# CS 341: ALGORITHMS

Lecture 11: graph algorithms II – finishing BFS, depth first search

Readings: see website

Trevor Brown

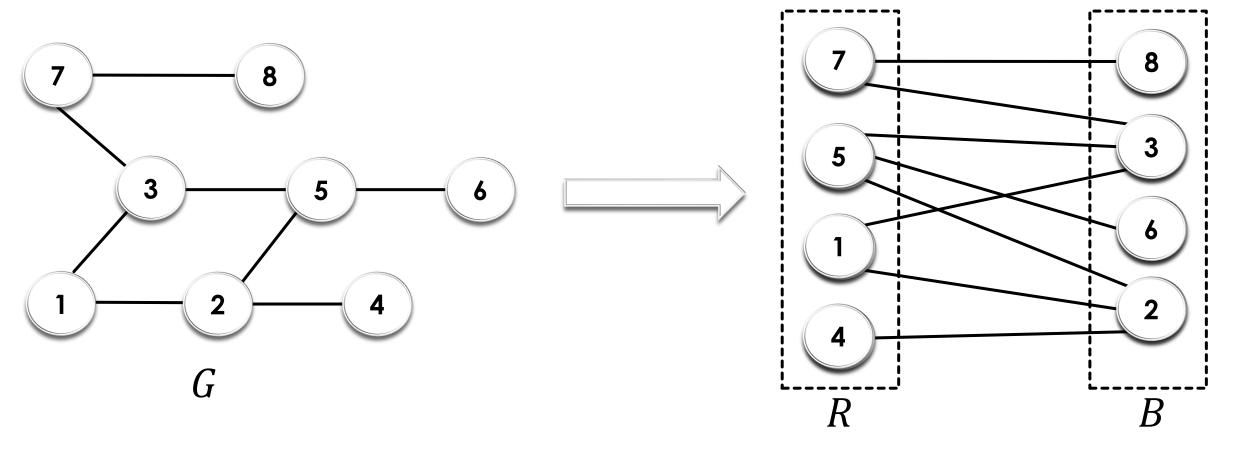
https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

# BFS APPLICATION: TESTING WHETHER A GRAPH IS **BIPARTITE**

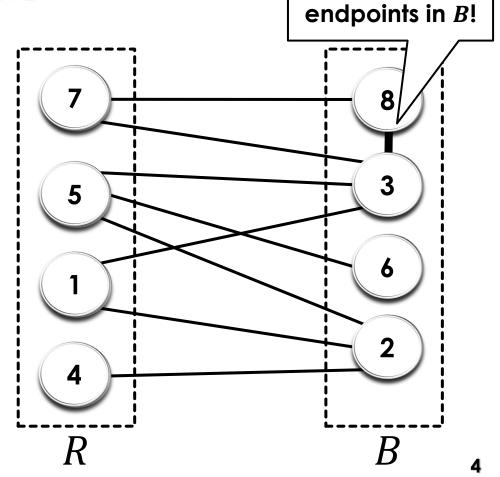
# (UNDIRECTED) BIPARTITE GRAPHS AND BFS

 A graph is bipartite if the nodes can be partitioned into sets R and B such that each edge has one endpoint in R and one endpoint in B

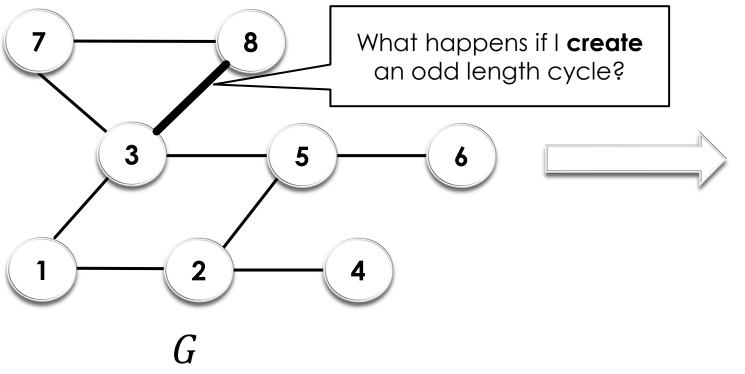


# CRUCIAL PROPERTY:

 Claim: a graph is bipartite if and only if it does not contain an odd length cycle



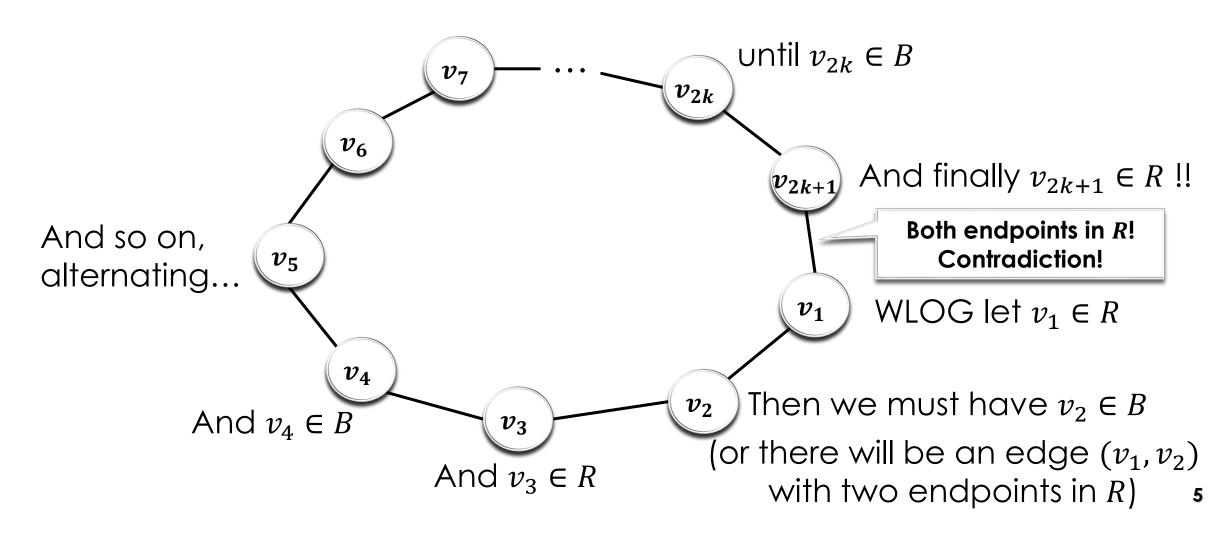
Edge with both



### PROOF

#### PART 1: ODD CYCLE ⇒ NOT BIPARTITE

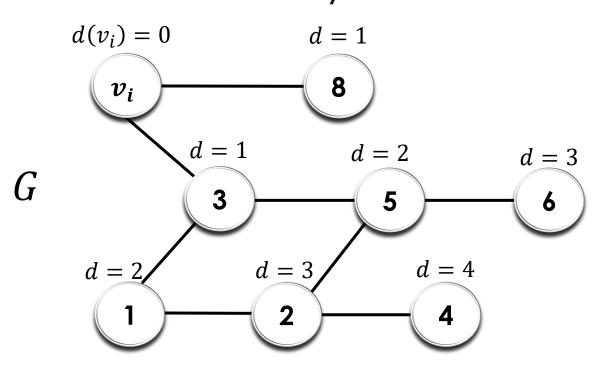
 $\circ$  Suppose there is an **odd** length cycle  $v_1, v_2, ..., v_{2k+1}, v_1$ 



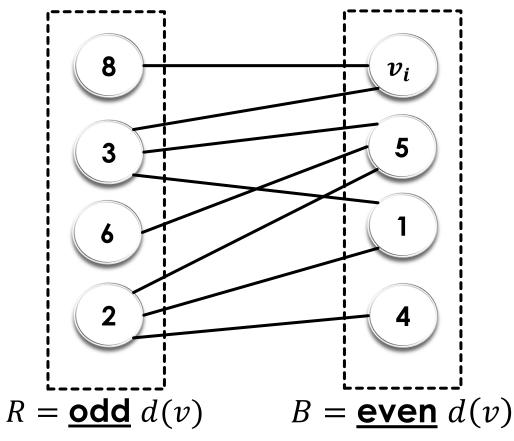
### **PROOF**

#### PART 2: ALL CYCLES HAVE EVEN LENGTH ⇒ BIPARTITE

- · Let  $v_i$  be any node, and d(v) be the distance from  $v_i$  to v
- Partition nodes by even vs odd distances



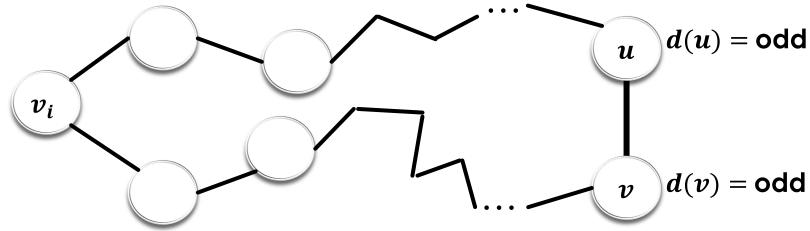
WTP: no edge between red nodes no edge between blue nodes



### BAD EDGES MEAN ODD CYCLES

- Claim: if there were an edge between red nodes,
   or between blue nodes, there would be an odd length cycle
- WLOG suppose for contradiction  $(u, v) \in E$  where  $u, v \in R$
- Since  $u, v \in R$ , distances d(u) and d(v) from  $v_i$  are both odd

Recall d(u) = length of shortest path  $v_i o \cdots o u$ 



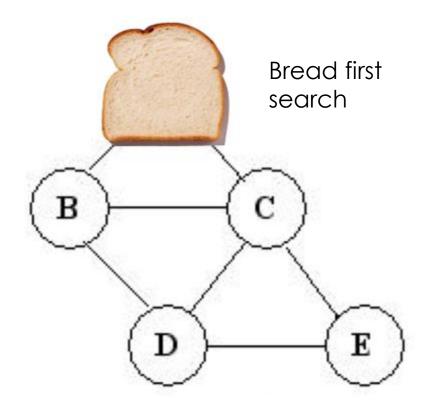
...and d(v) the shortest path  $v_i \rightarrow \cdots \rightarrow v$ 

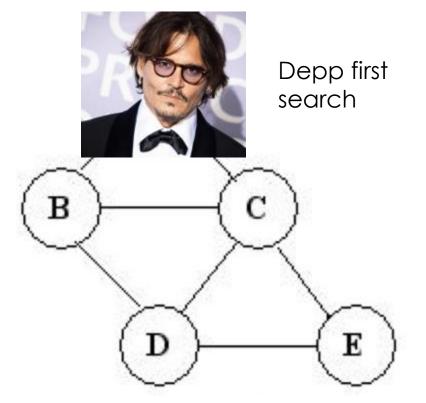
The combined path  $v_i \rightarrow \cdots \rightarrow u \rightarrow v \rightarrow \cdots \rightarrow v_i$  forms a cycle

And its length is d(u) + 1 + d(v) which is odd!

### **ALGORITHM** FOR TESTING BIPARTITENESS

```
Bipartition(adj[1..n])
                                                          Call BFS on each
                                                       component to calculate
 2
         colour[1..n] = [white, ..., white]
                                                       distances for each node
 3
         dist[1..n] = [infty, ..., infty]
 4
         for start = 1..n
                                                       Modified BFS that reuses
 5
             if colour[start] is white
                                                        the same colour array
 6
                  BFS(adj, start, colour, dist)
                                                         and same dist array
 8
         for edge in adj
 9
             let u and v be endpoints of edge
                                                           If both even or both odd
10
             if (dist[u]%2) == (dist[v]%2) then
11
                  return NotBipartite
12
                                                                       Runtime
                                                                     complexity?
13
         B = nodes u with even dist[u]
                                              Return an actual
14
         R = nodes u with odd dist[u]
                                                                     Can be done
                                                 bipartition
15
         return B, R
                                                                      in O(n+m)
```





# **DEPTH FIRST SEARCH**

### DEPTH-FIRST SEARCH OF A **DIRECTED** GRAPH

- A depth-first search uses a stack (or recursion) instead of a queue.
- We define predecessors and colour vertices as in BFS.
- It is also useful to specify a **discovery time** d[v] and a **finishing time** f[v] for every vertex v.
- We increment a **time counter** every time a value d[v] or f[v] is assigned.
- We eventually visit all the vertices, and the algorithm constructs a **depth-first forest**.

### DEPTH FIRST SEARCH ALGORITHM

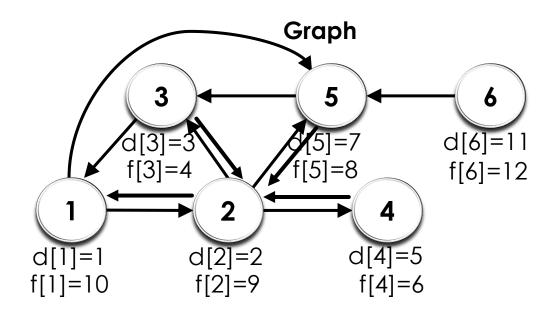
Example execution starting at node 1

```
global variables:
        pred[1..n] = [null, null, ..., null]
                                                              time = 12
        colour[1..n] = [white, white, ..., white]
 4
        d[1..n] = [0, 0, ..., 0] // discovery times
        f[1..n] = [0, 0, ..., 0] // finish times
 6
        time = 0
                                                                              not white
    DepthFirstSearch(adj[1..n])
                                                    not white
                                                                                      5
                                                                                                      6
        for v = 1...n
                                                                  d[3]=3
                                                                                                  d[6]=11
                                                                                    [5]=7
10
            if colour[v] == white
11
                DFSVisit(v)
                                                                  f[3]=4
                                                                                   f[5]=8
                                                                                                  f[6]=12
12
                                            not white
13
    DFSVisit(adj[1..n], v)
14
        colour[v] = gray
                                                                        d[2]=2
                                                                                        d[4]=5
                                                        d[1]=1
15
        time = time + 1
                                                                         f[2]=9
                                                                                         f[4]=6
                                                        f[1]=10
16
        d[v] = time
17
18
        for each w in adj[v]
19
            if colour[w] == white
20
                pred[w] = v
                                                                             DFSVisit(6)
                                                           DFSVisit(1)
21
                DFSVisit(w)
22
23
        colour[v] = black
24
        time = time + 1
25
        f[v] = time
```

### DFS TREE / FOREST

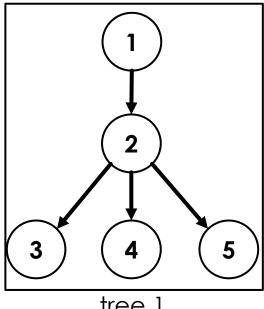
Could draw BFS forest this way also...

- As in breadth first search, pred[] array induces a forest
- Let's match the graph's edge directions (opposite from pred)





#### **DFS** forest



tree 1

Each top level DFSVisit

call is the root of a tree

Recall: DFSVisit(1), DFSVisit(6)



tree 2

### BASIC DFS PROPERTIES TO REMEMBER

Nodes start white

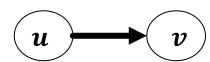
- Also gets a **discovery time** d[v] at this point
- A node v turns **gray** when it is **discovered**, which is when the first call to DFSVisit(v) happens
- $\circ$  After v is turned gray, we recurse on its neighbours
- After recursing on <u>all</u> neighbours, we turn v black
  - Recursive calls on neighbours end before DFSVisit(v) does, so the neighbours of v turn black before v

Also gets a **finish time** f[v] at this point

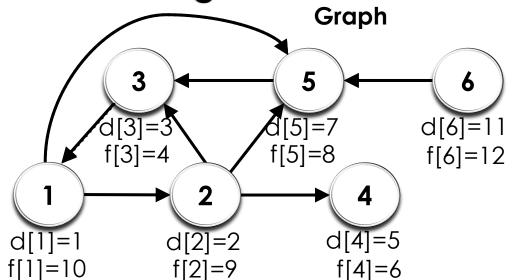
# RUNTIME COMPLEXITY OF DFS (FOR ADJ. LISTS)

```
global variables:
        pred[1..n] = [null, null, ..., null]
        colour[1..n] = [white, white, ..., white]
                                                          O(n)
        d[1..n] = [0, 0, ..., 0] // discovery times
       f[1..n] = [0, 0, ..., 0] // finish times
 6
       time = 0
    DepthFirstSearch(adj[1..n])
                                                                        Home exercise:
        for v = 1...n
10
           if colour[v] == white
                                                                       complexity with
11
               DFSVisit(v)
                                                                     adjacency matrix?
12
                                Only called on a white
    DFSVisit(adj[1..n], v)
                                node, and immediately
14
        colour[v] = gray
                                 colours the node gray
15
        time = time + 1
16
        d[v] = time
                           So called once per node!
17
18
        for each w in adj[v]
19
           if colour[w] == white
20
               pred[w] = v
                                    Each call iterates over the neighbours.
21
               DFSVisit(w)
                                     Effectively: "for each node, for each
22
                                     neighbour, do O(1) work + recurse."
23
        colour[v] = black
24
        time = time + 1
                                             Total O(n+m) iterations over all
25
        f[v] = time
                                         recursive calls. Total O(n+m) runtime!
```

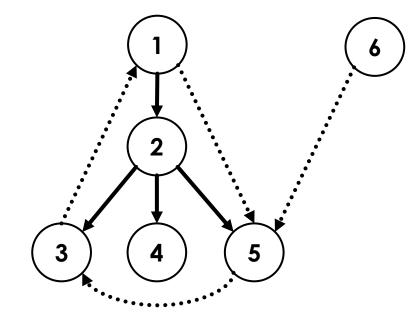
### **CLASSIFYING EDGE**



- IN DFS
- If pred[v] = u, then: (u, v) is a tree edge
- $\circ$  Else if v is a descendent of u in the DFS forest: forward edge
- Else if v is an ancestor of u in the DFS forest: back edge
- Else: (u, v) is a cross edge



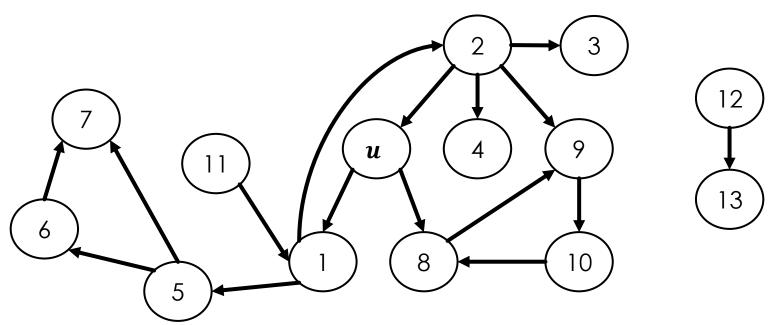
**DFS** forest



Can we classify edges **without** inspecting the DFS forest? Perhaps using d[...], f[...], colour[...]?

### **DEFINITIONS**

- **<u>Definition:</u>** we use  $I_u$  to denote (d[u], f[u]), which we call the **interval of** u
- Definition: v is white-reachable from u if there is a path from u to v containing only white nodes (excluding u)



# EXPLORING D[], F[] AND COLOUR[]

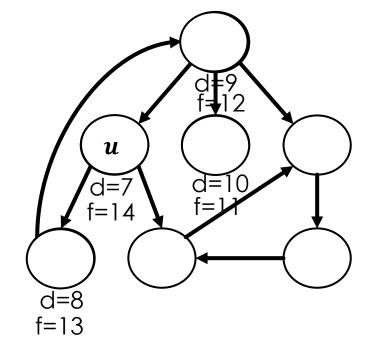
Observe: every node v that is white-reachable from u when we first call DFSVisit(u) becomes gray after u and black before u

(so  $I_v$  is **nested inside**  $I_u$ )

Start DFSVisit(u), colour u grey, and set u's discovery time

Perform *DFSVisit* calls recursively...

Colour *u* black, set *u*'s finish time and return from *DFSVisit(u)* 



Consider the **tree of recursive calls** rooted at DFSVisit(u).

v is discovered by a call in this tree iff  $I_v$  is nested inside  $I_u$ 

iff v is a descendent of u in the DFS forest

iff v turns grey after u and black before u

iff v is white-reachable from u when DFSVisit(u) is called

### SUMMARIZING IN A THEOREM

- Theorem: Let u, v be any nodes. The following statements are all <u>equivalent</u>.
  - (v is white-reachable from u when we call DFSVisit(u))
  - $\circ$  (v turns grey after u and black before u)
  - o (discovery/finish time interval  $I_v$  is **nested inside**  $I_u$ )
  - (v is discovered during DFSVisit(u))
  - (v is a **descendant of** u in the DFS forest)

### CLASSIFYING EDGE TYPES IN DFS

DFS inspects every edge in the graph.

**When** DFS inspects an edge  $\{u, v\}$ , the colour of vand relationship between the intervals of u and vdetermine the edge type.

v discovered during DFSVisit(u)

but **not directly** from u (or  $\{u, v\}$  would be a tree edge)

So when DFSVisit(u) inspects  $\{u, v\}$ , v cannot be white

| edge type  | colour of $v$ | discovery/finish times | v is a <b>child</b> of $u$ in the DFS tree | already discovered! |
|------------|---------------|------------------------|--------------------------------------------|---------------------|
| tree       | Q1?           | Q2?                    | V                                          |                     |
| forward    | Q4?           | Q3?                    | v is a descendent of $u$                   |                     |
| back       | Ø6\$          | Q5?                    | v is an <b>ancestor</b> of $u$             |                     |
| cross      | Ø8š           | Q7?                    | v is <b>not</b> a descendent,              |                     |
| Recall: (v | is discovered | during DFSVisit(y))    | and <b>not</b> an ancestor                 |                     |

(v is discovered during DFSV isit(u))

 $\Leftrightarrow$  (v is white-reachable from u when we call DFSVisit(u))

 $\Leftrightarrow$  (v is a **descendant of** u in the DFS forest)

 $\Leftrightarrow$  (v turns grey after u and black before u)

 $\Leftrightarrow$  ( $I_{\nu}$  nested inside  $I_{\nu}$ )

... by another recursive call that DFSVisit(u) makes when it inspects a previous edge

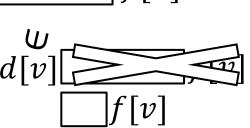
That call **terminates** before DFSVisit(u) inspects  $\{u, v\}$ 

And it colors v black! 19

### **USEFUL FACT: PARENTHESIS THEOREM**

- Theorem: for each pair of nodes u, v the intervals of u and v are either disjoint or nested
- $d[u]^{DFSVisit(u)}f[u]$

- <u>Proof:</u> Suppose the intervals are not disjoint.
  - Then either  $d[v] \in I_u$  or  $d[u] \in I_v$
  - WLOG suppose  $d[v] \in I_u$
  - Then v is discovered during DFSVisit(u)
  - $^{\circ}$  So, v must turn gray after u and black before u
  - $\circ$  So f[v] < f[u]
  - So the intervals are nested. QED.



### CLASSIFYING EDGE TYPES IN DFS

DFS inspects every edge in the graph.

When DFS inspects an edge  $\{u, v\}$ , the colour of v and relationship between the intervals of u and v determine the **edge type**.

So,  $I_v$  must be earlier.

If  $I_u$  were earlier, then v would be discovered before u finishes (because of edge  $\{u, v\}$ ), so intervals would not be disjoint!

| edge type | $colour\;of\;v$ | discovery/finish times    |
|-----------|-----------------|---------------------------|
| tree      | white           | d[u] < d[v] < f[v] < f[u] |
| forward   | black           | d[u] < d[v] < f[v] < f[u] |
| back      | gray            | d[v] < d[u] < f[u] < f[v] |
| cross     | Ø8\$            | Q7?                       |

Intervals  $I_u$  and  $I_v$  must be **disjoint**. But which is **earlier**?

v is **not** a descendent, and **not** an ancestor

**Recall:** (v is discovered during DFSVisit(u))

 $\Leftrightarrow$  (v is white-reachable from u when we call DFSVisit(u))

 $\Leftrightarrow$  (v is a **descendant of** u in the DFS forest)

 $\Leftrightarrow$  (v turns grey after u and black before u)

 $\Leftrightarrow$  ( $I_v$  nested inside  $I_u$ )

### CLASSIFYING EDGE TYPES IN DFS

DFS inspects every edge in the graph.

When DFS inspects an edge  $\{u, v\}$ , the colour of v and relationship between the intervals of u and v determine the edge type.

So,  $I_v$  must be earlier.

If  $I_u$  were earlier, then v would be discovered before u finishes (because of edge  $\{u, v\}$ ), so intervals would not be disjoint!

| edge type | colour of $v$ | discovery/finish times           |
|-----------|---------------|----------------------------------|
| tree      | white         | d[u] < d[v] < f[v] < f[u]        |
| forward   | black         | d[u] < d[v] < f[v] < f[u]        |
| back      | gray          | d[v] < d[u] < f[u] < f[v]        |
| cross     | black         | d[v] < f[v] < d[u] < f[u] < d[u] |

Intervals  $I_u$  and  $I_v$  must be **disjoint**. But which is **earlier**?

v is **not** a descendent, and **not** an ancestor

**Recall:** (v is discovered during DFSVisit(u))

 $\Leftrightarrow$  (v is white-reachable from u when we call DFSVisit(u))

 $\Leftrightarrow$  (v is a **descendant of** u in the DFS forest)

 $\Leftrightarrow$  (v turns grey after u and black before u)

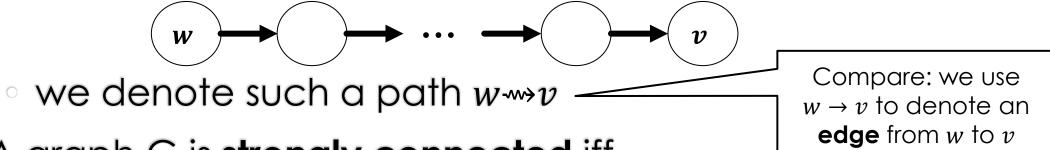
 $\Leftrightarrow$  ( $I_v$  nested inside  $I_u$ )

# APPLICATION OF DFS (OR BFS): STRONG CONNECTEDNESS

Testing existence of all-to-all paths

### STRONG CONNECTEDNESS

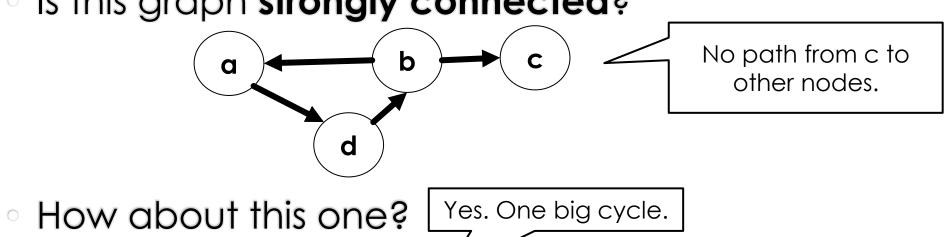
- In a directed graph,
  - v is reachable from w if there is a path from w to v

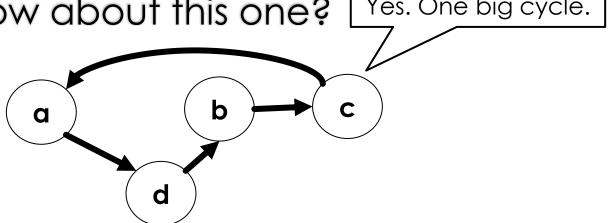


- A graph G is strongly connected iff
   every node is reachable from every other node
  - More formally:  $\forall_{w,v} \exists w \rightsquigarrow v$

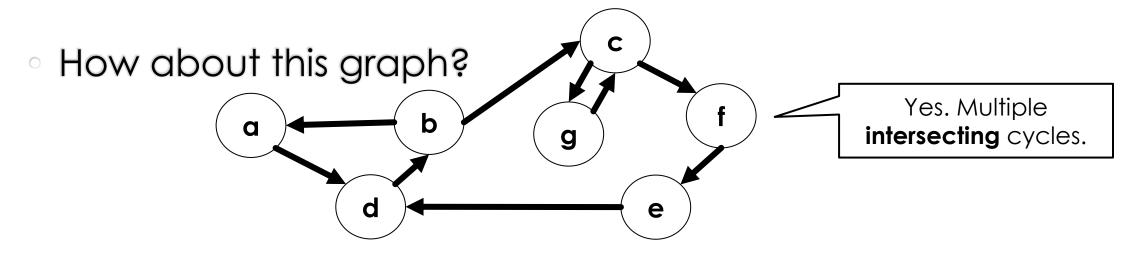
### STRONG CONNECTEDNESS

Is this graph strongly connected?

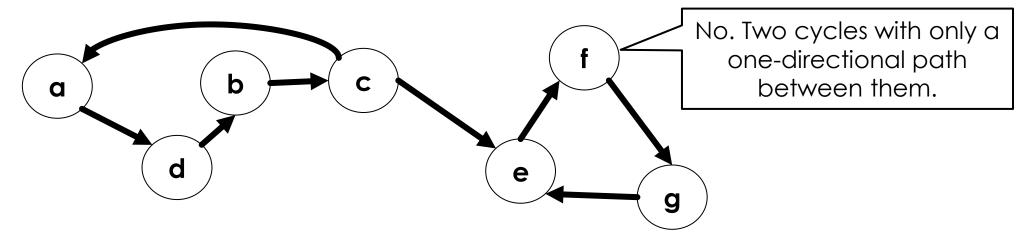




### STRONG CONNECTEDNESS



How about this one?



# OTHER APPLICATIONS OF CHECKING STRONG CONNECTEDNESS

- You gain some symmetry from knowing a graph is strongly connected
- For example, you can start a graph traversal at any node, and know the traversal will reach every node
- Without strong connectedness, if you want to run a graph traversal that reaches every node in a single pass, you would have to do additional processing to determine an appropriate starting node

# OTHER APPLICATIONS OF CHECKING STRONG CONNECTEDNESS

- Useful as a sanity check!
- Suppose you want to run an algorithm that requires strong connectedness, and you believe your input graph is strongly connected
- Validate your input by testing whether this is true!
- Subtle, difficult-to-detect bugs often result if such an algorithm is run only on one component of a graph
- [More concrete applications once we generalize and talk about strongly connected components...]

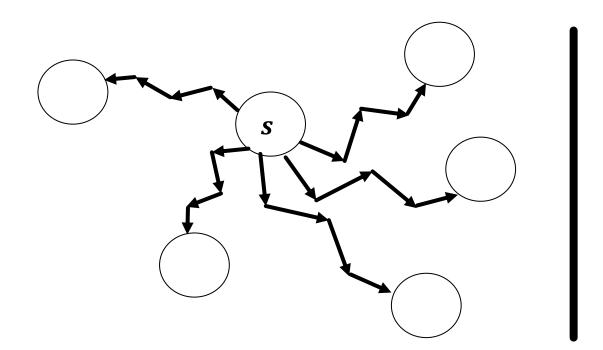
### A USEFUL LEMMA

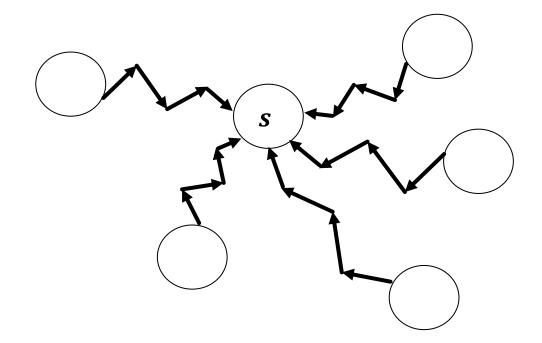
- Lemma: a graph is strongly connected
- **iff** for **any** node s,
- $\circ$  all nodes are reachable from s,

and s is reachable from all nodes

Proof: (⇒) Suppose G is strongly connected. Then for all u, v we have  $u \rightarrow v$ . Fix any s. Node s is reachable from all nodes, and vice versa.

 $(\Leftarrow)$  Suppose some s is reachable from all nodes and vice versa. For any u, v, we have  $u \rightarrow s \rightarrow v$ , and  $v \rightarrow s \rightarrow u$ . So G is strongly conn.



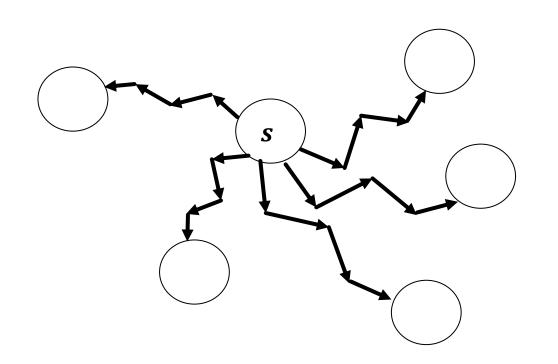


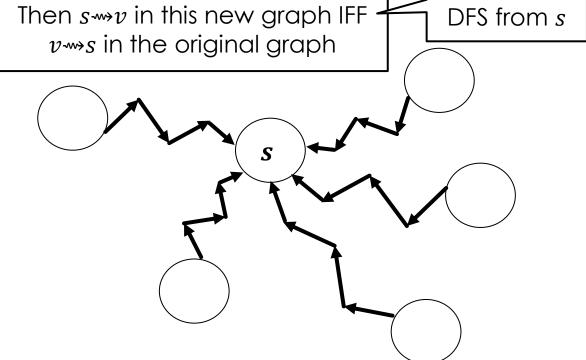
### CREATING AN ALGORITHM

How to use DFS to determine whether every node is reachable from a given node s?

How to use DFS to determine whether s is reachable from every node? DFS from s and see if every node turns black

What if we first **reverse** the direction of every edge?

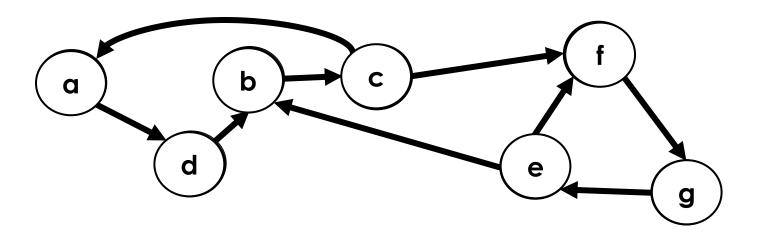




### THE ALGORITHM

- IsStronglyConnected( $G = \{V, E\}$ ) where  $V = v_1, v_2, ..., v_n$ 
  - $\circ$  (colour, d, f)  $\coloneqq$  DFSVisit( $v_1$ , G)
  - for i = 1..n
    - if  $colour[v_i] \neq black$  then return false
  - Construct graph H by **reversing** all edges in G 
    ightharpoonup How?
  - $\circ$  (colour, d, f)  $\coloneqq$  DFSVisit( $v_1$ , H)
  - $\circ$  for  $i \coloneqq 1...n$ 
    - if  $colour[v_i] \neq black$  then return false
  - return *true*

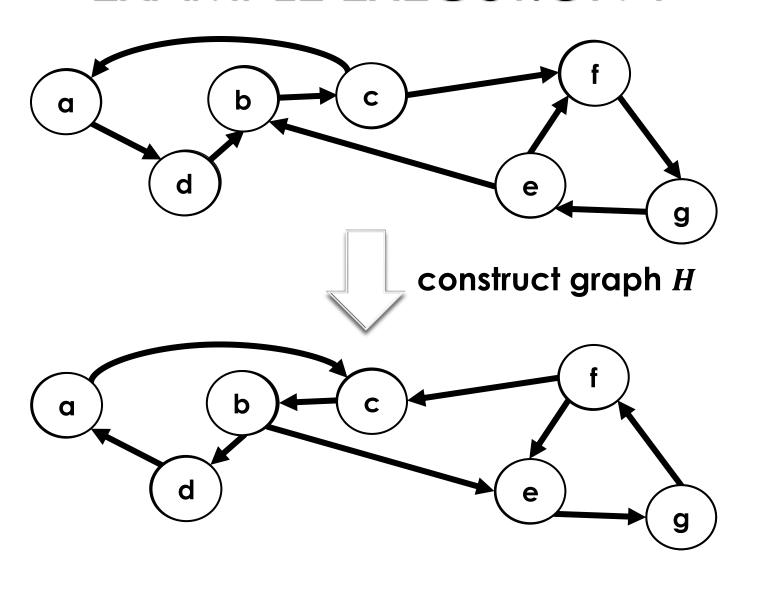
### **EXAMPLE EXECUTION 1**



DFSVisit(a) in G
 (a is arbitrary)

Every node is black. Next step!

### **EXAMPLE EXECUTION 1**



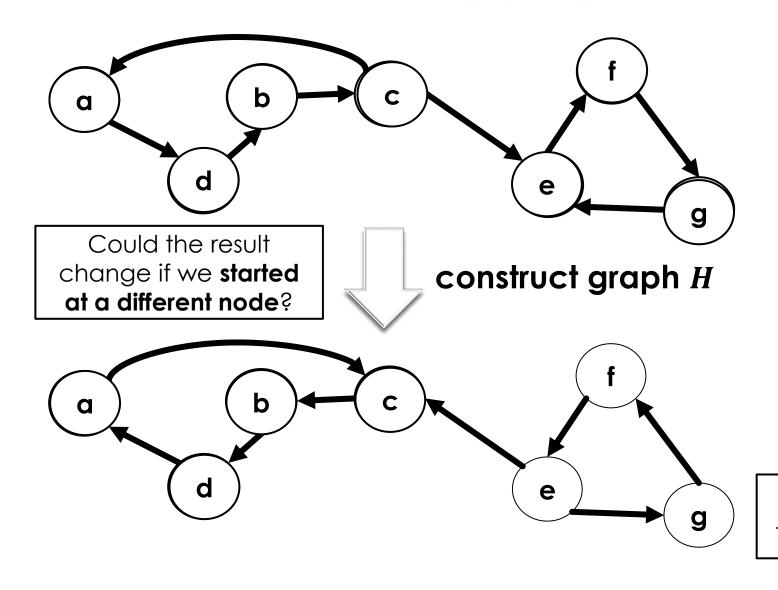
DFSVisit(a) in G
 (a is arbitrary)

Every node is black. Next step!

DFSVisit(a) in H

Every node is black. So G is strongly connected!

### **EXAMPLE EXECUTION 2**



DFSVisit(a) in G
 (a is arbitrary)

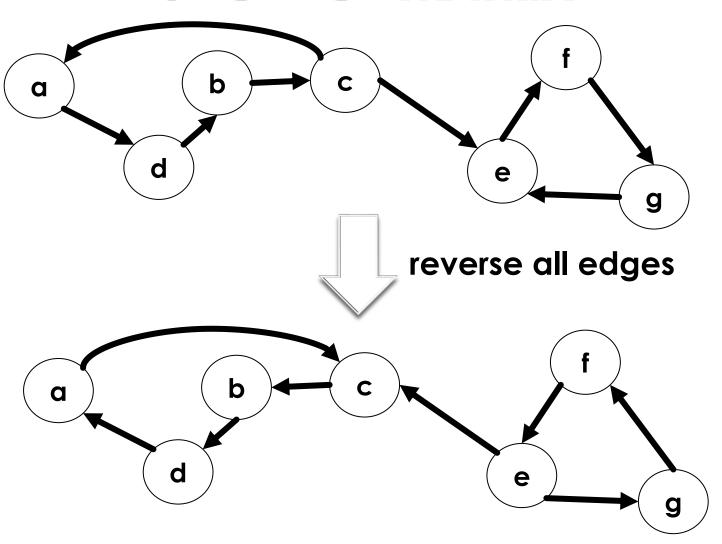
Every node is black. Next step!

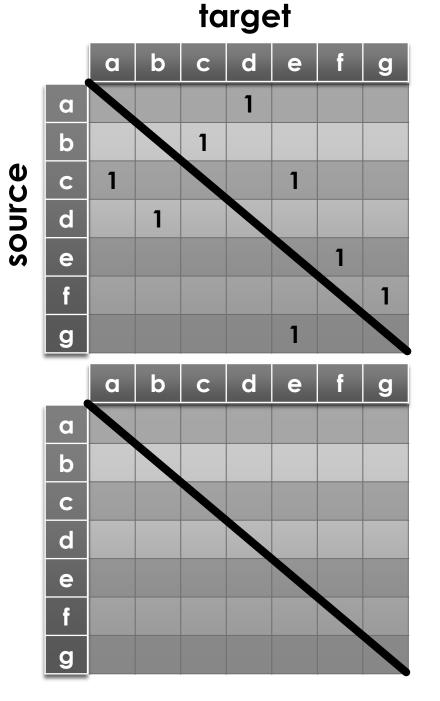
DFSVisit(a) in H

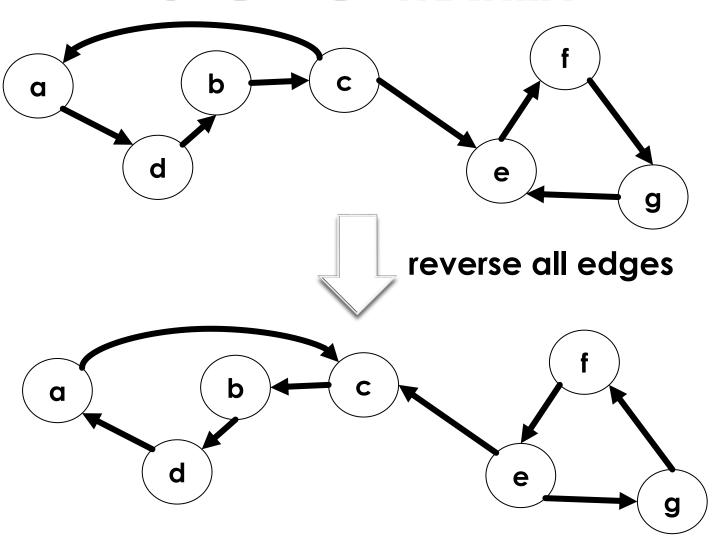
Some nodes are **not black** 

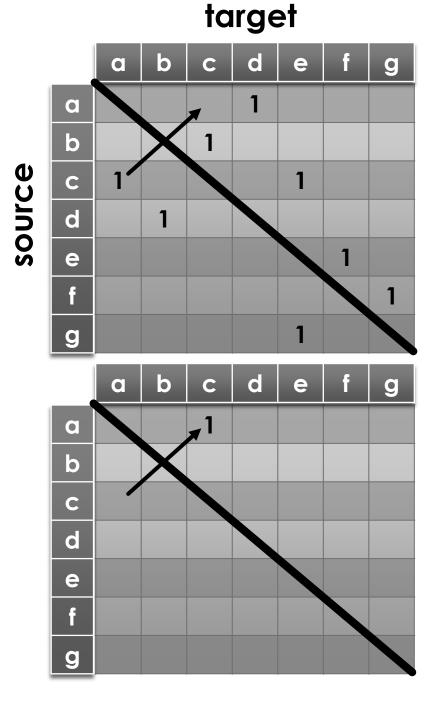
No path from those nodes to a

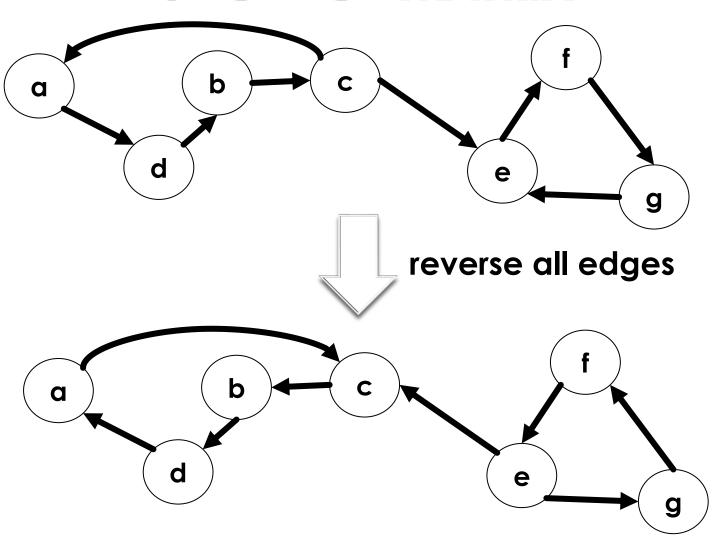
So G is not strongly connected!

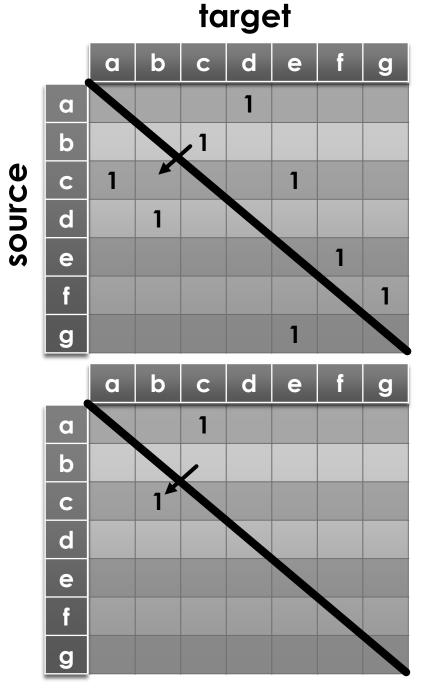


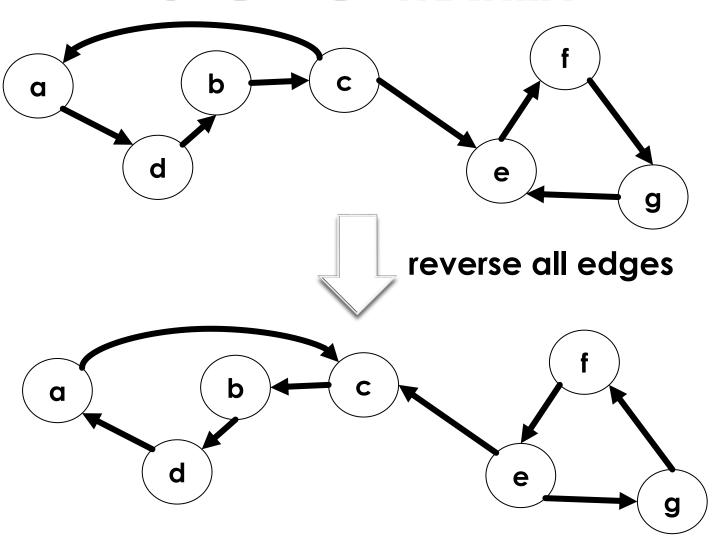


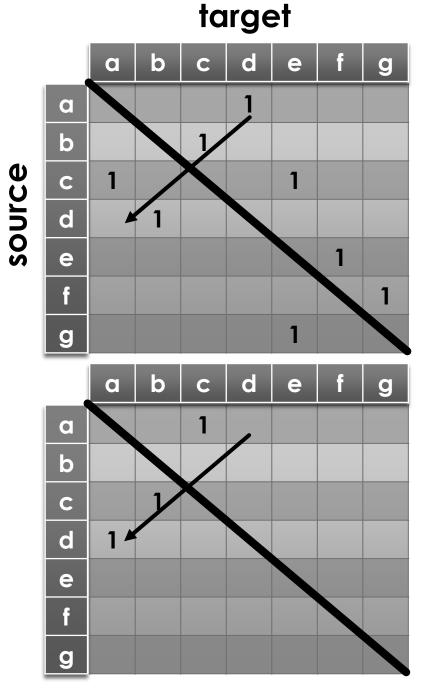


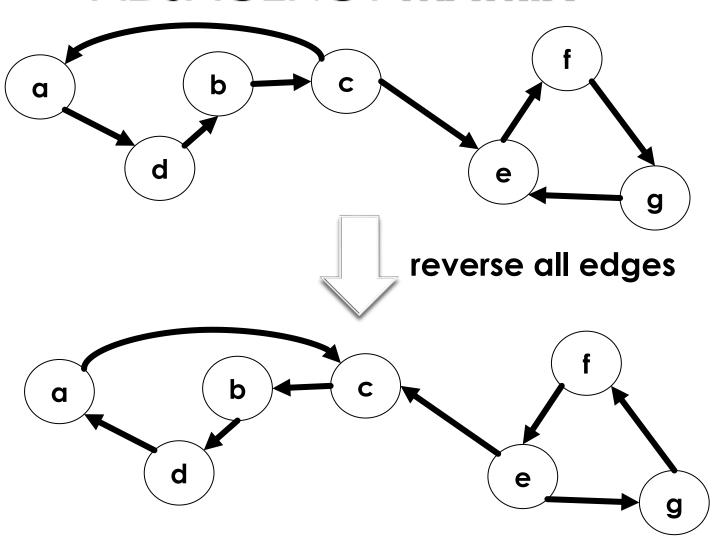


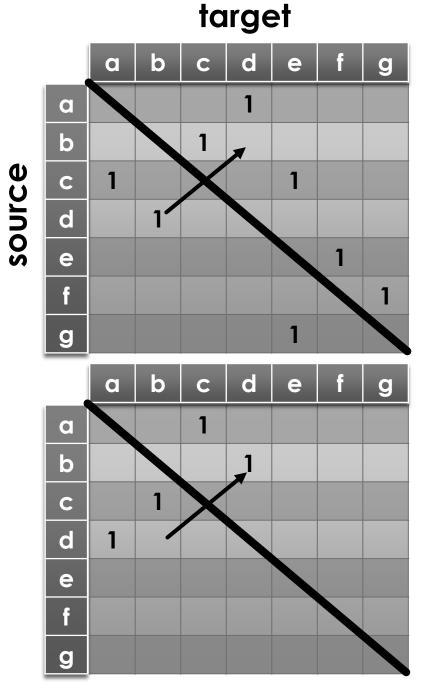


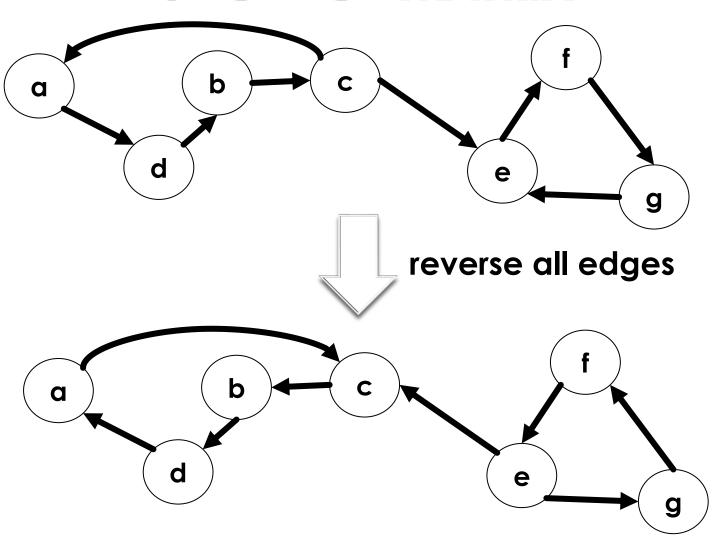


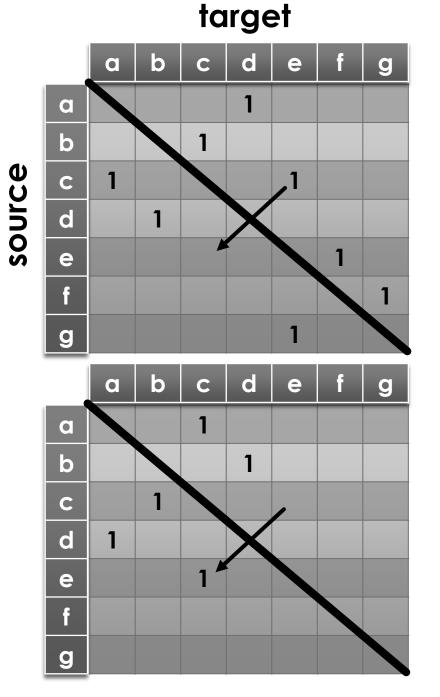


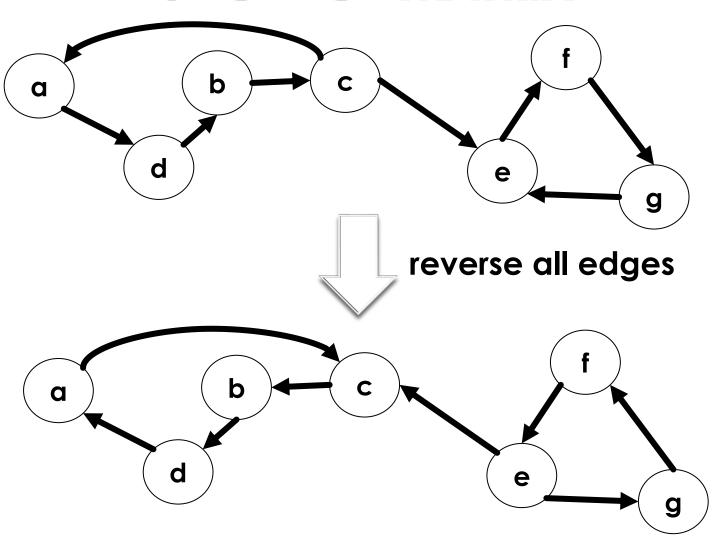


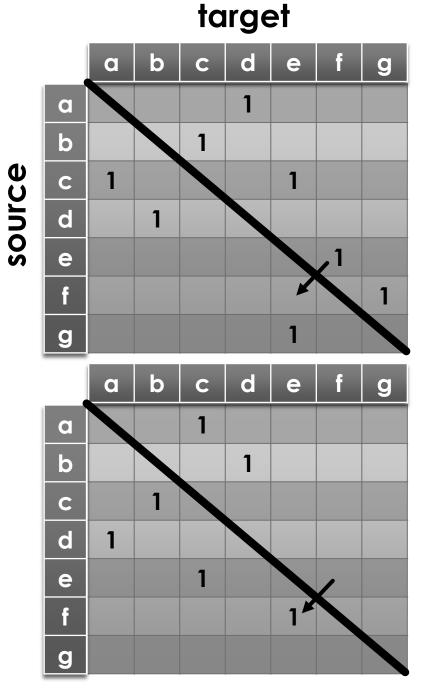


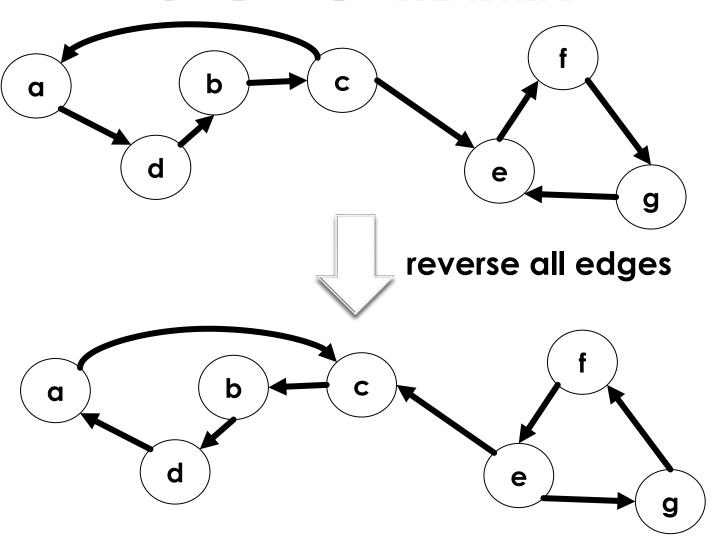


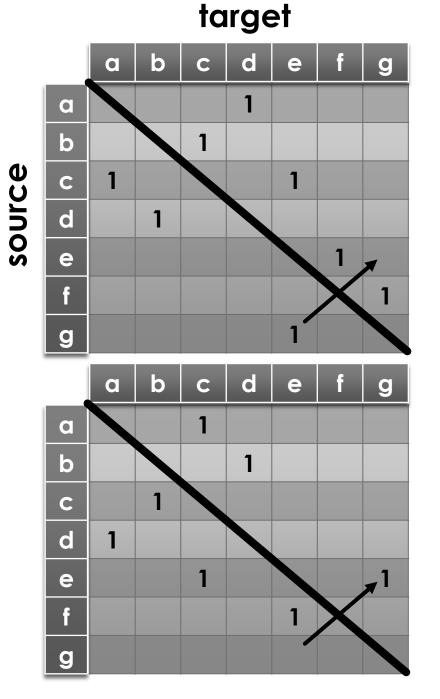


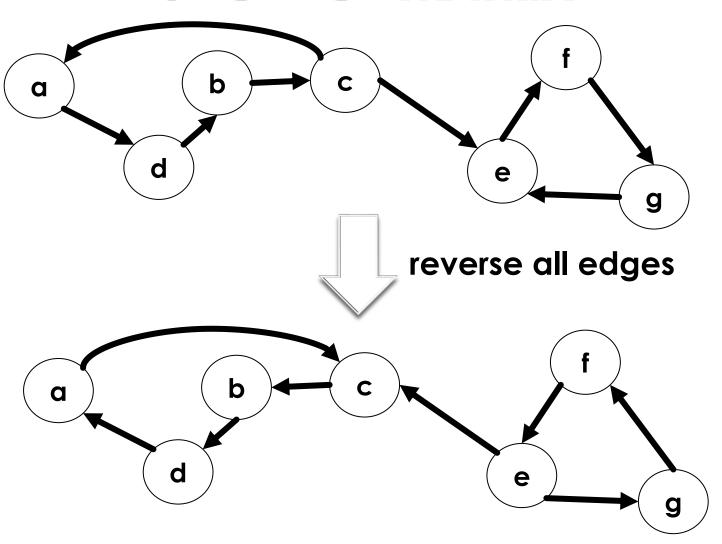


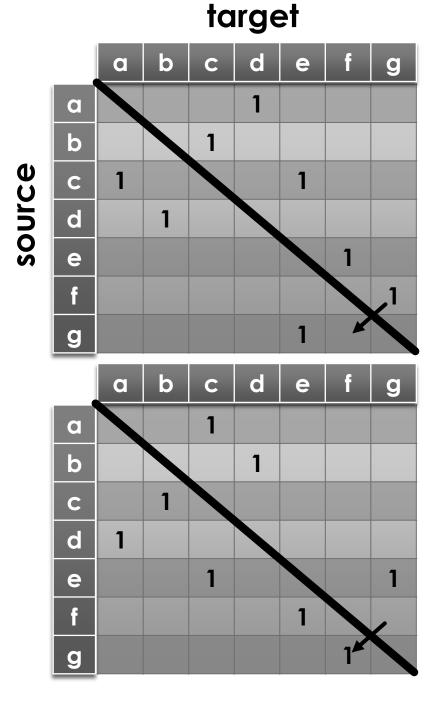


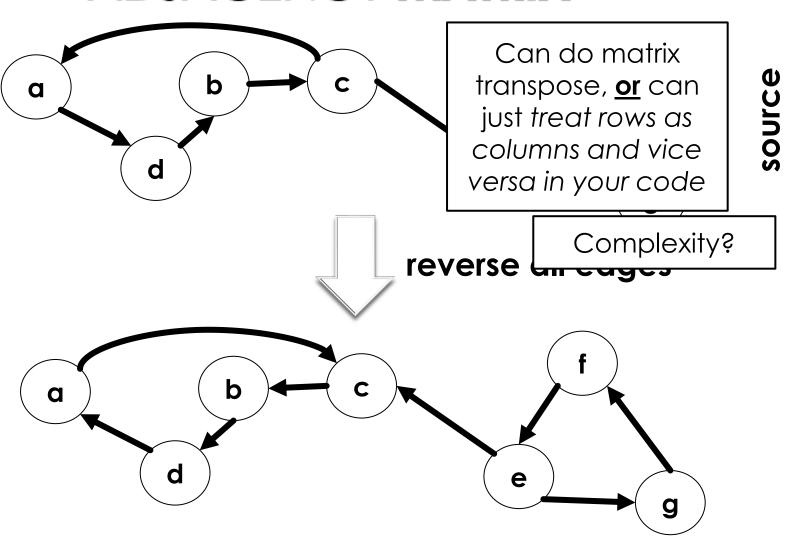




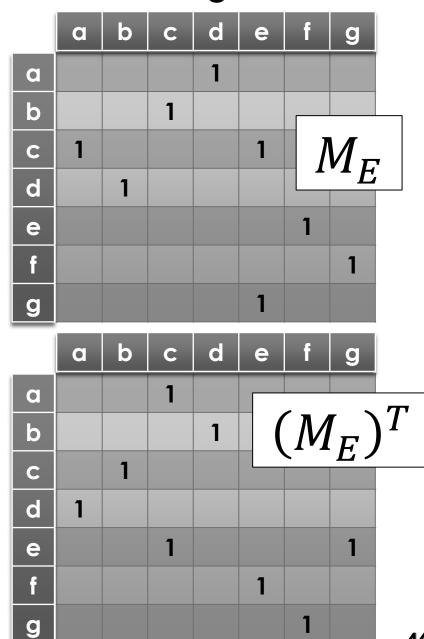




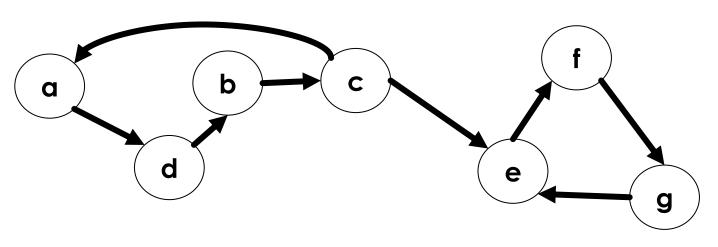


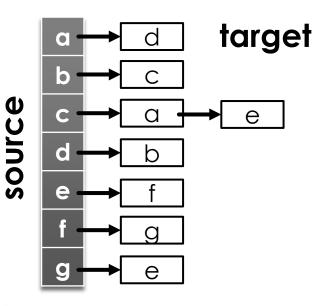


#### target



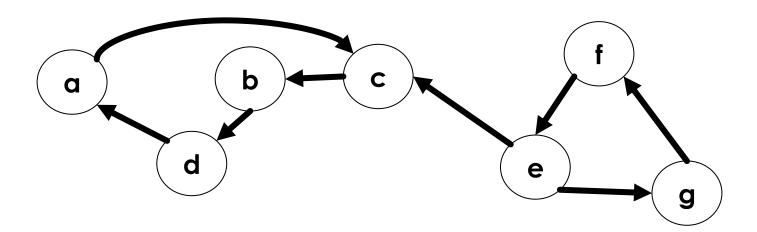
### REVERSING EDGES: ADJACENCY LISTS



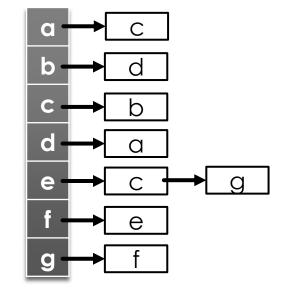


# reverse edges

```
TransposeLists(adj[1..n])
newAdj = new array of n lists
for u = 1 .. n
for v in adj[u]
newAdj[v].insert(u)
return newAdj
```



#### Complexity?



### **RUNTIME COMPLEXITY**

#### FOR ADJACENCY LIST REPRESENTATION?

- IsStronglyConnected( $G = \{V, E\}$ ) where  $V = v_1, v_2, ..., v_n$ 
  - $\circ$  (colour, d, f)  $\coloneqq$  DFSVisit( $v_1$ , G)
  - for i := 1...n
    - if  $colour[v_i] \neq black$  then return false
  - Construct graph H by reversing all edges in G
  - $\circ$  (colour, d, f)  $\coloneqq$  DFSVisit( $v_1$ , H)
  - $\circ$  for i := 1...n
    - if  $colour[v_i] \neq black$  then return false
  - o return true

O(n+m)