CS 341: ALGORITHMS

Lecture 12: graph algorithms III – DAG testing, topsort, SCC

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

DFS APPLICATION: TESTING WHETHER A GRAPH IS A DAG

A directed graph G is a **directed acyclic graph**, or **DAG**, if G contains no directed cycle.

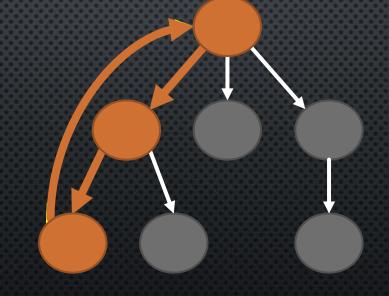
Lemma 6.7

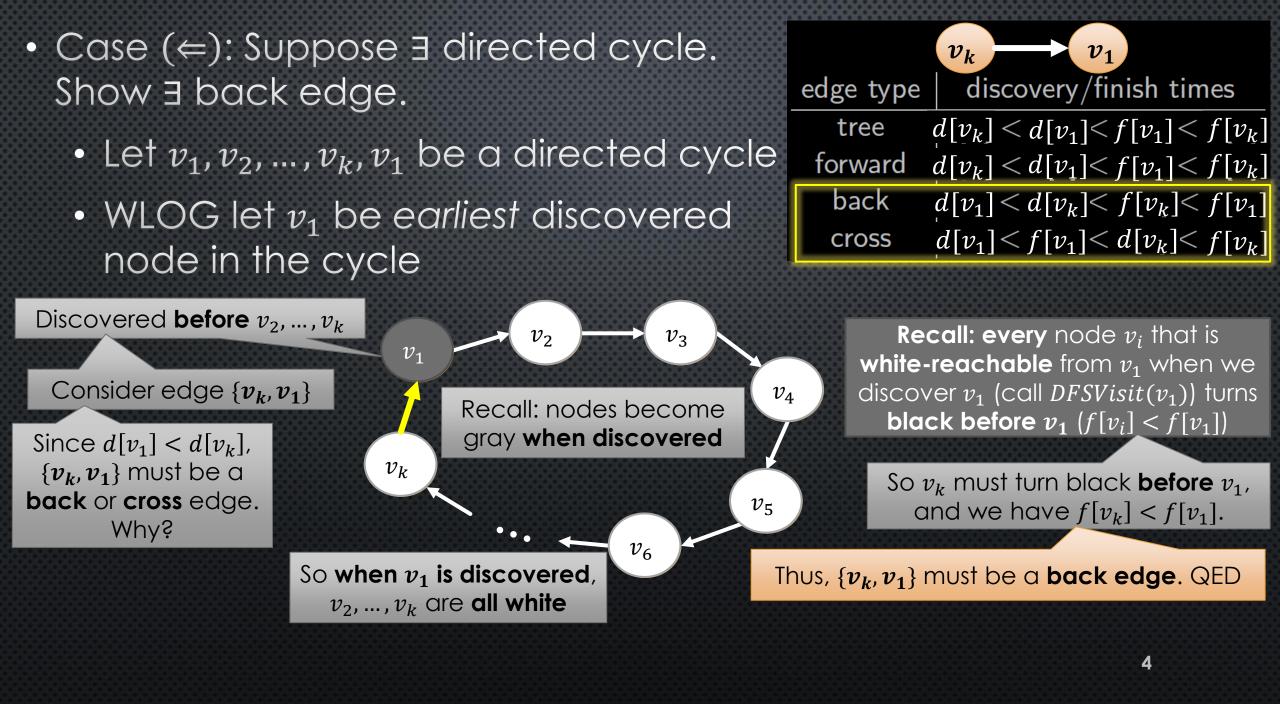
A directed graph is a DAG if and only if a depth-first search encounters no back edges.

Proof.

 (\Rightarrow) : Any back edge creates a directed cycle.

Back edge: **points to an ancestor** in the DFS forest





TURNING THE LEMMA INTO AN ALGORITHM

Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

- Search for back edges
- How to identify a back-edge?

When we observe an edge from u to v, check if v is gray

edge type	colour of v	discovery/finish times		Packadaa
tree	white	d[u] < d[v] < f[v] < f[u]	-	Back edge
forward	black	d[u] < d[v] < f[v] < f[u]	u	
- back	\mathbf{gray}	d[v] < d[u] < f[u] < f[v]	u	
cross	black	d[v] < f[v] < d[u] < f[u]		

DFS: TESTING WHETHER A GRAPH IS A DAG

15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

1	global variables:
2 3	pred[1n] = [null, null,, null]
3	colour[1n] = [white, white,, white]
4	d[1n] = [0, 0,, 0] // discovery times
5	f[1n] = [0, 0,, 0] // finish times
6	time = 0
7	DAG = true
8	
9	IsDAG(adj[1n])
0	for $v = 1n$
1	if colour[v] == white
2 3	DFSVisit(adj, v)
3	return DAG

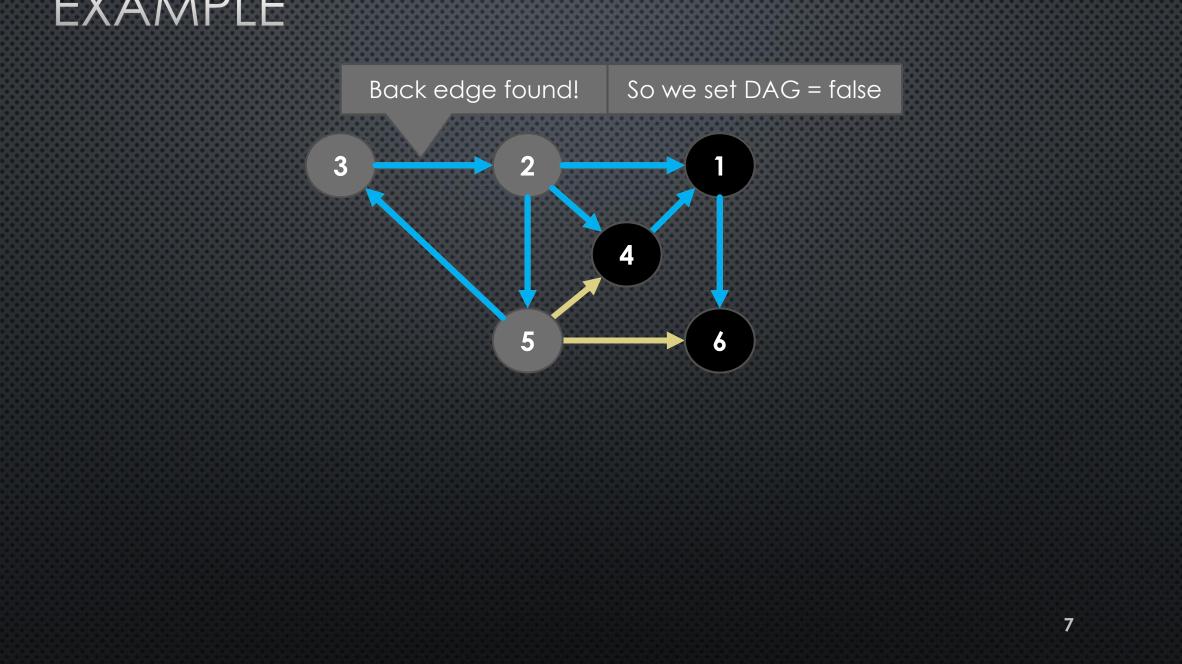
DFSVisit(adj[1..n], v) colour[v] = gray time = time + 1d[v] = timefor each w in adj[v] if colour[w] == white pred[w] = vDFSVisit(w) if color[w] == gray

colour[v] = black
time = time + 1
f[v] = time

DAG = false

6

EXAMPLE

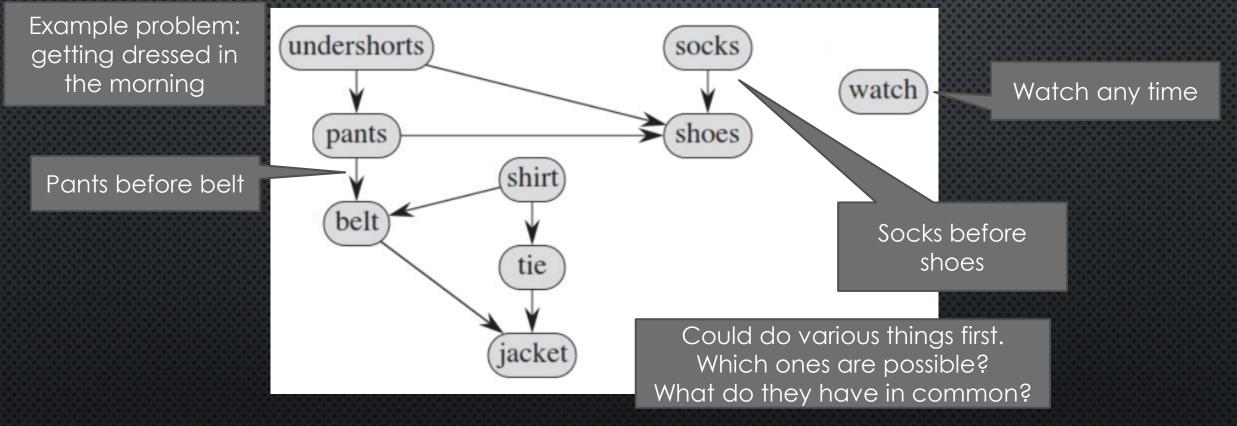


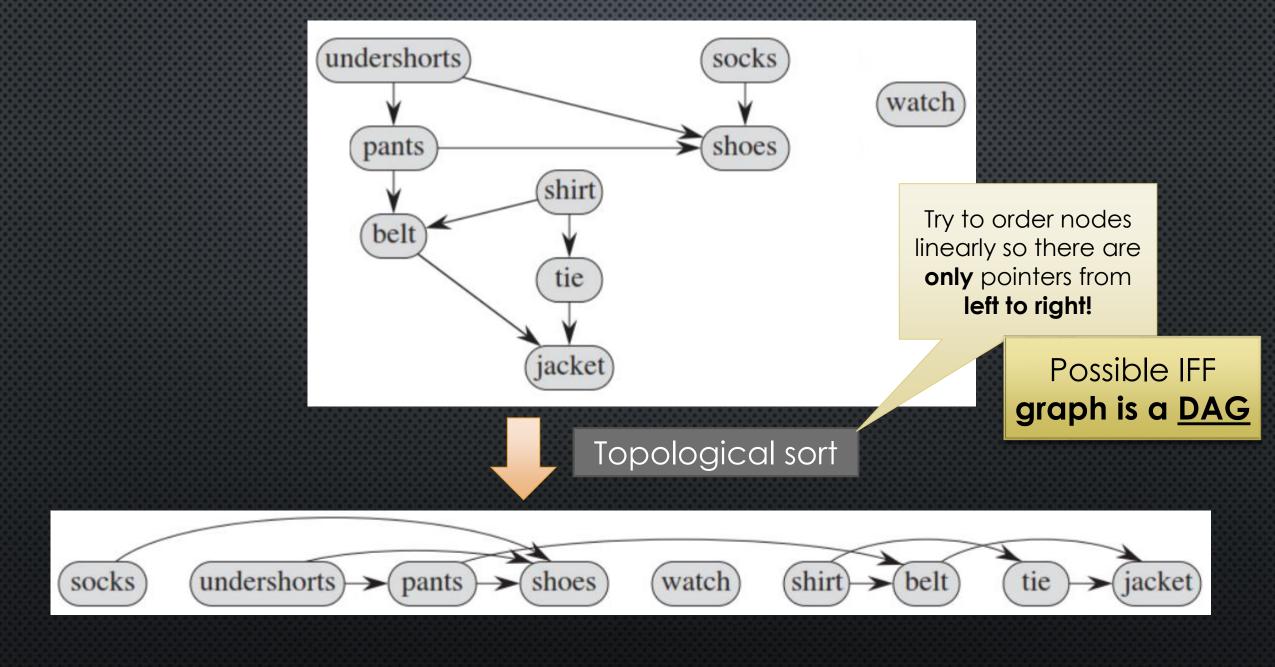
TOPOLOGICAL SORT

Finding node orderings that satisfy given constraints

DEPENDENCY GRAPH

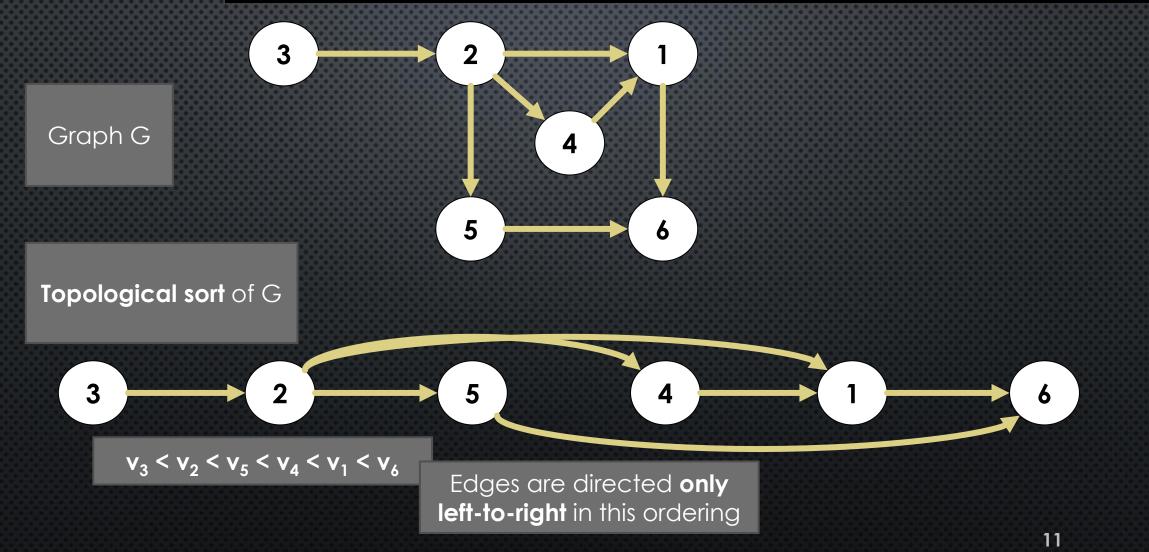
• Edge {*u*, *v*} means *u* must be completed **before** *v*





FORMAL DEFINITION

A directed graph G = (V, E) has a **topological ordering**, or **topological sort**, if there is a linear ordering < of all the vertices in Vsuch that u < v whenever $uv \in E$.



USEFUL FACT

Lemma 6.5

A DAG contains a vertex of indegree 0.

Proof.

Suppose we have a directed graph in which every vertex has positive indegree. Let v_1 be any vertex. For every $i \ge 1$, let $v_{i+1}v_i$ be an arc. In the sequence v_1, v_2, v_3, \ldots , consider the first repeated vertex, $v_i = v_j$ where j > i. Then $v_j, v_{j-1}, \ldots, v_i, v_j$ is a directed cycle.

One of these must be **repeated**. So there is a cycle!

TOPOLOGICAL SORT VIA DFS

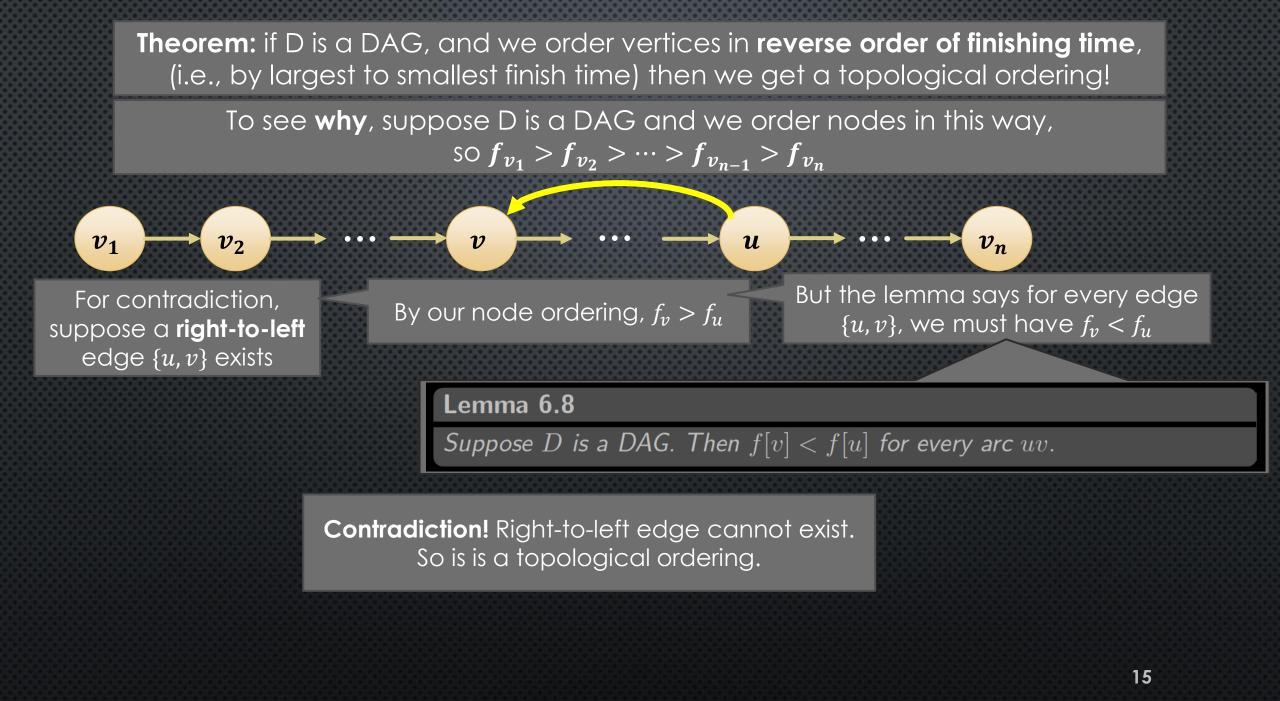
- We can implement topological sort by using **DFS**!
- The finishing times of nodes help us
- Understanding this algo will be key for understanding strongly connected components

Lemma 6.8

Suppose D is a DAG. Then f[v] < f[u] for every arc uv.

Recall from DAG-testing: there are **no back edges** in a DAG

edge type	colour of v	discovery/finish times	
tree	white	d[u] < d[v] < f[v] < f[u]	
forward	black	d[u] < d[v] < f[v] < f[u]	$u \longrightarrow v$
cross	black	$egin{array}{l l l l l l l l l l l l l l l l l l l $	



TOPOLOGICAL ORDERING VIA DFS O(n + m) w/adj. lists

global variables:

Т

2

3

4

5

6

7

8

9

10

11

12

13

14

15

pred[1..n] = [null, null, ..., null] colour[1..n] = [white, white, ..., white] d[1..n] = [0, 0, ..., 0] // discovery times f[1..n] = [0, 0, ..., 0] // finish times time = 0 DAG = true

Push smallest

finishing time first

→ pop largest first

TopologicalSort(adj[1..n])

S = new stack
for v = 1..n
 if colour[v] == white
 DFSVisit(adj, v, S)
if DAG then return S
return null

DFSVisit(adj[1..n], v, S) colour[v] = gray time = time + 1d[v] = timefor each w in adj[v] if colour[w] == white pred[w] = vDFSVisit(w) if color[w] == gray DAG = false

colour[v] = black

time = time + 1

S.push(v)

f[v] = time

Save each node when it **finishes**

17

18

19

20

21

22

23

24

25

26

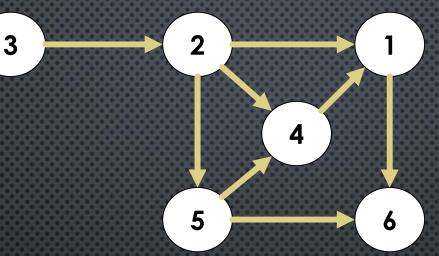
27

28

29

16

HOME EXERCISE: RUN ON THIS GRAPH



The initial calls are DFSvisit(1), DFSvisit(2) and DFSvisit(3). The discovery/finish times are as follows:

v	d[v]	f[v]	v	d[v]	f[v]
1	1	4	4	6	7
2	5	10	5	8	9
3	11	12	6	2	3

The topological ordering is 3, 2, 5, 4, 1, 6 (reverse order of finishing time).

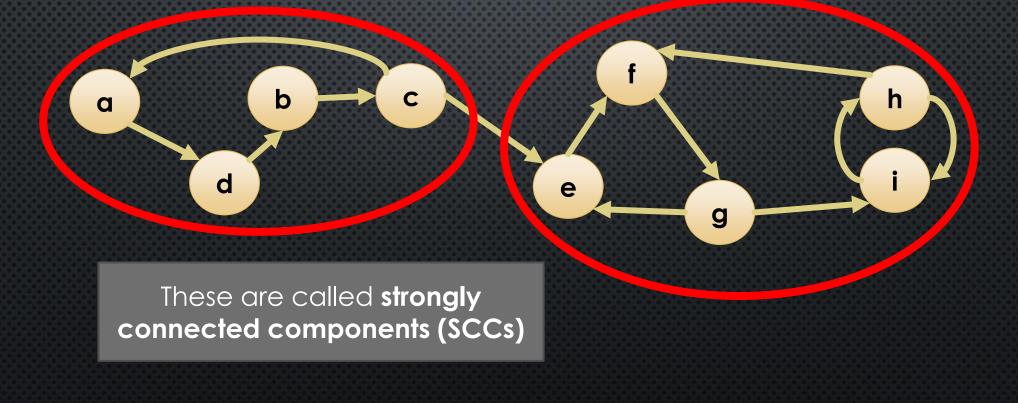
YOU HAVENTT TEXTED MEIN 1 MINUTE AND 422 SECONDS

WHY ARE YOU IGNORING ME?

STRONGLY CONNECTED COMPONENTS

STRONGLY CONNECTED COMPONENTS

 This graph could be divided into two graphs that are each strongly connected



STRONGLY CONNECTED COMPONENTS

• It could also be divided into three graphs...

Not maximal

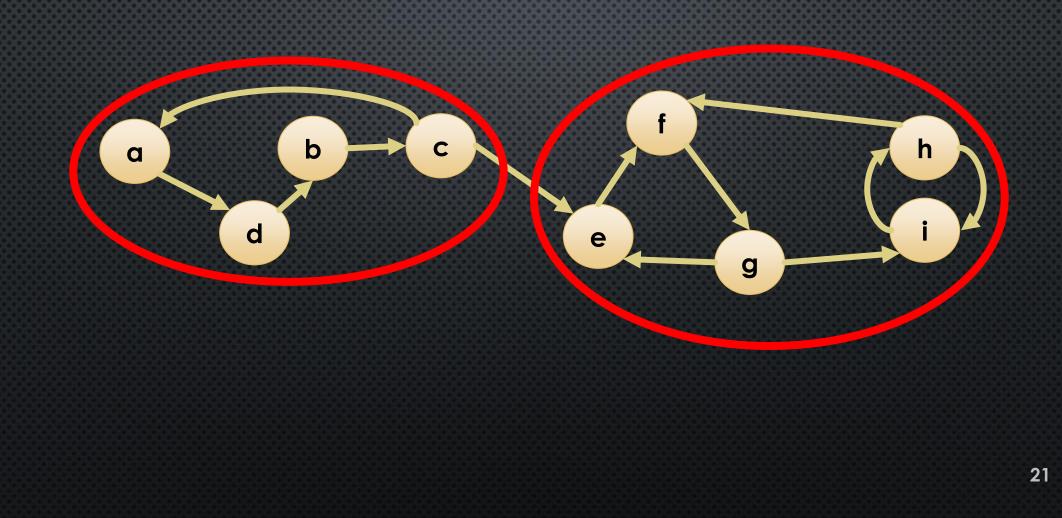
h

a b c d b c e g Maximal SCC Not maximal

But we want our SCCs to be maximal (as large as possible)

STRONGLY CONNECTED COMPONENTS

• So, the goal is to find **these** (maximal) SCCs:



APPLICATIONS OF SCCs AND COMPONENT GRAPHS

- Finding **all cyclic** dependencies in code
 - Can find single cycle with an easier DFSbased algorithm
 - But it is nicer to find all cycles at once, so you don't have to fix one to expose another

Dep	Dependency Matrix 😔 🗙																	
1	🐐 🕶 🗽 🍝 🖓 👻 🧊 🐨 💿 🔍 🔍 21 🔍																	
V	Weight on Cells: Direct & indirect depth of use 💌 🖻 📴 🛛 🐺 井 🚝 🧔 🤅 😯 🏾 (🕴 14 😁 14																	
				0	1	2	3	4	5	6	7	8	9	10	11	12	13	l
₽	⊕ {}	Microsoft.Scripting.ComInterop	0						3	2	1	1	1	1	2	2	2	
	⊕-{}	Microsoft.Scripting.Hosting.Shell	1		8	2			3	2	1	2	1	1	2	2	1	
Mio	⊕-{}	Microsoft.Scripting.Hosting.Shell.R	2		2	\nearrow			4	3	1	3	2	2	3	3	2	
roso	⊕-{}	Microsoft.Scripting.Debugging	3				×	2	3	2	2	1	1	1	2	2	2	
.≓	⊕-{}	Microsoft.Scripting.Debugging.Com	4				2	\geq	3	2	2	2	1	1	2	2	2	
Microsoft.Dynamic	⊕-{}	Microsoft.Scripting.Actions.Calls	5	3	3	4	3	3	×	2	5	3	3	4	6	5	3	
II.	⊕-{}	Microsoft.Scripting.Actions	6	2	2	3	2	2	2	$\overline{\ }$	3	2	2	3	5	4	2	
0	⊕-{}	Microsoft.Scripting	7	1	1	1	2	2	5	3		3	2	2	4	3	2	
	⊕-{}	Microsoft.Scripting.Ast	8	1	2	3	1	2	3	2	3		2	2	3	2	2	
	⊕-{}	Microsoft.Scripting.Runtime	9	1	1	2	1	1	3	2	2	2		2	4	3	2	
	⊕-{}	Microsoft.Scripting.Utils	10	1	1	2	1	1	4	3	2	2	2		2	2	2	
	⊕-{}	Microsoft.Scripting.Math	11	2	2	3	2	2	6	5	4	3	4	2	/	3	3	
	⊕-{}	Microsoft.Scripting.Interpreter	12	2	2	3	2	2	5	4	3	2	3	2	3	/	2	
		Microsoft.Scripting.Generation	13	2	1	2	2	2	3	2	2	2	2	2	3	2		
	_																	

R Context-Sensitive Help

Show description of the dependency cycle (recommended)

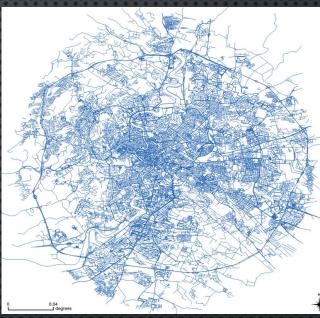
This red rectangle on the dependency matrix indicates that the **9 code elements** involved are entangled in a **dependency cycle**.

Dependency cycle between namespaces should be prohibited **only if** you consider that namespaces represent components.

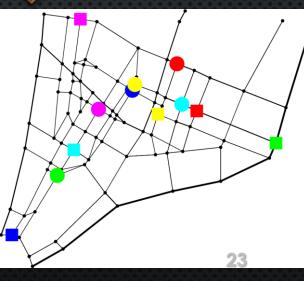
The option *Weight on Cells* set to **Direct & Indirect depth of use** is the right option to explore and eventually cut, dependency cycles.

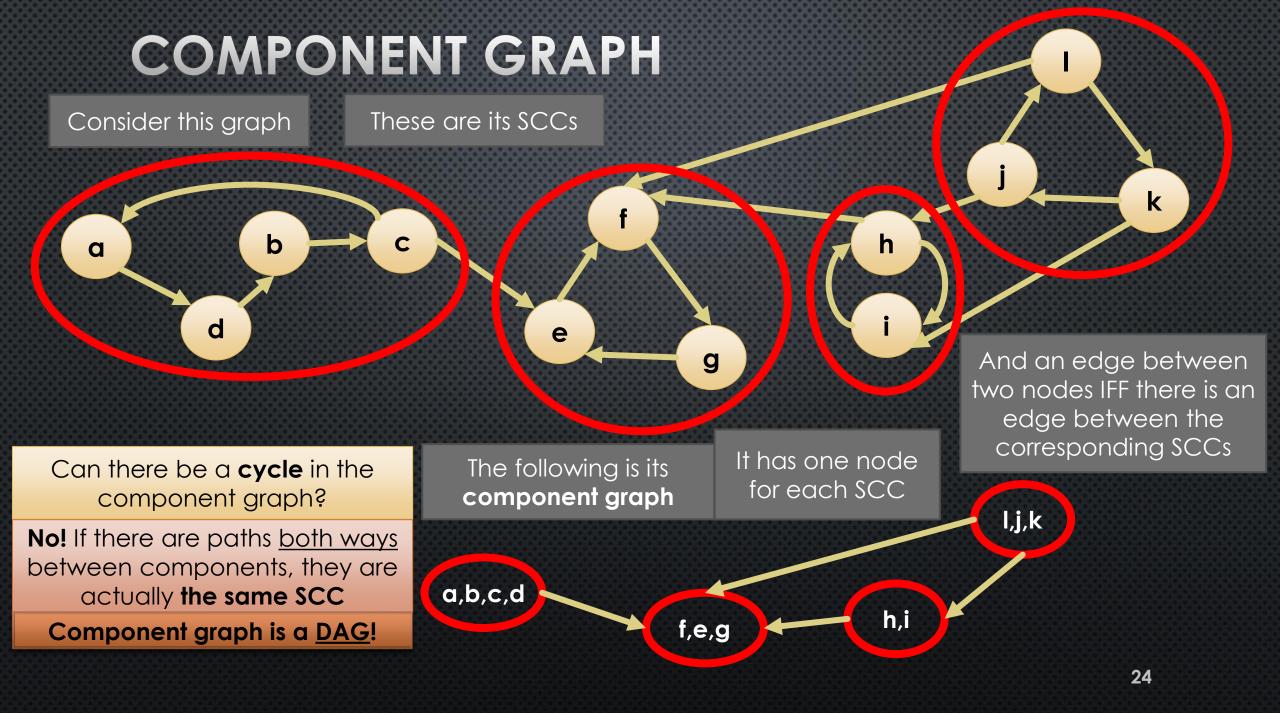
APPLICATIONS OF SCCs AND COMPONENT GRAPHS

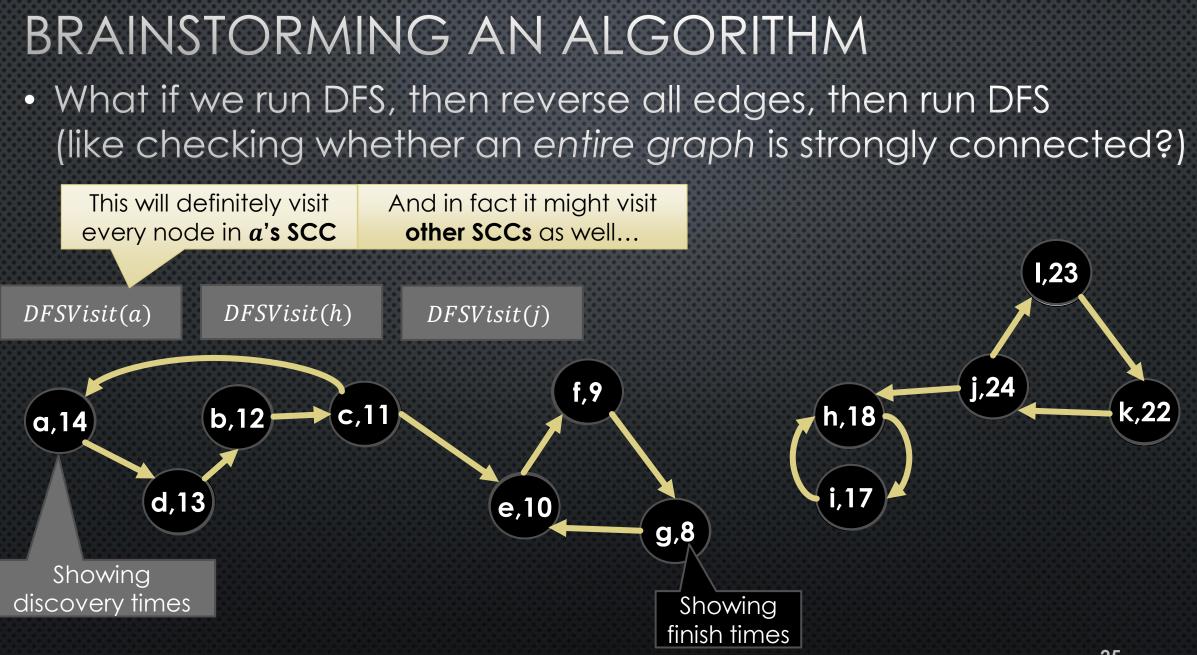
- Data filtering before running other algorithms
- maps; nodes = intersections, edges = roads
- Don't want to run path finding algorithm on the entire **global** graph!
- Throw away everything except the (maximal) SCC containing source & target

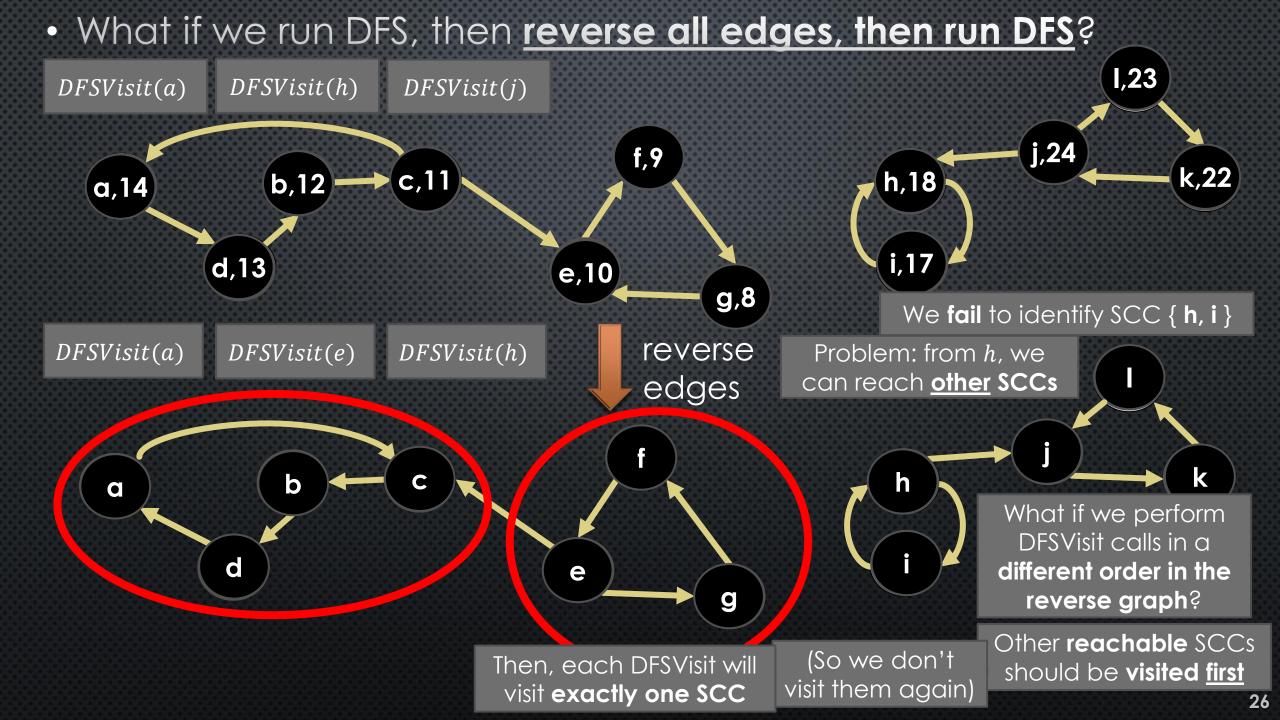


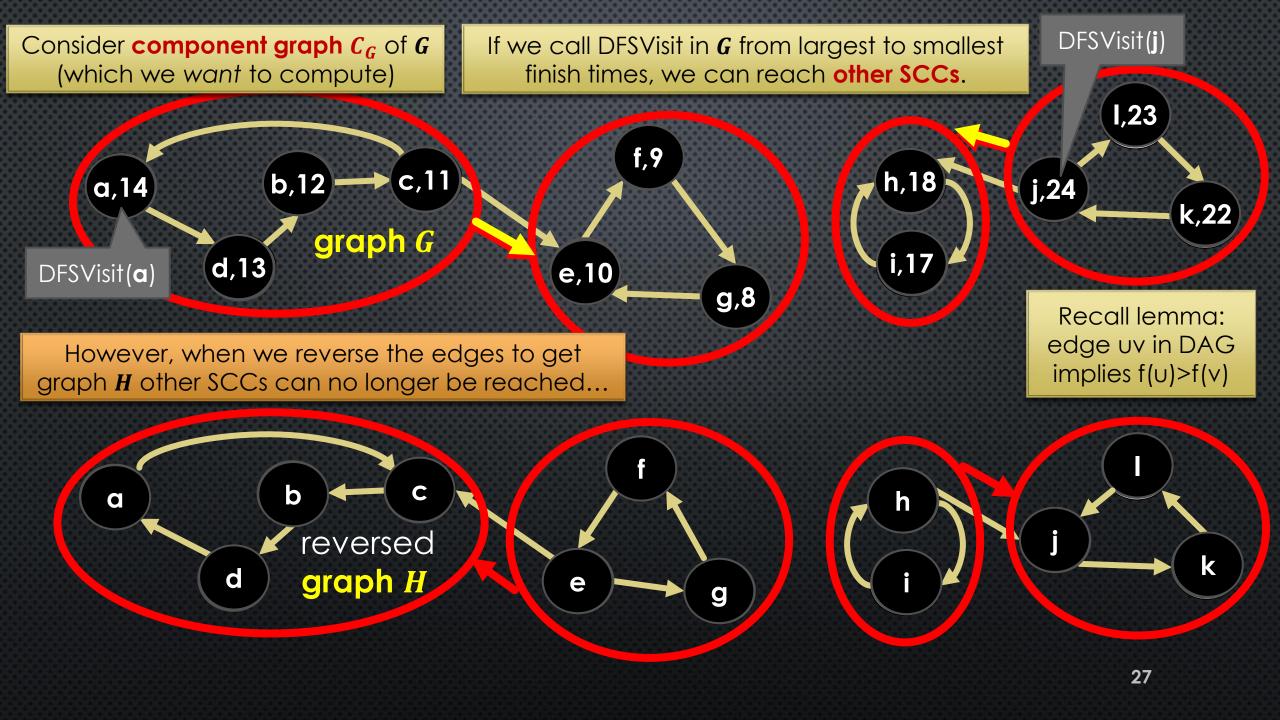
Crop & find SCCs











SCC ALGORITHM

SCC(adj[1..n])
DFS(adj)
let order[1..n] = node labels sorted by
largest to smallest finish time

```
reverse all edges in adj
```

```
colour[1..n] = [white, ..., white]
comp[1..n] = [0, ..., 0]
for i = 1..n
    v = order[i]
```

```
if colour[v] == white
```

```
scc = scc + 1
```

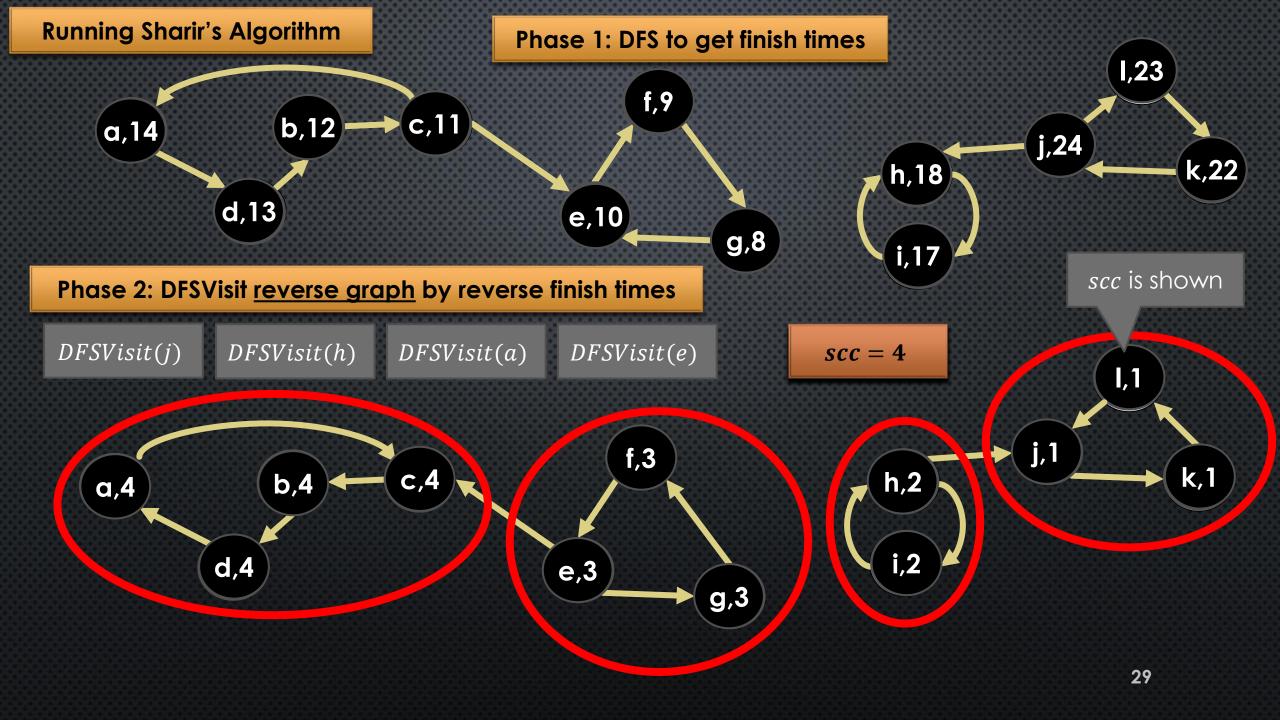
```
SCCVisit(adj, v, scc, colour, comp)
```

return comp

This is called Sharir's algorithm (sometimes Kosaraju's algorithm). **This paper** first introduced it.

SCCVisit(adj[1..n], v, scc, colour, comp)
 colour[v] = gray
 comp[v] = scc
 for each w in adj[v]
 if colour[w] == white
 SCCVisit(w)

colour[v] = black

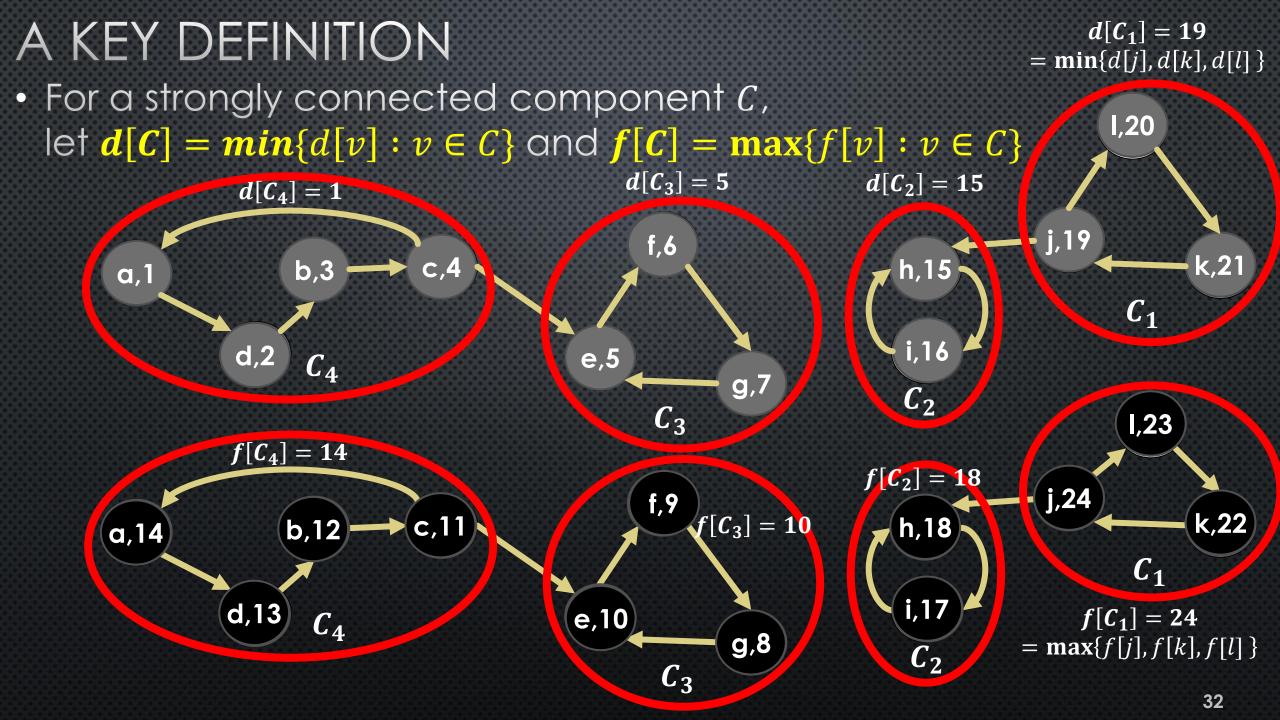


TIME COMPLEXITY?

1	SCC(adj[1n]) $O(n+m)$	100000000	Can be returned as part of the DFS with no added runtime
2 3	DFS(adj) let order[1n] = node labels sor	ted bv	Finish times increase as we set
4	largest to smallest finis		them so just use a stack
5 6 7	reverse all edges in $adj = O(n+n)$	ı) 18 19 20	<pre>SCCVisit(adj[1n], v, scc, colour, comp) colour[v] = gray comp[v] = scc</pre>
0	<pre>colour[1n] = [white,, white</pre>		
O(n)	comp[1n] = [0,, 0]	22	<pre>for each w in adj[v]</pre>
10	for i = 1n	23	if colour[w] == white
11	v = order[i]	24 25	SCCVisit(w)
12	if colour[v] == white	26	colour[v] = black
13	scc = scc + 1		000000000000000000000000000000000000000
14	SCCVisit(adj, v, scc, col	our, c	omp) Total of $O(n+m)$ work over
15			all n iterations of the <i>i</i> loop
16			ge is inspected once, each node is visited ant work per visited node/inspected edge)
	Total $O(n+m)$		30

CORRECTNESS

- Want to prove that each top-level call to SCCVisit explores exactly the nodes in one SCC
- Proof hinges on a key lemma that talks about the finish times of SCCs in the component graph
- To talk about finish times of **SCCs**, we need a definition...



A KEY LEMMA

• Lemma: if C_i, C_j are SCCs and there is an edge $C_i \rightarrow C_j$ in G, then $f[C_i] > f[C_j]$

C_i discovered first

• Proof. Case 1 $(d[C_i] < d[C_j])$:

• Let u be the earliest discovered node in C_i

u = earliest discovered node in here

 C_i

• All nodes in $C_i \cup C_j$ are white-reachable from u, so they are **descendants in the DFS forest** and **finish before** u

Component graph for G

 C_i

• So $f[C_i] = f[u] > f[C_j]$

A KEY LEMMA

• Lemma: if C_i, C_j are SCCs and there is an edge $C_i \rightarrow C_j$ in G_i , then $f[C_i] > f[C_j]$ Component graph for G

 C_j discovered first

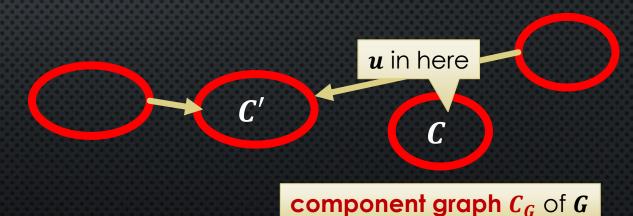
- Proof. Case 2 $(d[C_j] < d[C_i])$:
 - Since component graph is a DAG, there is **no path** $C_i \rightarrow C_i$
 - Thus, **no nodes** in C_i are reachable from C_i
 - So we discover C_i and finish C_i without discovering C_i
 - Therefore $d[C_j] < f[C_j] < d[C_i] < f[C_i]$. QED

 C_i

 C_i

COMPLETING THE PROOF

- Suppose we have performed DFS to get our finish times, and we are about to perform SCCVisits on the reverse graph
- We prove each top-level SCCVisit call visits precisely one SCC
- Consider the first top-level SCCVisit(u)
- Let \mathcal{C} be the SCC containing u and \mathcal{C}' be any other SCC
- Since we call SCCVisit on nodes starting from the largest finish time,
 - We know $f(\mathcal{C}) > f(\mathcal{C}')$



COMPLETING THE PROOF • We know f(C) > f(C')• By Lemma: if there were an edge $C' \rightarrow C$ in G, then we would have f(C') > f(C)• So there is no edge $C' \rightarrow C$ in G • and hence **no edge** $C \rightarrow C'$ in H So, SCCVisit(u) in H cannot visit C'component graph C_G of G

... and sets comp[v] = scc for all nodes in the SCC So each top-level call explores one SCC... and larger finish time means already explored!

u in here

In *G*, edges go from larger to smaller finish times. In *H*, edges go from smaller to larger.

Similar argument for subsequent **top-level** calls to SCCVisit.

So SCCVisit(*u*) visits exactly the nodes in *C*

component graph C_H of H

IF WE HAVE TIME

topological sort without relying on DFS

EXISTENCE OF A TOPOLOGICAL SORT ORDER

Theorem 6.6

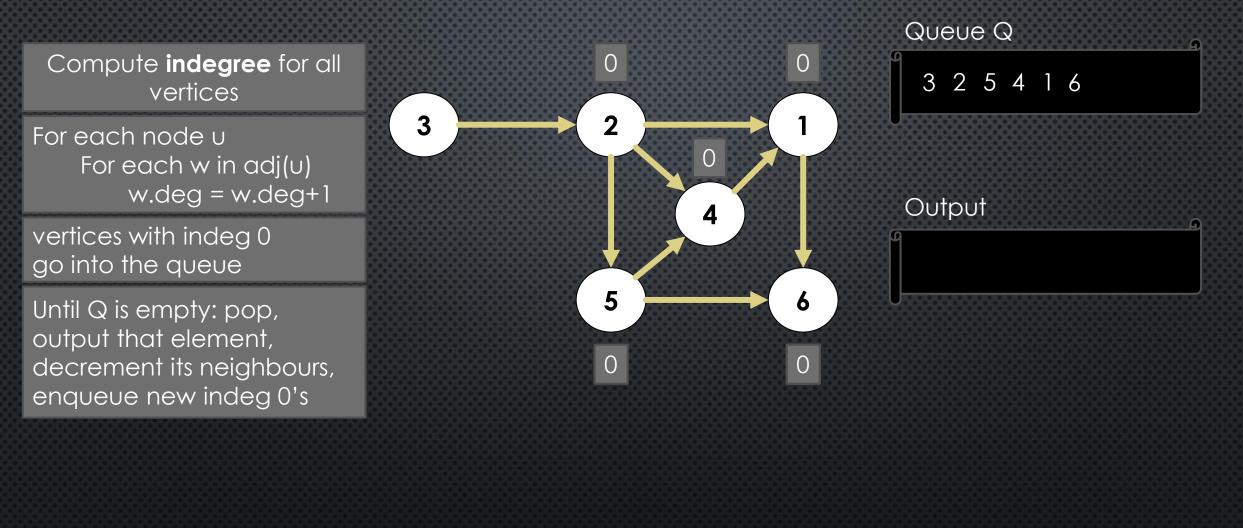
A directed graph D has a topological sort if and only if it is a DAG.

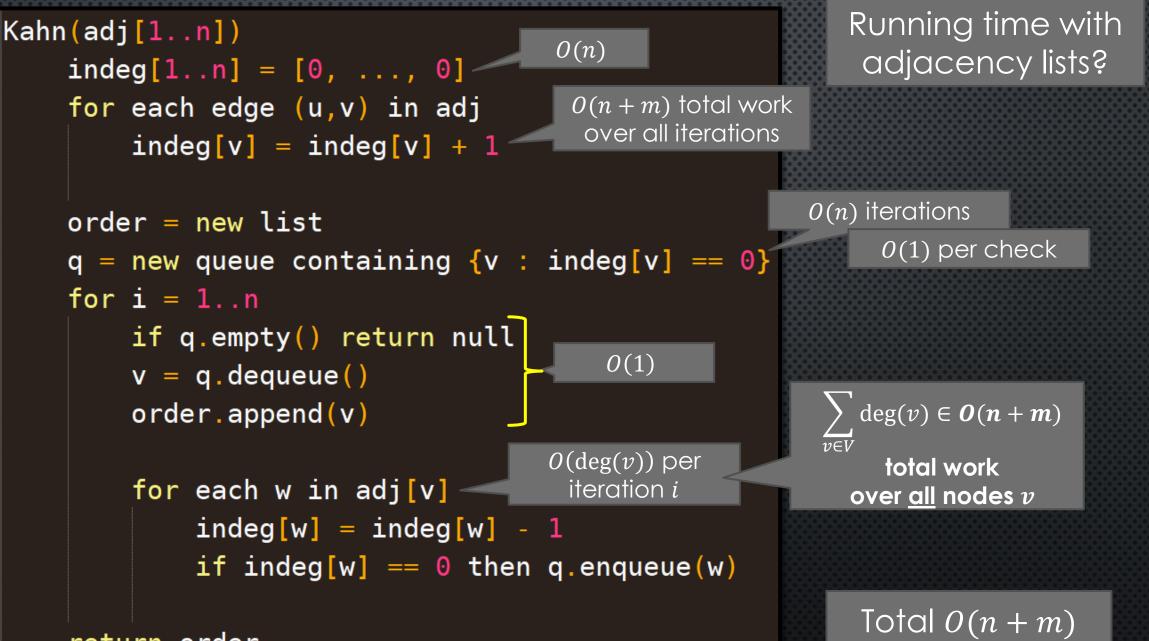
Proof.

(\Rightarrow): Suppose *D* has a directed cycle $v_1, v_2, \ldots, v_j, v_1$. Then $v_1 < v_2 < \cdots < v_j < v_1$, so a topological ordering does not exist. (\Leftarrow): Suppose *D* is a DAG. Then the algorithm below constructs a topological ordering.

Kahn(adj[1n])	indeg[v] = # of edges	
indeg[1n] = [0,, 0] <	pointing into node v	
<pre>for each edge (u,v) in adj</pre>		
indeg[v] = indeg[v] + 1	Nodes with <i>indeg</i> 0	
order = new list	have no unsatisfied dependencies	So this step is enqueuing nodes whose dependencies are already satisfied
<pre>q = new queue containing {v for i = 1n if q.empty() return null v = q.dequeue()</pre>		q always contains nodes with no unsatisfied dependencies (indeg 0)
order.append(v)	Add <i>v</i> to the oological order	
<pre>for each w in adj[v] indeg[w] = indeg[w] if indeg[w] == 0 the</pre>	- 1	Remove <i>v</i> 's out edges. If we have now satisfied all ependencies for some <i>w</i> , add <i>w</i> to the queue also.

EXAMPLE (KAHN'S ALGORITHM)





BONUS SLIDES

SCC: HOW ABOUT A DIFFERENT ORDERING?

- Rather than doing DFS in the reverse graph in order of decreasing finish times
- Why not do DFS in the original graph in order of increasing finish times?
- Exercise: does this work?

SCC: HOW ABOUT A DIFFERENT ORDERING?

 Why not do DFS in the original graph in order of increasing finish times?

