CS 341: ALGORITHMS

Lecture 11: graph algorithms II-finishing BFS, depth first search Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

BFS APPLICATION:
TESTING WHETHER A GRAPH IS BIPARTIIE

(UNDIRECTED) BIPARTITE GRAPHS AND BFS

- A graph is bipartite if the nodes can be partifioned into sets R and B such that each edge has one endpoint in R and one endpoint in B

CRUCIAL PROPERTY:

NO ODD CYCLES

- Claim: a graph is bipartite if and only if it does not contain an odd length cycle

PROOF

PART 1: ODD CYCLE $~=~ N O T B I P A R T I E ~$

- Suppose there is an odd length cycle $\nu_{1}, \nu_{2}, \ldots, \nu_{2 k+1}, v_{1}$

PROOF

PART 2: AL CYCLES HAVE EVENLENGTH = BIPARTIIE

- Let v_{i} be any node, and $d(v)$ be the distance from v_{i} to v
- Partition nodes by even ys odd distances

no edge between blue nodes

BAD EDGES MEAN ODD CYCLES

- Claim: if there were an edge between red nodes, or between blue nodes, there would be an odd length cycle
- WLOG suppose for contradiction $(u, v) \in E$ where
- Since $u, v \in R$, distances $d(u)$ and $d(v)$ from v_{i} are both odd Recall $d(u)=$ length of shortest path $v_{i} \rightarrow, \cdots, u$

The combined path
$v_{i} \rightarrow \cdots \rightarrow u \rightarrow v \rightarrow \cdots \rightarrow v_{i}$ forms a cycle

And its length is $d(u)+1+d(v)$ which is odd!

ALGORITHM FOR TESTING BIPARTITENESS

1	Bipartition(adj[1..n])	Call BFS on each	
2	colour[1..n] = [white, ..., white]	compon	calculate
3	dist[1..n] = [infty, ..., infty] distances for each node		
4	for start = 1..n		
5	if colour[start] is white BFS(adj, start, colour, dist)	Modified BFS that reuses the same colour array and same dist array	
6			
7	for edge in adj let u and v be endpoints of edge if (dist[u]\%2) == (dist[v]\%2) then return NotBipartite		
8			
9			
10			en or both oda
11			
12			Runtime complexity?
13	$\mathrm{B}=$ nodes u with even dist[u] Return	actual	
14	$\mathrm{R}=$ nodes u with odd dist[u$]$return B, R	ion	Can be done
15			in $O(n+m)$

DEPTH FIRST SEARCH

DEPTH FIRST SEARCH OF A DIRECTED GRAPH

A depth-first search uses a stack (or recursion) instead of a queue.
We define predecessors and colour vertices as in BFS.
It is also useful to specify a discovery time $d[v]$ and a finishing time $f[v]$ for every vertex v.
We increment a time counter every time a value $d[v]$ or $f[v]$ is assigned.
We eventually visit all the vertices, and the algorithm constructs a depth-first forest.

```
global variables:
global variables:
    pred[1..n] = [null, null, ..., null]
    colour[1..n] = [white, white, ..., white]
    d[1..n] = [0, 0, ..., 0] // discovery times
    f[1..n] = [0, 0, ..., 0] // finish times
    time = 0
```

 time \(=12\)
 DepthFirstSearch(adj[1..n])
for $v=1 . . n$
if colour[v] == white
DFSVisit(v)
DFSVisit(adj[1..n], v)
colour[v] = gray
time = time + 1
$\mathrm{d}[\mathrm{v}]=$ time
$\mathrm{d}[1]=$
$d[2]=2$
d[4]=5
$f[1]=10 \quad f[2]=9 \quad f[4]=6$
for each w in adj[v]
if colour[w] == white
pred[w] = v
DFSVisit(w)

DFS TREE / FOREST

- As in breadth first search, pred array induces a forest
- Let's match the graph's edge directions (opposite from pred)

DepthFirstSearch(adj[1..n])

```
    for v = 1..n
    if colour[v] == white
```

 DFSVisit(v)
 Each top level DFSVisit call is the root of a tree

DFS forest

tree 1
Recall: DFSVisit(1), DFSVisit(6)

BASIC DFS PROPERTIES TO REMEMBER

- Nodes start white
- A node v turns gray when it is discovered, which is when the first call to DFSVisit (v) happens
- After v is turned gray, we recurse on its neighbours
- After recursing on all neighbours, we turn v black
- Recursive calls on neighbours end before DFSVisit(v) does, so the neighbours of v turn black before v

Also gets a finish time $f[v]$ at this point

RUNTIME COMPLEXITY OF DFS (FOR ADJ. IISTS)

```
global variables:
    pred[1..n] = [null, null, ..., null]
    colour[1..n] = [white, white, ..., white]
    d[1..n] = [0, 0, ..., 0] // discovery times N% O(n)
    f[1..n] = [0, 0, ..., 0] // finish times
    time = 0
DepthFirstSearch(adj[1..n])
    for v = 1..n
        if colour[v] == white
            DFSVisit(v)
Only called on a white
DFSVisit(adj[1..n], v)
``` node, and immediately colours the node gray
time = time + 1
\(\mathrm{d}[\mathrm{v}]=\mathrm{time}\)

\section*{So called once per node!}
 for each w in adj[v]
 if colour[w] == white
 pred[w] = v

Each call iterates over the neighbours. Effectively: "for each node, for each neighbour, do O(1) work + recurse."
colour[v] = black
time \(=\) time +1
\(\mathrm{f}[\mathrm{v}]=\) time
Total \(O(n+m)\) iterations over all recursive calls. Total O(n+m) runtime!

\section*{CLASSIFYING EDGE \(u \rightarrow v\) IN DFS}
- If pred \([v]=u\), then \((u, v)\) is a fres edge
- Else if \(v\) is a descendent of \(u\) in the DFS forest:
- Else if \(v\) is an ancestor of \(u\) in the DFS forest: back edge
- Else: \((u, v)\) is a cross edge

Can we classify edges without inspecting the DFS forest?
Perhaps using \(d[\ldots], f[\ldots]\), colour \([. .\).\(] ?\)

\section*{DEFINITIONS}
- Definition: we use \(I_{u}\) to denote \((d[u], f[u])\). which we call the interval of \(u\)
- Definition \(v\) is whitereachable from \(u\) if there is a path from \(u\) to \(v\) containing only white nodes (excluding \(u\))

\section*{EXPLORING D[1, F[] AND COLOUR[]}
- Observe: every node \(v\) that is white-reachable from \(u\) when we first call DFSVisit (u) becomes gray after \(u\) and black before \(u\) (SO \(I_{v}\) is nested inside \(I_{u}\))

Start DFSVisit(u),
colour \(u\) grey, and set \(u\) 's discovery time

Perform DFSVisit calls recursively..

Colour \(u\) black, set \(u\) 's finish time and return from DFSVisit(u)

Consider the tree of recursive calls rooted at DFSVisit (u).
\(v\) is discovered by a call in this tree iff \(I_{v}\) is nested inside \(I_{u}\)
iff \(v\) is a descendent of \(u\) in the DFS forest
iff \(v\) turns grey after \(u\) and black before \(u\)
iff \(v\) is white-reachable from \(u\) when DFSVisit \((u)\) is called

\section*{SUMMARIZING IN A THEOREM}
- Theorem: Let \(u, v\) be any nodes.

The following statements are all equivalent.
- \((v\) is white-reachable from \(u\) when we call DFSVisit \((u))\)
- \((v\) turns grey after \(u\) and black before \(u)\)
- (discovery/finish time interval \(I_{v}\) is nested inside \(I_{u}\))
- \((v\) is discovered during DFSVisit \((u))\)
- (\(v\) is a descendant of \(u\) in the DFS forest)

\section*{CLASSIFYING EDGE TYPES IN DFS}

DFS inspects every edge in the graph.
When DFS inspects an edge \(\{\boldsymbol{u}, \boldsymbol{v}\}\), the colour of \(v\) and relationship between the intervals of \(u\) and \(v\) determine the edge type.

\(v\) discovered during DFSVisit(u)
but not directly from \(u\) (or \(\{u, v\}\) would be a tree edge)

So when DFSVisit(u) inspects \(\{u, v\}, v\) cannot be white
\begin{tabular}{|c|c|c|c|}
\hline edge type & colour of \(v\) & discovery/finish times & \(v\) is a child of \(u\) in the DFS tree \\
\hline tree & Q1? & Q2? & \\
\hline forward & Q4? & Q3? & \(v\) is a desce \\
\hline back & Q6? & Q5? & \(v\) is an anc \\
\hline cross & Q8? & Q7? & \(v\) is not a d \\
\hline \multicolumn{4}{|l|}{Recall: (\(v\) is discovered during DFSVisit (u))} \\
\hline \multicolumn{4}{|r|}{\(\Leftrightarrow(v\) is white-reachable from \(u\) when we call DFSVisit \((u))\)} \\
\hline \multicolumn{4}{|r|}{\(\Leftrightarrow(v\) is a descendant of \(u\) in the DFS forest)} \\
\hline \multicolumn{4}{|c|}{\(\Leftrightarrow(v\) turns grey after \(u\) and black before \(u\))} \\
\hline \multicolumn{4}{|c|}{\(\Leftrightarrow\left(I_{v}\right.\) nested inside \(\left.I_{u}\right)\)} \\
\hline
\end{tabular}

\section*{USEFUL FACT: PARENTHESIS THEOREM}
- Theorem: for each pair of nodes \(u, v\) the intervals of \(u\) and \(v\) are either disjoint or nested \(d[u]\) DFsvisit \((u) f[u]\)
- Proof: Suppose the intervals are not disjoint.
- Then either \(d[v] \in I_{u}\) or \(d[u] \in I_{v}\)

- WLOG suppose \(d[v] \in I_{u}\)
- Then \(v\) is discovered during DFSVisit (u)
- So, \(v\) must turn gray after \(u\) and black before \(u\)
- So \(f[v]<f[u]\)
- So the intervals are nested. QED

\section*{CLASSIFYING EDGE TYPES IN DFS}

DFS inspects every edge in the graph.
When DFS inspects an edge \(\{\boldsymbol{u}, \boldsymbol{v}\}\), the colour of \(v\) and relationship between the intervals of \(u\) and \(v\) determine the edge łype.

If \(I_{u}\) were earlier, then \(v\) would be discovered before \(\boldsymbol{u}\) finishes
(because of edge \(\{u, v\}\)),
so intervals would not be disjoint!

\section*{CLASSIFYING EDGE TYPES IN DFS}

DFS inspects every edge in the graph.
When DFS inspects an edge \(\{\boldsymbol{u}, \boldsymbol{v}\}\), the colour of \(v\) and relationship between the intervals of \(u\) and \(v\) determine the edge łype.

If \(I_{u}\) were earlier, then \(v\) would be discovered before \(\boldsymbol{u}\) finishes
(because of edge \(\{u, v\}\)),
so intervals would not be disjoint!

\title{
APPLICATION OF DFS (OR BFS): STRONG CONNECTEDNESS
}

Testing existence of all-to-all paths

\section*{STRONG CONNECTEDNESS}
- In a directed graph.
- \(v\) is reachable from \(w\) if there is a path from \(w\) to \(v\)

- we denote such a path \(w\)-m \(v\)
- A graph \(G\) is strongly connected iff

Compare: we use
\(w \rightarrow v\) to denote an
edge from \(w\) to \(v\) every node is reachable from every other node
- More formally: \(\forall_{w, v} \exists w \cdots v\)

\section*{STRONG CONNECTEDNESS}
- Is this graph strongly connected?

No path from c to other nodes.
- How about this one? Yes. One big cycle.

\section*{STRONG CONNECTEDNESS}
- How about this graph?
- How about this one?

\section*{OTHER APPLICATIONS OF CHECKING STRONG CONNECTEDNESS}
- You gain some symmetry from knowing a graph is strongly connected
- For example, you can start a graph traversal at any node, and know the traversal will reach every node
- Without strong connectedness, if you want to run a graph traversal that reaches every node in a single pass, you would have to do additional processing to determine an appropriate starting node

\section*{OTHER APPLICATIONS OF CHECKING STRONG CONNECTEDNESS}
- Useful as a sanity check!
- Suppose you want to run an algorithm that requires strong connectedness, and you believe your input graph is strongly connected
- Validate your input by testing whether this is true!
- Subtle, difficult-to-detect bugs often result if such an algorithm is run only on one component of a graph
- [More concrete applications once we generalize and talk about strongly connected components...]

\section*{A USEFUL. \(E M M A\)}
- Lemma: a graph is strongly connected
- If for any nodes,
- all nodes are reachable from \(s\), and \(s\) is reachable from all nodes

Proof: \((\Rightarrow)\) Suppose G is strongly connected. Then for all \(u, v\) we have \(u m v v\). Fix any \(s\). Node \(s\) is reachable from all nodes, and vice versa.
\((\Leftarrow)\) Suppose some \(s\) is reachable from all nodes and vice versa.
For any \(u, v\), we have \(u m s s w v\), and \(v m s \operatorname{smz} u\). So G is strongly conn.

\section*{CREATING AN ALGORITHM}
- How to Use DFS to determine whether every node is reachable from a given node s?
- How to Use DFS to determine whether s is reachable from every node?

What if we first reverse the direction of every edge?

Then \(s=w \geqslant v\) in this new graph IFF

\section*{THE ALGORITHM}
- IsStronglyConnected \((G=\{V, E\})\) where \(V=v_{1}, v_{2}, \ldots, v_{n}\)
- \((\) colour, \(d, f)=\operatorname{DFSVisit}\left(\nu_{1}, G\right)\)
- for \(i:=1 . . n\)
- if colour \(\left[v_{i}\right] \neq\) black then return false
- Construct graph \(H\) by reversing all edges in \(G\)
- (colour, \(d, f):=\operatorname{DFSVisit}\left(\nu_{1}, H\right)\)
- for \(i:=1 . . n\)
- if colour \(\left[v_{i}\right] \neq\) black then return false
- return true

\section*{EXAMPLE EXECUTION 1}

\section*{EXAMPLE EXECUTION 1}

\section*{EXAMPLE EXECUTION 2}

Could the result change if we started at a different node?
construct graph \(H\)

REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

REVERSING EDGES: ADJACENCY MATRIX

REVERSING EDGES: ADJACENCY MATRIX

REVERSING EDGES: ADJACENCY MATRIX

REVERSING EDGES: ADJACENCY MATRIX

REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

REVERSING EDGES: ADJACENCY MATRIX

REVERSING EDGES: ADJACENCY MATRIX

reverse all edges

REVERSING EDGES: ADJACENCY MATRIX

REVERSING EDGES: ADJACENCY MATRIX

Can do matrix transpose, or can just treat rows as columns and vice versa in your code
target

REVERSING EDGES: ADJACENCY ISTS

\section*{Complexity?}

\section*{RUNTIME COMPLEXITY FOR ADJACENCY LIST REPRESENTATION?}
- IsStronglyConnected \((G=\{V, E\})\) where \(V=\nu_{1}, v_{2}, \ldots, v_{n}\)
- \((\) colour, \(, d, f)=\operatorname{DFSVisit}\left(v_{1}, G\right)\)
- for \(i:=1 . . n\)
- if colour \(\left[\nu_{i}\right] \neq\) black then return false
- Construct graph \(H\) by reversing all edges in \(G\)
- \((\) colour \(, d, f):=\operatorname{DFSVisit}\left(\nu_{1}, H\right)\)
- for \(i:=1 . . n\)
\[
O(n+m)
\]
- if colour \(\left[v_{i}\right] \neq\) black then return false
- return true```

