2023-10-20

CS 341: ALGORITHMS

Lecture 11: graph algorithms Il - finishing BFS, depth first search

BFS APPLICATION:
TESTING WHETHER A GRAPH IS BIPARTITE

Trevor

CRUCIAL PROPERTY:
(UNDIRECTED) BIPARTITE GRAPHS AND BFS CRl
. A graph is bipartite if the nodes can be partitioned « Claim: a graph is bipartite if and only if
into sets R and B such that each edge has it does not contain an odd length cycle
one endpointin R and one endpoint in B

What happensif | create
an odd length cycle?

¢ m—

PROOF PROOF
PART 1: ODD CYCLE = NOT BIPARTITE PART 2: ALL CYCLES HAVE EVEN LENGTH = BIPARTITE
- Suppose there is an odd length cycle vy, vy, ..., Vags, V1 » Let v; be any node, and d(v) be the distance from v; to v

« Partition nodes by even vs odd distance

WS until vy, € B i
vy AR

RO V2k

Ve

varea ANd finally vy, €R I
And so on,) \
dlternating... *®
v1 WLOG letv, €R
V4
And v, € B e o — Then we must have v, € B

(or there will be an edge (v4,v,) WITP: no edge between red nodes

And vz €R with two endpoints in) f no edge between blue nodes

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-10-20

BAD EDGES MEAN ODD CYCLES ALGORITHM FOR TESTING BIPARTITENESS

« Claim: if there were an edge between red nodes, Bipartition(adj|] Call BFS on each
or between blue nodes, there would be an odd length cycle 2 colour[l..n] = [white , white] componentto calculate
SR dist[] [infty infty] distances for each node
* WLOG suppose for contradiction (u,v) € E where y e TarE
- ¥ [Modified BFS that reuses
« Since u,v € R, distances d(u) and d(v) from v; are both odd plicitiotntl ammue the same colour array
BFS(adj, start, colour ist and same dist array

i - SR for edge in adj
0! S let u and v be endpoints of edge
VDD UDY S oY
g if (distlu (dist[v]%2) then

u
If both even or both odd

v
i return NotBipartite
Runtime

\ /7 And itslength is
i lexity?
e /\ —— @) =oud ‘&:I)J' %s‘:)zgi) B - nodes u with even dist[u] Return an actual S
...and d(v) the shortest path v; > - - v = £ R = nodes u with odd dist([u] bipartition Can be done
return B, R [@<+)

So there is no edge (u,v) where (case B is similar)

beog et Derp e DEPTH-FIRST SEARCH OF A DIRECTED GRAPH

search search

A depth-first search uses a stack (or recursion) ir
lefine (€ rs an lour vertices as in BFS
Itisa) ¢ y discovery time « and a finishing time f
for every vertex
increment a time counter every

ventually visit all the vertice d the algorithm

DEPTH FIRST SEARCH dopdhfise Farei

Could draw BFS forest

EPTH FIRST SEARCH ALGORITHM DFS TREE / FOREST vy awo.

1 global varisbles starfing at node 1
d < As in breadth first search, array induces a forest

- Let's match the graph's edge directions (opposite from pred)

/_\not white = DFs forest

not white o e s

bi3)= (5= d
/ i[a]sj\ /é[s]-s 6 7 i diel=11
1 fl6l=12 o

DFSVisit(1) DFSVisit(6) DepthFir e
far
if colour| Each top level DFSVisit Recall:
DFSVinit(v callisthe root of atree DFSVisit(1),
DFSVisit(6)

time =12

not white

BASIC DFES PROPERTIES TO REMEMBER

Also gefs a
« Nodes start white

* A node v turns gray when it is discovered,
which is when the first call to DFSVisit(v) happens

« After v is turned gray, we recurse on its neighbours
« After recursing on all neighbours, we turn v black

» Recursive calls on neighbours end
before DFSVisit(v) does, so the Also gefst?hf,'"'s",";“e
neighbours of v tfurn black before v HIEA|CIfiintS (el

CLASSIFYING EDGE @—@® IN DFS

« If pred[v] = u, then: (w,v) is a

« Else if v is a descendent of u in the DFS forest:

- Else if v is an ancestor of u in the DFS forest: back edge

- Else: (u,v) is a cross edge DEsforest

Can we classify edges without inspecting the DFS forest2
Perhaps using d[...], f[...]. colour|...]2

EXPLORING D], F[] AND COLOUR]

« Observe: every node v that is white-reachable from u when we
first call DFSVisit(uw) becomes gray after u and black before u
(so I, is nested inside I,,)
Consider the tree of recursive calls
Start DFSVisit(u), rooted at DFSVisit(u).
colour u grey, and) v is discovered by a callin this tree
setu's discovery time 1t 1, Is nested inside I.
» u

iff v is a descendent of u

in the DFS forest
Colour u black, > 3=T10. iff v turns grey after u and black
setu’s finish time: f before u
un;,,-rse‘,':i?:(t[;m iff v is white-reachable from u
when DFSVisit(u) is called

Perform DFSVisit calls
recursively...

discovery time
d[v] at this point

2023-10-20

RUNTIME COMPLEXITY OF DFS (FOR ADJ. LIST

bal warisbles

Home exercise:
complexity with

Only called on a white adjacency matrix?

node, and immediately
colours the node gray

So called once per node!

Each calliterates over the neighbours.
Effectively: “for each node, for each
neighbour, do O(1) work + recurse.”

Total O(n+m) iterations overall
recursive calls. Total O(n+m) runtime!

DEFINITIONS

+ Definition: we use I,, to denote (d[ul],f[u]).
which we call the interval of u

+ Definition: v is white-reachable from u if there is a
path from u to v containing only white nodes (excluding u)

SUMMARIZING IN A THEOREM

Theorem: Let u, v be any nodes.
The following statements are all equivalent.

« (v is white-reachable from u when we call DFSVisit(u))
(v turns grey after u and black before u)
(discovery/finish time interval I, is nested inside 1)

(v is discovered during DFSVisit(u))

(

v is a descendant of u in the DFS forest)

CLASSIFYING EDGE TYPES IN DFS
DFS inspects every edge in the graph.

When DFS inspects an edge {u, v}, the colour of v
and relationship between the intervals of u and v

determine the edge type. M
vis a child of u v is already discovered!

L in the DFS free
~
v is a descendent of u
v is an ancestor of u
s not @ descendent,

and not an ancestor

v discovered during DFSVisit(u)
but not directly from u (or
{u,v} would be a tree edge)
So when DFSVisit(u) inspects
{u,v}, v cannot be white

Recall: (v isdiscovered during DFSVisit(u))
© (vis white-reachable from u when we call DFSVisit(u)) ... by anotherrecursive call
© (visa descendant of u in the DFS forest) that DFSVisit(w) makes when
 (vturns grey after u and black before u) itinspects a previous edge

& (I, nested inside I,,) That call terminates before

DFSVisit(u) inspects {u, v}
And it colors v black! 17

CLASSIFYING EDGE TYPES IN DFS

DFS inspects every edge in the graph.
When DFS inspects an edge {u, v}, the colour of v
and relationship between the intervals of u and v

determine the edge type. M

So, I, must be earlier.

If I, were earlier, then v would be
discovered before u finishes
(because of edge {u,v}),
so intervals would not be disjoint!

Intervals I, and I, must be disjoint.
But which is earlier?

‘
(I TR i not o Gescendent,

e y and not an ancestor
Recall: (v is discovered during DFSVisit(u))

& (v is white-reachable from u when we call DFSVisit (u))
© (vis a descendant of u in the DFS forest)

& (v tumns grey after u and black before u)

& (I, nested inside I,,)

APPLICATION OF DFS (OR BFS
TRONG CONNECTEDNESS

s

2023-10-20

USEFUL FACT: PARENTHESIS THEOREM

Theorem: for each pair of nodes u, v

the intervals of u and v are either disjoint or nested a[w) BV f[u]
« Proof: Suppose the intervals are not disjoint. d[uﬁ

« Then either d[v] € I, or d[u] € I,, flv]

WLOG suppose d[v] € I,
Then v is discovered during DFSVisit(u)
So, v must turn gray after u and black before u
So fv] < flu]
So the intervals are nested. QED

CLASSIFYING EDGE TYPES IN DFS

DFS inspects every edge in the graph.
When DFS inspects an edge {u, v}, the colour of v
and relationship between the intervals of u and v

determine the edge type. o °

So, I, must be earlier.

If i, were earlier, then v would be
discovered before u finishes
(because of edge {u, v}),
so intervals would not be disjoint!

Intervals I, and I, must be disjoint.
But which is earlier?

v is not a descendent,

Fra = y and not an ancestor
Recall: (v is discovered during DFSVisit (u))

© (v is white-reachable from u when we call DFSVisit (u))
© (vis a descendant of u in the DFS forest)

& (v tums grey after u and black before u)

& (I, nested inside ,,)

STRONG CONNECTEDNESS

« In a directed graph,
- vis reachable from w if there is a path from w to v
« we denote such a path wwuv

« A graph G is strongly connected iff
every node is reachable from every other node

* More formally: v, ;, 3 wwv

Compare: we use
w - v todenote an
edge fromw tov

STRONG CONNECTEDNESS

« Is this graph strongly connected?

No path from c to
other nodes.

* How about this one?2 [Yes:Onebigeycle:

o

OTHER APPLICATIONS OF
CHECKING STRONG CONNECTEDNESS

* You gain some symmetry from knowing a graph is
strongly connected

« For example, you can start a graph traversal at any
node, and know the traversal will reach every node

« Without strong connectedness, if you want to run a
graph traversal that reaches every node in a single
pass, you would have to do additional processing to
determine an appropriate starting node

Proof: (=) Suppose G is
strongly connected. Then for
allu,v we have uwv. Fix any s.
Node s is reachable from all
nodes, and vice versa.

A USEFUL LEMMA

» Lemma: a graph is strongly connected

- iff for any node s,
() Suppose some s isreachable

« all nodes are reachable from s, from all nodes and vice versa.

and s is reachable from all nodes For any u, v, we have umswv,
and vasswu. So G is strongly conn.

e [YON
- ®

2023-10-20

STRONG CONNECTEDNESS

Yes. Multiple
intersecting cycles.

» How about this one?

No. Two cycles with only a
one-directional path
between them.

OTHER APPLICATIONS OF
CHECKING STRONG CONNECTEDNESS

» Useful as a sanity check!

= Suppose you want to run an algorithm that requires
strong connectedness, and you believe your input
graph is strongly connected

- Validate your input by testing whether this is true!

« Subtle, difficult-to-detect bugs often result if such an
algorithm is run only on one component of a graph

= [More concrete applications once we generalize and
talk about strongly connected components...]

CREATING AN ALGORITHM

» How to use DFS to determine whether
every node is reachable from a given node s?2

DFS from s and see if
every node turns black

What if we first reverse the

« How to use DFS to determine whether hat if
direction of every edge?

s is reachable from every node?

Then s« in this new graph IFF DFS from s

vwss in the original grap‘h/\’

THE ALGORITHM
« IsStronglyConnected(G = {V,E}) where V. = vy, v,, ..., v,
¢ (colour,d, f) == DFSVisit(vy, G)
fori:=1..n
o if ur[v;] # black then return false
Construct graph H by reversing all edges in G
(colour,d, f) = DFSVisit(vy, H)
fori:=1..n
« if colour[v;] # black then return false

return true

EXAMPLE EXECUTION 1

DFSVisit(a) in G
(a is arbitrary)

Everynode is
black. Next step!

DFSVisit(a) in H

Every node is black.
So G is strongly
connected!

)) D
e : aTeTeTals T3]
a 1
f [1
a b c 'EI 1
1
a ’ 3 e
g Lf] 1
everse all edge ﬂ
alblc[d[e[f[q]
f
a b c E
Ld]
d e u
- L]
Lol

2023-10-20

EXAMPLE EXECUTION 1

DFSVisit(a) in G
(a is arbitrary)

Every node is
black. Next step!

EXAMPLE EXECUTION 2

DFSVisit(a) in G
(a is arbitrary)

a
DN
d

Everynode is
black. Next step!
e 9
Could the result
change if we started
at a different node?

et

a b < Some nodes are
\ 4 not black
d
Nopathflom g, cic not strongly

those nodes to a et el

construct graph H

DFSVisit(a) in H

P P D arge
a : a6] ¢ <] Ts]
a 1
f (o] 1
a b c o [c N 1
[d [P
d e H
g Lf] 1
everse all edge u
a[blcld[e[]q]
a 1
f
a b c E
[d]
d e u
° [f]
Lo

2023-10-20

1

N

[bcTdalelrTq]
1
[bcTdlelfTq]

N~

S

N
[a[v[=[e]-[o]

o

o

[bcTalerTq]
1
[bcTalerlq]

1

o
o B
& ©
o
o _
3 v
0 a 9
.
= o
O
0
G o
g 4E
= =
g - /g
45 g -
o - -
g /0 Mgl /-
prEOEENOFEEESE
e
o
=N d
i
.
3 O
0 a o
o
v _
b v
0 a o
A
- o
A
-

1

1
[bcTaler]q]

a[bfcldler[q]
1

1

1

REVERSING EDGES: ADJACENCY LISTS

d
@
a
b
f
9
e

source
[[To =

Complexity2

REVERSING EDGES:
ADJACENCY MATRIX

Can do matrix
transpose, or can
just treat rows as

columns and vice
versa in your code

Complexity?
reverse ... -_,E- by

RUNTIME COMPLEXITY

2023-10-20

target

FOR ADJACENCY LIST REPRESENTATION?

* IsStronglyConnected(G = {V,E}) where V = vy, v,, ..., v,

* (colour,d, f) = DFSVisit(vy, G)
e fori:=1..n

« if colour[v;] # black then return false

« Construct graph H by reversing all edges in ¢

¢ (colour,d, f) :== DFSVisit(v,, H)
fori:==1.n
« if colour[v;] # black then return false

return true

0(n+m)

