
2023-10-24

1

CS 341: ALGORITHMS
Lecture 12: graph algorithms III – DAG testing, topsort, SCC

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

DFS APPLICATION:

TESTING WHETHER A GRAPH IS A DAG

2

Back edge:
points to an ancestor

in the DFS forest

3

• Case ⇐ : Suppose ∃ directed cycle.

Show ∃ back edge.

• Let 𝑣1, 𝑣2 , … , 𝑣𝑘 , 𝑣1 be a directed cycle

• WLOG let 𝑣1 be earliest discovered

node in the cycle

𝑣1
𝑣2 𝑣3

𝑣4

𝑣5

𝑣6

𝑣𝑘

Discovered before 𝑣2, … , 𝑣𝑘

Recall: nodes become
gray when discovered

So when 𝒗𝟏 is discovered,
𝑣2, … , 𝑣𝑘 are all white

𝑣1
𝑣2 𝑣3

𝑣4

𝑣5

𝑣6

𝑣𝑘

Recall: every node 𝑣𝑖 that is
white-reachable from 𝑣1 when we

discover 𝑣1 (call 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑣1)) turns
black before 𝒗𝟏 (𝑓 𝑣𝑖 < 𝑓[𝑣1])

So 𝑣𝑘 must turn black before 𝑣1,
and we have 𝑓 𝑣𝑘 < 𝑓[𝑣1].

Thus, {𝒗𝒌, 𝒗𝟏} must be a back edge. QED

Consider edge {𝒗𝒌, 𝒗𝟏}

Since 𝑑 𝑣1 < 𝑑 𝑣𝑘 ,
{𝒗𝒌, 𝒗𝟏} must be a

back or cross edge.
Why?

𝒗𝒌 𝒗𝟏

𝑑[𝑣𝑘]

𝑑[𝑣𝑘]

𝑑[𝑣𝑘]

𝑑[𝑣𝑘]

𝑑[𝑣1]

𝑑[𝑣1]

𝑑[𝑣1]

𝑑[𝑣1] 𝑓[𝑣𝑘]

𝑓[𝑣𝑘]

𝑓[𝑣𝑘]

𝑓[𝑣𝑘]

𝑓[𝑣1]

𝑓[𝑣1]

𝑓[𝑣1]

𝑓[𝑣1]

4

TURNING THE LEMMA INTO AN ALGORITHM

• Search for back edges

• How to identify a back-edge?

When we observe
an edge from 𝑢 to 𝑣,

check if 𝒗 is gray 𝒖 𝒗𝒗

Back edge

5

DFS: TESTING WHETHER A GRAPH IS A DAG

6

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-10-24

2

EXAMPLE

1

65

2

4

3 1

66

12

4

5

3

Back edge found!

4

So we set DAG = false

7

TOPOLOGICAL SORT
Finding node orderings that satisfy given constraints

8

DEPENDENCY GRAPH

• Edge {𝑢, 𝑣} means 𝑢 must be completed before 𝑣

Socks before
shoes

Watch any time

Pants before belt

Example problem:
getting dressed in

the morning

Could do various things first.
Which ones are possible?

What do they have in common?

9

Topological sort

Try to order nodes
linearly so there are

only pointers from
left to right!

Possible IFF
graph is a DAG

10

FORMAL

DEFINITION

1

65

2

4

3

523 614

Graph G

Topological sort of G

v3 < v2 < v5 < v4 < v1 < v6
Edges are directed only

left-to-right in this ordering
11

USEFUL FACT

𝒗𝒏 𝒗𝟏𝒗𝟐𝒗𝟑
…𝒗𝒏+𝟏

One of these must
be repeated.

So there is a cycle!

12

2023-10-24

3

TOPOLOGICAL SORT VIA DFS

• We can implement topological sort by using DFS!

• The finishing times of nodes help us

• Understanding this algo will be key for understanding

strongly connected components

13

Recall from DAG-testing:
there are no back edges

in a DAG
𝒖 𝒗

14

To see why, suppose D is a DAG and we order nodes in this way,
so 𝒇𝒗𝟏

> 𝒇𝒗𝟐
> ⋯ > 𝒇𝒗𝒏−𝟏

> 𝒇𝒗𝒏

𝒗𝟐 𝒗𝒏
…𝒗𝟏 𝒗 𝒖… …

For contradiction,
suppose a right-to-left

edge {𝑢, 𝑣} exists

By our node ordering, 𝑓𝑣 > 𝑓𝑢
But the lemma says for every edge

{𝑢, 𝑣}, we must have 𝑓𝑣 < 𝑓𝑢

Contradiction! Right-to-left edge cannot exist.
So is is a topological ordering.

Theorem: if D is a DAG, and we order vertices in reverse order of finishing time,

(i.e., by largest to smallest finish time) then we get a topological ordering!

15

TOPOLOGICAL ORDERING VIA DFS

16

Save each node
when it finishes

Push smallest
finishing time first
→ pop largest first

𝑶(𝒏 + 𝒎) w/adj. lists

HOME EXERCISE: RUN ON THIS GRAPH

1

65

2

4

3

17

10

STRONGLY CONNECTED COMPONENTS

18

2023-10-24

4

STRONGLY CONNECTED COMPONENTS

• This graph could be divided into two graphs
that are each strongly connected

d

cba

e

f

g

i

h

These are called strongly

connected components (SCCs)

19

STRONGLY CONNECTED COMPONENTS

• It could also be divided into three graphs…

• But we want our SCCs to be maximal (as large as possible)

d

cba

e

f

g

i

h

Maximal SCC Not maximal

Not maximal

20

STRONGLY CONNECTED COMPONENTS

• So, the goal is to find these (maximal) SCCs:

d

cba

e

f

g

i

h

21

APPLICATIONS OF SCCS AND COMPONENT GRAPHS

• Finding all cyclic
dependencies in code

• Can find single cycle
with an easier DFS-
based algorithm

• But it is nicer to find all

cycles at once, so you
don’t have to fix one
to expose another

22

APPLICATIONS OF SCCS AND COMPONENT GRAPHS

• Data filtering before running other algorithms

• maps; nodes = intersections, edges = roads

• Don’t want to run path finding algorithm on
the entire global graph!

• Throw away everything except the (maximal)

SCC containing source & target
Crop & find SCCs

23

COMPONENT GRAPH

d

cba

e

f

g

i

h

j

l

k

Consider this graph These are its SCCs

The following is its
component graph

a,b,c,d

f,e,g h,i

l,j,k

And an edge between
two nodes IFF there is an

edge between the
corresponding SCCs

It has one node
for each SCC

Can there be a cycle in the
component graph?

No! If there are paths both ways
between components, they are

actually the same SCC

Component graph is a DAG!

24

2023-10-24

5

j

l

k

l,20

k,21
j,19

i

hh,15

i,16d

cba

e

f

g

a,1

d,2

b,3 c,4

e,5

f,6

g,7g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18 k,22

l,23

j,24

• What if we run DFS, then reverse all edges, then run DFS

(like checking whether an entire graph is strongly connected?)

BRAINSTORMING AN ALGORITHM

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(ℎ) 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑗)

Showing
finish times

Showing
discovery times

This will definitely visit
every node in 𝒂’s SCC

And in fact it might visit
other SCCs as well…

25

lll

• What if we run DFS, then reverse all edges, then run DFS?

d

cba

e

f

g

i

h
j

l

ka

d

b c

e

f

g

l

k
j

h

i

g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18 k,22

l,23

j,24

d

cba

e

f

g

i

h
j

ka

d

b c

e

f

g

k
j

h

i

reverse

edges

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎)

d

b ca

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑒)

j
k

i

h
f

g
e

We fail to identify SCC { h, i }

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(ℎ) 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑗)

What if we perform
DFSVisit calls in a

different order in the
reverse graph?

Problem: from ℎ, we
can reach other SCCs

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(ℎ)

Other reachable SCCs
should be visited first

26

(So we don’t
visit them again)

Then, each DFSVisit will
visit exactly one SCC

graph 𝑮

lll

d

cba

e

f

g

i

h j

l

k
a

d

b c

e

f

g

l

k
jh

i

g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18

k,22

l,23

j,24

d

cba

e

f

g i

h

j
k

a

d

b c

e

f

g
k

j

h

i

reversed
graph 𝑯d

b ca

j
k

i

h

f

ge

If we call DFSVisit in 𝑮 from largest to smallest
finish times, we can reach other SCCs.

Consider component graph 𝑪𝑮 of 𝑮
(which we want to compute)

However, when we reverse the edges to get
graph 𝑯 other SCCs can no longer be reached…

27

DFSVisit(j)

DFSVisit(a)

Recall lemma:
edge uv in DAG

implies f(u)>f(v)

28

SCC ALGORITHM This is called Sharir’s
algorithm (sometimes

Kosaraju’s algorithm).
This paper first introduced it.

lll,1

d

cba

e

f

g
i

h
j

l

k

a

d

b c

e

f

g

l

k
j

h

i
g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18 k,22

l,23

j,24

d

cba

e

f

g

i

h
j

ka

d

b c

e

f

g

k
j

h

i

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑗)

d,4

b,4 c,4a,4

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(ℎ)

j,1
k,1

i,2

h,2
f,3

g,3
e,3

Running Sharir’s Algorithm

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑒)𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎)

Phase 1: DFS to get finish times

Phase 2: DFSVisit reverse graph by reverse finish times

𝒔𝒄𝒄 = 𝟏

𝑠𝑐𝑐 is shown

𝒔𝒄𝒄 = 𝟐𝒔𝒄𝒄 = 𝟑𝒔𝒄𝒄 = 𝟒

29 30

TIME COMPLEXITY?
𝑂(𝑛 + 𝑚)

Can be returned as part of the
DFS with no added runtime

Finish times increase as we set
them, so just use a stack…

𝑂(𝑛 + 𝑚)

𝑂(𝑛)𝑂(𝑛)

Total of 𝑂(𝑛 + 𝑚) work over
all n iterations of the 𝑖 loop

(each edge is inspected once, each node is visited
once, constant work per visited node/inspected edge)

Total 𝑶(𝒏 + 𝒎)

https://pdfs.semanticscholar.org/1912/4d1b464fdbb4e9dffb1c915468ae201b5df0.pdf

2023-10-24

6

CORRECTNESS

• Want to prove that each top-level call to SCCVisit

explores exactly the nodes in one SCC

• Proof hinges on a key lemma that talks about the
finish times of SCCs in the component graph

• To talk about finish times of SCCs, we need a definition…

31

A KEY DEFINITION
• For a strongly connected component 𝐶,

let 𝒅 𝑪 = 𝒎𝒊𝒏{𝑑 𝑣 ∶ 𝑣 ∈ 𝐶} and 𝒇 𝑪 = 𝐦𝐚𝐱{𝑓 𝑣 ∶ 𝑣 ∈ 𝐶}

32

d

cba

e

f

g

i

h
j

l

ka

d

b c

e

f

g

l

k
j

h

i

g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18 k,22

l,23

j,24

𝑪𝟏

𝑪𝟐𝑪𝟑

𝑪𝟒

𝒅 𝑪𝟏 = 𝟏𝟗
= 𝐦𝐢𝐧 𝑑 𝑗 , 𝑑 𝑘 , 𝑑[𝑙]

j

l

k

l,20

k,21
j,19

i

hh,15

i,16d

cba

e

f

g

a,1

d,2

b,3 c,4

e,5

f,6

g,7

𝑪𝟏

𝑪𝟐𝑪𝟑

𝑪𝟒

𝒅 𝑪𝟐 = 𝟏𝟓𝒅 𝑪𝟑 = 𝟓𝒅 𝑪𝟒 = 𝟏

𝒇 𝑪𝟏 = 𝟐𝟒
= 𝐦𝐚𝐱 𝑓 𝑗 , 𝑓 𝑘 , 𝑓[𝑙]

𝒇 𝑪𝟐 = 𝟏𝟖

𝒇 𝑪𝟑 = 𝟏𝟎

𝒇 𝑪𝟒 = 𝟏𝟒

A KEY LEMMA

• Lemma: if 𝐶𝑖, 𝐶𝑗 are SCCs and there is an edge 𝑪𝒊 → 𝑪𝒋 in 𝑮,

then 𝒇 𝑪𝒊 > 𝒇[𝑪𝒋]

• Proof. Case 1 (𝒅 𝑪𝒊 < 𝒅[𝑪𝒋]):

• Let 𝑢 be the earliest discovered node in 𝐶𝑖

• All nodes in 𝐶𝑖 ∪ 𝐶𝑗 are white-reachable from 𝑢,

so they are descendants in the DFS forest and finish before 𝒖

• So 𝑓 𝐶𝑖 = 𝑓[𝑢] > 𝑓[𝐶𝑗]

𝑪𝒋
𝑪𝒊

𝒖 = earliest discovered
node in here

33

𝑪𝒊 discovered first
Component graph for 𝑮

• Lemma: if 𝐶𝑖, 𝐶𝑗 are SCCs and there is an edge 𝑪𝒊 → 𝑪𝒋 in 𝑮,

then 𝒇 𝑪𝒊 > 𝒇[𝑪𝒋]

• Proof. Case 2 (𝒅 𝑪𝒋 < 𝒅[𝑪𝒊]):

• Since component graph is a DAG, there is no path 𝑪𝒋 → 𝑪𝒊

• Thus, no nodes in 𝐶𝑖 are reachable from 𝐶𝑗

• So we discover 𝐶𝑗 and finish 𝐶𝑗 without discovering 𝐶𝑖

• Therefore 𝑑[𝐶𝑗] < 𝒇[𝑪𝒋] < 𝑑 𝐶𝑖 < 𝒇 𝑪𝒊 . QED

𝑪𝒋
𝑪𝒊

A KEY LEMMA

34

𝑪𝒋 discovered first
Component graph for 𝑮

COMPLETING THE PROOF

• Suppose we have performed DFS to get our finish times,

and we are about to perform SCCVisits on the reverse graph

• We prove each top-level SCCVisit call visits precisely one SCC

• Consider the first top-level SCCVisit(𝑢)

• Let 𝐶 be the SCC containing 𝑢 and 𝐶′ be any other SCC

• Since we call SCCVisit on
nodes starting from the

largest finish time,

• We know 𝒇 𝑪 > 𝒇(𝑪′)

35

𝑪′
𝑪

𝒖 in here

component graph 𝑪𝑮 of 𝑮

… and sets comp[v] = scc
for all nodes in the SCC

So each top-level call
explores one SCC…

and larger finish time
means already explored!

In 𝐺, edges go from larger to
smaller finish times. In 𝑯, edges

go from smaller to larger.

COMPLETING THE PROOF

• We know 𝒇 𝑪 > 𝒇(𝑪′)

• By Lemma: if there were an edge 𝐶′ → 𝐶 in 𝐺,

then we would have 𝑓 𝐶′ > 𝑓(𝐶)

• So there is no edge 𝐶′ → 𝐶 in 𝐺

• and hence no edge 𝑪 → 𝑪′ in 𝑯

• So, SCCVisit(𝒖) in 𝑯 cannot visit 𝑪′

36

𝑪′
𝑪

component graph 𝑪𝑮 of 𝑮

𝑪′
𝑪

component graph 𝑪𝑯 of 𝑯

Similar argument for subsequent
top-level calls to SCCVisit.

So SCCVisit(𝒖) visits
exactly the nodes in 𝑪

?

𝒖 in here

2023-10-24

7

IF WE HAVE TIME
topological sort without relying on DFS

37

EXISTENCE OF A TOPOLOGICAL SORT ORDER

38

Nodes with 𝒊𝒏𝒅𝒆𝒈 0
have no unsatisfied

dependencies
So this step is enqueuing

nodes whose dependencies

are already satisfied

Add 𝑣 to the
topological order

𝑖𝑛𝑑𝑒𝑔 𝑣 = # of edges
pointing into node 𝑣 = number of unsatisfied

constraints on 𝑣

39

Remove 𝑣’s out edges. If we
have now satisfied all

dependencies for some 𝑤, add
𝑤 to the queue also.

No such order!

𝒒 always contains nodes
with no unsatisfied

dependencies (indeg 0)

EXAMPLE (KAHN’S ALGORITHM)

1

65

2

4

3

Queue Q

3
Compute indegree for all

vertices

1

For each node u
For each w in adj(u)

w.deg = w.deg+1

1

1

1

1 2

12

12

vertices with indeg 0
go into the queue

Output

Until Q is empty: pop,
output that element,

decrement its neighbours,
enqueue new indeg 0’s

0
2

1

1

0

5

0

4

1

0
1

0

6

40

Running time with
adjacency lists?

Total 𝑂(𝑛 + 𝑚)

𝑂(𝑛 + 𝑚) total work
over all iterations

𝑂(𝑛)

𝑂(𝑛) iterations

𝑂(1) per check

𝑂 1

𝑂 deg(𝑣) per
iteration 𝑖

෍

𝑣∈𝑉

deg(𝑣) ∈ 𝑶(𝒏 + 𝒎)

total work

over all nodes 𝒗

41

BONUS SLIDES

42

2023-10-24

8

SCC: HOW ABOUT A DIFFERENT ORDERING?

• Rather than doing DFS in the reverse graph in order of
decreasing finish times

• Why not do DFS in the original graph in order of
increasing finish times?

• Exercise: does this work?

43

SCC: HOW ABOUT A DIFFERENT ORDERING?

• Why not do DFS in the original graph in order of
increasing finish times?

44

d

cba

e
g

c,2

d,3

b,4 a,1

e,8
g,10g,11

ef,9Doesn’t
work!

f,12

e,13

c,14b,5

d,6

a,7

DFSVisit(b) would reach
two SCCs.

Output depends where
first DFS starts…

If first DFS starts at c, then…

