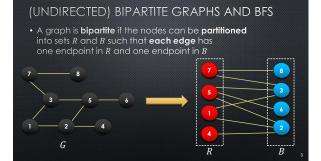
CS 341: ALGORITHMS

Lecture 11: graph algorithms II – finishing BFS, depth first search

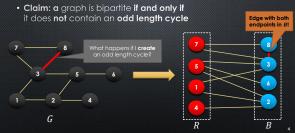
eaaings: see websire

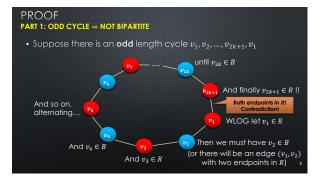
Trevor Brown https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

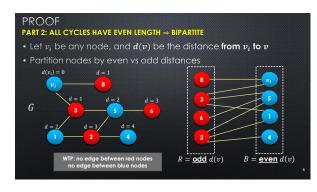
BFS APPLICATION: TESTING WHETHER A GRAPH IS **BIPARTITE**



CRUCIAL PROPERTY: NO ODD CYCLES



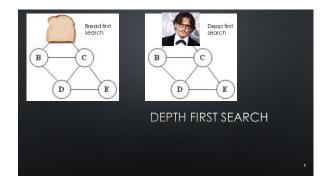




BAD EDGES MEAN ODD CYCLES

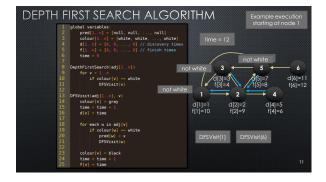
- Claim: if there were an edge between red nodes, or between blue nodes, there would be an odd length cycle
- WLOG suppose for contradiction $(u, v) \in E$ where
- Since $u, v \in R$, distances d(u) and d(v) from v_i are both odd Recall d(u) = length of shortest path $v_i o \cdots o u$

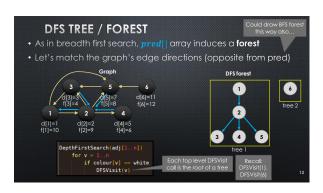
ALGORITHM FOR TESTING BIPARTITENESS



DEPTH-FIRST SEARCH OF A DIRECTED GRAPH

A depth-first search uses a stack (or recursion) instead of a queue. We define predecessors and colour vertices as in BFS. It is also useful to specify a discovery time $d[\boldsymbol{v}]$ and a finishing time $f[\boldsymbol{v}]$ for every vertex v. We increment a time counter every time a value d[v] or f[v] is assigned. We eventually visit all the vertices, and the algorithm constructs a depth-first forest.



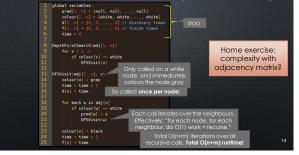


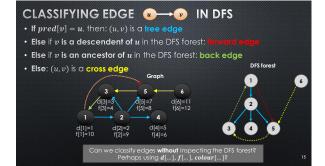
BASIC DFS PROPERTIES TO REMEMBER

- Nodes start white
- discovery time d[v] at this point A node v turns gray when it is discovered, which is when the first call to DFSVisit(v) happens
- After v is turned gray, we recurse on its neighbours
- After recursing on all neighbours, we turn v black
- Recursive calls on neighbours end before DFSVisit(v) does, so the neighbours of v turn black before v

Also gets a **finish time** f[v] at this point

RUNTIME COMPLEXITY OF DFS (FOR ADJ. LISTS)





DEFINITIONS

- **<u>Definition</u>**: we use I_u to denote (d[u], f[u]), which we call the **interval of** u
- Definition: v is white-reachable from u if there is a path from u to v containing only white nodes (excluding u)



EXPLORING D[], F[] AND COLOUR[]

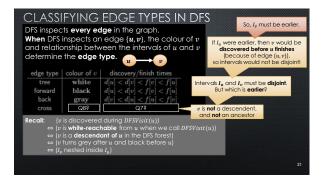
Observe: every node v that is white-reachable from u when we first call DFSVisit(u) becomes gray after u and black before u(so I_v is **nested inside** I_u) Consider the **tree of recursive calls** rooted at *DFSVisit(u)*.

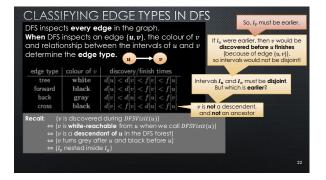
SUMMARIZING IN A THEOREM

<u>Theorem:</u> Let u, v be any nodes.

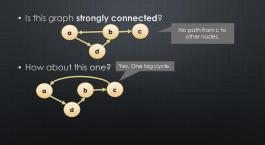
- The following statements are all equivalent. • (v is white-reachable from u when we call DFSVisit(u))
- (v turns grey after u and black before u)
- (discovery/finish time interval I_v is **nested inside** I_u)
- (v is discovered during DFSVisit(u))
- (v is a descendant of u in the DFS forest)

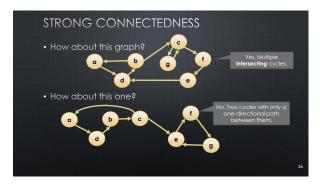
CLASSIFY	ING ED	GE TYPES	IN DFS				
DFS inspects every edge in the graph. When DFS inspects an edge $\{u, v\}$, the colour of v and relationship between the intervals of u and v				iscovered during DFSVisit(u)			
					but not directly from u (or $\{u, v\}$ would be a tree edge)		
determine the edge type. $u \rightarrow v$				So when DFSVisit(u) inspects $\{u, v\}, v$ cannot be white			
edge type colo	ur of v dis	scovery/finish times	v is a child in the DFS t		v is already discovered!		
tree	Q1?	Q2?					
forward	Q4?	Q3? v is a descendent of u					
back	Q6?	Q5?	v is an a	ancestor of u			
	Q8?	Q7?			escendent, ancestor		
Recall: (<i>v</i> is discovered during <i>DFSVisit</i> (<i>u</i>)) ⇔ (<i>v</i> is white-reachable from <i>u</i> when we call <i>DFSVisit</i> (<i>u</i>)) ⇔ (<i>v</i> is a descendant of <i>u</i> in the DFS forest) ⇔ (<i>v</i> turns grey after <i>u</i> and black before <i>u</i>) ⇔ (<i>t</i> _v nested inside <i>t</i> _u)))	by another recursive call that <i>DFSVisit(u)</i> makes when it inspects a previous edge		
					That call terminates before DFSVisit(u) inspects {u,v}		
				And it colors v black! 19			





STRONG CONNECTEDNESS



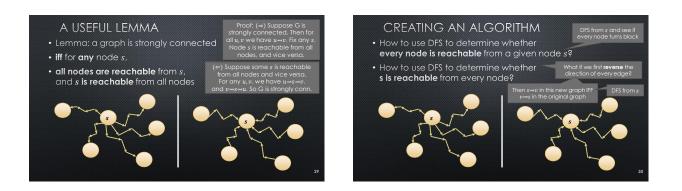


OTHER APPLICATIONS OF CHECKING STRONG CONNECTEDNESS

- You gain some symmetry from knowing a graph is
- strongly connected • For example, you can start a graph traversal at any
- For example, you can start a graph traversal at any node, and know the traversal will reach every node
- Without strong connectedness, if you want to run a graph traversal that reaches every node in a single pass, you would have to do additional processing to determine an appropriate starting node

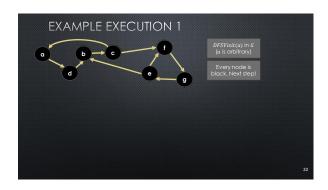
OTHER APPLICATIONS OF CHECKING STRONG CONNECTEDNESS

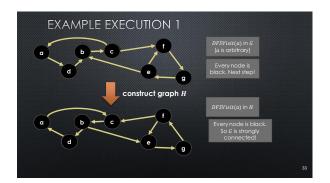
- Useful as a sanity check!
- Suppose you want to run an algorithm that requires strong connectedness, and you believe your input graph is strongly connected
- Validate your input by testing whether this is true!
- Subtle, difficult-to-detect bugs often result if such an algorithm is run only on one component of a graph
- [More concrete applications once we generalize and talk about strongly connected **components**...]



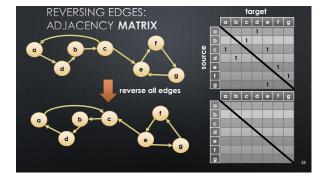
THE ALGORITHM

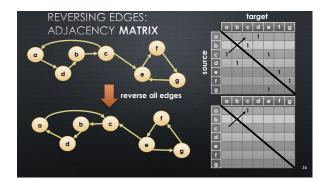
- Construct graph *H* by **reversing** all edges in *G* How?
- $(colour, d, f) \coloneqq DFSVisit(v_1, H)$
- for $i \coloneqq 1...n$
- return true

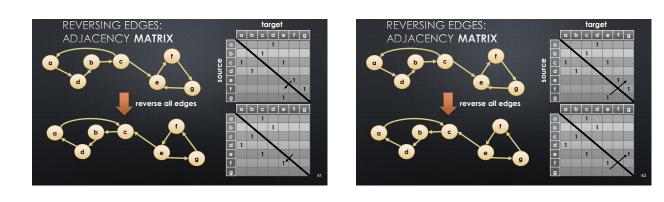


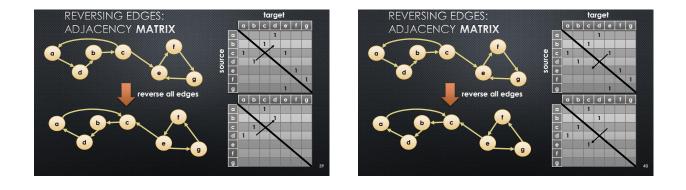


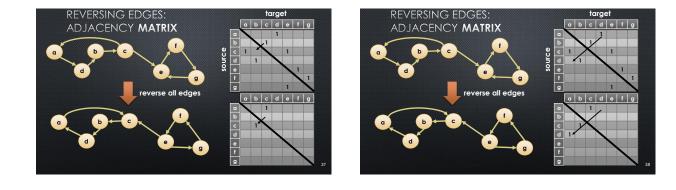




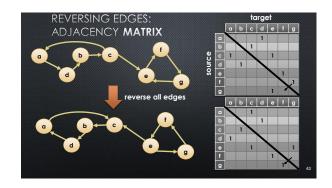


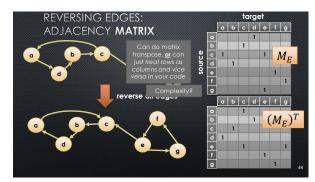


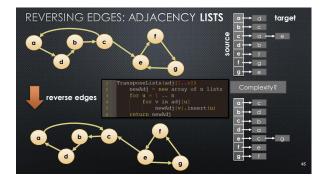




7







FOR ADJACENCY LIST REPRESENTATION?

- IsStronglyConnected($G = \{V, E\}$) where $V = v_1, v_2, ..., v_n$
 - $(colour, a, f) \coloneqq$
 - if louis l + black they we to use f
 - Construct graph *H* by **reversing** all edges in *G*
 - $(colour, d, f) \coloneqq DFSVisit(v_1, H)$
 - for $i \coloneqq 1...n$
 - if $colour[v_i] \neq black$ then return fals
 - return *true*