—> C
Vler=> a—le
S|d— b
(@)
N | E+=—> |
f+—> g
g— €
1 TransposeLists (adjl 1) .
’l 2 newAdj] = new array of n lists Complexity?
f = ..
L reverse edges S Zdj - N .
5 newAdj [v] .1nsert (u)
6 return newAdj B=— " d
C+—> D
d— o
e— Cc — ¢
f—> ¢
g f

45

RUNTIME COMPLEXITY
FOR ADJACENCY LIST REPRESENTATION?

o IsStronglyConnected(G = {V,E}) where V = v, v,, ...

* (colour,d, f) = DFSVisit(vq,G)
i 0] s At
* if colour|[v;] # black then return false
« Construct graph H by reversing all edges in G
* (colour,d, f) = DFSVisit(vy, H)
o fori=1:n
o if colour|v;] # black then return false

* return true

» Un

O(n+m)

46

