CS 341: ALGORITHMS

Lecture 12: graph algorithms III - DAG testing, topsort, SCC Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

DFS APPLICATION:
 TESTING WHETHER A GRAPH IS A DAG

A directed graph G is a directed acyclic graph, or DAG, if G contains no directed cycle.

Lemma 6.7
A directed graph is a DAG if and only if a depth-first search encounters no back edges.

Proof.

(\Rightarrow) : Any back edge creates a directed cycle.

Back edge: points to an ancestor in the DFS forest

- Case (\Leftrightarrow): Suppose directed cycle. Show 3 back edge.
- Let $v_{1}, v_{2}, \ldots, v_{k}, v_{1}$ be a directed cycle
- WLOG let v_{1} be earliest discovered node in the cycle

edge type	$v_{k} \longrightarrow v_{1}$ discovery/finish times
tree	$d\left[v_{k}\right]<d\left[v_{1}\right]<f\left[v_{1}\right]<f\left[v_{k}\right]$
forward	$d\left[v_{k}\right]<d\left[v_{1}\right]<f\left[v_{1}\right]<f\left[v_{k}\right]$
back	$d\left[v_{1}\right]<d\left[v_{k}\right]<f\left[v_{k}\right]<f\left[v_{1}\right]$
cross	$d\left[v_{1}\right]<f\left[v_{1}\right]<d\left[v_{k}\right]<f\left[v_{k}\right]$

Discovered before v_{2}, \ldots, v_{k}
Consider edge $\left\{\boldsymbol{v}_{\boldsymbol{k}}, \boldsymbol{v}_{1}\right\}$
Since $d\left[v_{1}\right]<d\left[v_{k}\right]$, $\left\{\boldsymbol{v}_{\boldsymbol{k}}, \boldsymbol{v}_{1}\right\}$ must be a back or cross edge. Why?

Thus, $\left\{\boldsymbol{v}_{\boldsymbol{k}}, \boldsymbol{v}_{\mathbf{1}}\right\}$ must be a back edge. QED

TURNING THE IEMMA INTO AN ALGORITHM

Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

- Search for back edges
- How to identify a back-edge?

edge type	colour of v	discovery/finish times
tree	white	$d[u]<d[v]<f[v]<f[u]$
forward	black	$d[u]<d[v]<f[v]<f[u]$
back	gray	$d[v]<d[u]<f[u]<f[v]$
cross	black	$d[v]<f[v]<d[u]<f[u]$

DFS: TESTING WHETHER A GRAPH IS A DAG

1	global variables:	15	DFSVisit(adj[1..n], v)
2	pred[1..n] = [null, null, ..., null]	16	colour[v] = gray
3	colour[1..n] = [white, white, ..., white]	17	time $=$ time + 1
4	$\mathrm{d}[1 . . n]=[0,0, \ldots, 0] / /$ discovery times	18	$\mathrm{d}[\mathrm{v}]=$ time
5	$\mathrm{f}[1 . . n]=$ [0, 0, ..., 0] // finish times	19	
6	time $=0$	20	for each w in adj[v]
8	DAG = true	21	if colour[w] == white
9	IsDAG(adj[1. .n])	22	pred[w] = v
10	for $\mathrm{v}=1 . \mathrm{n}$	23	DFSVisit(w)
11	if colour[v] == white	24	if color[w] == gray
12	DFSVisit(adj, v)	25	DAG = false
13	return DAG	26	
		27	colour[v] = black
		28	time $=$ time + 1
		29	$\mathrm{f}[\mathrm{v}]=$ time

EXAMPLE

TOPOLOGICAL SORT

Finding node orderings that satisfy given constraints

DEPENDENCY GRAPH

- Edge $\{u, v\}$ means u must be completed before v

FORMAL DEFINITION

A directed graph $G=(V, E)$ has a topological ordering, or topological sort, if there is a linear ordering $<$ of all the vertices in V such that $u<v$ whenever $u v \in E$.

Topological sort of G

USEFUL FACT

Lemma 6.5

A DAG contains a vertex of indegree 0 .

Proof.

Suppose we have a directed graph in which every vertex has positive indegree. Let v_{1} be any vertex. For every $i \geq 1$, let $v_{i+1} v_{i}$ be an arc. In the sequence $v_{1}, v_{2}, v_{3}, \ldots$, consider the first repeated vertex, $v_{i}=v_{j}$ where $j>i$. Then $v_{j}, v_{j-1}, \ldots, v_{i}, v_{j}$ is a directed cycle.

One of these must be repeated.
So there is a cycle!

TOPOLOGICAL SORT VIA DFS

- We can implement topological sort by using DFS!
- The finishing times of nodes help us
- Understanding this algo will be key for understanding strongly connected components

Lemma 6.8
Suppose D is a DAG. Then $f[v]<f[u]$ for every arc uv.

Recall from DAG-testing: there are no back edges in a DAG

edge type	colour of v	discovery/finish times
tree	white	$d[u]<d[v]<\sqrt{f[v]<f[u]}$
forward	black	$d[u]<d[v]<f[v]<f[u]$
bach	gray	
cross	black	$d[v]<f[v]<d[u]<f[u]$

Theorem: if D is a DAG, and we order vertices in reverse order of finishing time, (i.e., by largest to smallest finish time) then we get a topological ordering!

To see why, suppose D is a DAG and we order nodes in this way,

$$
\text { so } \boldsymbol{f}_{v_{1}}>\boldsymbol{f}_{v_{2}}>\cdots>\boldsymbol{f}_{v_{n-1}}>\boldsymbol{f}_{v_{n}}
$$

For contradiction, suppose a right-ło-left edge $\{u, v\}$ exists

By our node ordering, $f_{v}>f_{u}$

Lemma 6.8
Suppose D is a DAG. Then $f[v]<f[u]$ for every arc $u v$.

Contradiction! Right-to-left edge cannot exist.
So is is a topological ordering.

HOME EXERCISE: RUN ON THIS GRAPH

The initial calls are DFSvisit(1), DFSvisit(2) and DFSvisit(3).
The discovery/finish times are as follows:

v	$d[v]$	$f[v]$
1	1	4
2	5	10
3	11	12

v	$d[v]$	$f[v]$
4	6	7
5	8	9
6	2	3

The topological ordering is $3,2,5,4,1,6$ (reverse order of finishing time).

STRONGLY CONNECTED COMPONENTS

STRONGLY CONNECTED COMPONENTS

- This graph could be divided into two graphs that are each strongly connected

STRONGLY CONNECTED COMPONENTS

- It could also be divided into three graphs...

Maximal SCC
Not maximal

- But we want our SCCs to be maximal (as large as possible)

STRONGLY CONNECTED COMPONENTS

- So, the goal is to find these (maximal) SCCS:

APPLICATIONS OF SCCS AND COMPONENT GRAPHS

- Finding all cyclic dependencies in code
- Can find single cycle with an easier DFSbased algorithm
- But it is nicer to find all cycles at once, so you don't have to fix one to expose another

APPLICATIONS OF SCCS AND COMPONENT GRAPHS

- Data filtering before running other algorithms
- maps; nodes = intersections, edges = roads
- Don't want to run path finding algorithm on the entire global graph!
- Throw away everything except the (maximal) SCC containing source \& target

Crop \& find SCCs

COMPONENT GRAPH

BRAINSTORMING AN ALGORITHM

- What if we run DFS, then reverse all edges, then run DFS (like checking whether an entire groph is strongly connected?)

- What if we run DFS, then reverse all edoes, then run DFS?

If we call DFSVisit in \boldsymbol{G} from largest to smallest finish times, we can reach other SCCs.

DFSVisit(j)

Recall lemma: edge uv in DAG implies $f(u)>f(v)$

SCC ALGORITHM

```
SCC(adj[1..n])
    DFS(adj)
```

let order[1..n] = node labels sorted by largest to smallest finish time

This is called Sharir's
algorithm (sometimes
Kosaraju's algorithm).
This paper first introduced it.

18 SCCVisit(adj[1..n], v, scc, colour, comp)
colour[1..n] = [white, ..., white]
comp[1..n] = [0, ..., 0]
for $i=1$..n
v = order[i]
if colour[v] == white
$\mathbf{s c c}=\mathbf{s c c}+1$
SCCVisit(adj, v, scc, colour, comp)

19 colour[v] = gray

```
reverse all edges in adj
```

reverse all edges in adj
21
21
22
22
23
23
24
24
25
25
26
26
colour[v] = gr
for each w in adj[v]
if colour[w] == white
SCCVisit(w)
colour[v] = black
for i = 1..n
for i = 1..n
= order[i]
= order[i]
if colour[v] = White
if colour[v] = White
SCCVisit(adj, v, scc, colour, comp)
SCCVisit(adj, v, scc, colour, comp)
return comp

```
            return comp
```

b, 12
c, 11
a, 14
b, 12
e, 10

j,24

Phase 2: DFSVisit reverse graph by reverse finish times

TIME COMPLEXITY?

1	SCC (adj[1..n])	$O(n+m)$
2	DFS(adj)	
3	let order[1..n] = node labels sorted by	
4	largest to smallest finish time	

Can be returned as part of the DFS with no added runtime

Finish times increase as we set them, so just use a stack...

```
reverse all edges in adj O(n+m) l8 SCCVisit(adj[1..n], v, scc, colour, comp)
colour[v] = gray
    comp[v] = scc
8 SCCVisit(adj[1..n], v, scc, colour, comp)
```

colour[1..n] = [white, ..., white] 21
comp[1..n] = [0, ..., 0] 22
for $i=1 . . n$
$\mathbf{v}=$ order[i]
if colour[v] == white

24
25
26
for each w in adj[v]
if colour[w] == white
SCCVisit(w)
colour[v] = black
return comp
(each edge is inspected once, each node is visited once, constant work per visited node/inspected edge)

CORRECTNESS

- Want to prove that each top-level call to SCCVisit explores exactly the nodes in one SCC
- Proof hinges on a key lemma that talks about the finish times of SCCs in the component graph
- To talk about finish times of SCCs, we need a definition...

A KEY DEFINITION

$d\left[C_{1}\right]=19$
$=\min \{d[j], d[k] ; d[l]\}$

- For a strongly connected component C, let $d[C]=\min \{d[v]: v \in C\}$ and $f[C]=\max \{f[v]: v \in C\}$

A KEY LEMMA

- Lemma: if C_{i}, G_{j} are SCCs and there is an edge $C_{i} \rightarrow C_{j}$ in G, then $f\left[C_{i}\right]>f\left[C_{j}\right]$
$\boldsymbol{C}_{\boldsymbol{i}}$ discovered first
- Proof. Case $1\left(d\left[C_{i}\right]<d\left[C_{j}\right]\right)$:

Component graph for G

- Let u be the earliest discovered node in C_{i}
- All nodes in $C_{i} \cup C_{j}$ are white-reachable from u, so they are descendants in the DFS forest and finish before u
- So $f\left[C_{i}\right]=f[u]>f\left[C_{j}\right]$

A KEY LEMMA

 then $f\left[C_{i}\right]>f\left[C_{j}\right]$

- Proof. Case $2\left(d\left[c_{j}\right]<d\left[c_{i}\right]\right):$

Component graph for G

- Since component graph is a DAG, there is no path $C_{j} \rightarrow C_{i}$
- Thus, no nodes in C_{i} are reachable from C_{j}
- So we discover C_{j} and finish C_{j} without discovering C_{i}
- Therefore $d\left[C_{j}\right]<f\left[C_{j}\right]<d\left[C_{i}\right]<f\left[C_{i}\right]$. QED

COMPLETING THE PROOF

- Suppose we have performed DFS to get our finish times, and we are about to perform SCCVisits on the reverse graph
- We prove each top-level SCCVisit call visits precisely one SCC
- Consider the first top-level SCCVisit(u)
- Let C be the SCC containing u and C^{\prime} be any other SCC
- Since we call SCCVisit on nodes starting from the largest finish fime,
- We know $\boldsymbol{f}(\boldsymbol{C})>\boldsymbol{f}\left(\boldsymbol{C}^{\prime}\right)$

component graph C_{G} of \boldsymbol{G}

COMPLETING THE PROOF

- We know $f(C)>f\left(C^{\prime}\right)$
- By Lemma: if there were an edge $C^{\prime} \rightarrow C$ in G,
. and sets comp[v] = scc for all nodes in the SCC
So each top-level call explores one SCC... and larger finish time means already explored! then we would have $f\left(C^{\prime}\right)>f(C)$
- So there is no edge $C^{\prime} \rightarrow C$ in G
- and hence no edge $C \rightarrow C^{\prime}$ in H
- So, SCCVisit (u) in H cannot visit C^{\prime} - exactly the nodes in C
component graph C_{G} of \boldsymbol{G}
C

C^{\prime}

IF WE HAVE TIME
 topological sort without relying on DFS

EXISTENCEOF A TOPOLOGICAL. SORT ORDER

Theorem 6.6
A directed graph D has a topological sort if and only if it is a DAG.

Proof.

(\Rightarrow) : Suppose D has a directed cycle $v_{1}, v_{2}, \ldots, v_{j}, v_{1}$. Then
$v_{1}<v_{2}<\cdots<v_{j}<v_{1}$, so a topological ordering does not exist.
(\Leftarrow) : Suppose D is a DAG. Then the algorithm below constructs a topological ordering.

EXAMPLE (KAHN'S ALGORITHM)

BONUS SLIDES

SCC: HOW ABOUT A DIFFERENT ORDERING?

- Rather than doing DFS in the reverse graph in order of decreasing finish times
- Why not do DFS in the original graph in order of increasing finish times?
- Exercise: does this work?

SCC: HOW ABOUT A DIFFERENT ORDERING?

- Why not do DFS in the original graph in order of increasing finish times?

If first DFS starts at c, then...

DFSVisit(b) would reach two SCCs.

