CS 341: ALGORITHMS

Lecture 12: graph algorithms III - DAG testing, topsort, SCC
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

DFS APPLICATION: TESTING WHETHER A GRAPH IS A DAG

A directed graph G is a directed acyclic graph, or DAG, if G contains no directed cycle.

TURNING THE LEMMA INTO AN ALGORITHM
Lemma 6.7
A directed graph is a DAG if and only if a depth-first search encounters no back edges.

Search for back edges
How to identify a back-edge?

| Case (\Leftarrow) | Suppose \exists directed cycle. |
| :--- | :--- | :--- |
| Show \exists back edge. | |

DFS: TESTING WHETHER A GRAPH IS A DAG

15	DFSVisit(adj [1. n], v)
16	colour [v] = gray
17	time $=$ time +1
18	$\mathrm{d}[\mathrm{v}]=$ time
19	
20	for each w in adj [v]
21	if colour [w] = white
22	$\operatorname{pred}[\mathbf{w}]=\mathrm{v}$
23	DFSVisit(w)
24	if color [w] == gray
25	DAG $=$ false
26	
27	colour [v] = black
28	time $=$ time +1
29	$f[v]=$ time

EXAMPLE

TOPOLOGICAL SORT
Finding node orderings that satisfy given constraints

DEPENDENCY GRAPH

9

FORMAL DEFINITION

A directed graph $G=(V, E)$ has a topological ordering, or topological sort, if there is a linear ordering < of all the vertices in V
such that $u<v$ whenever $u v \in E$.

10

USEFUL FACT

TOPOLOGICAL SORT VIA DFS

We can implement topological sort by using DFS! The finishing times of nodes help us

Understanding this algo will be key for understanding strongly connected components
 So is is a topological ordering.

HOME EXERCISE: RUN ON THIS GRAPH

The initial calls are DFSvisit(1), DFSvisit(2) and DFSvisit(3).
The discovery/finish times are as follows:

$$
\left.\begin{array}{r|r|rr|r|r}
v & d[v] & f[v] & & v & d[v] \\
& f[v] \\
\hline 1 & 1 & 4 & & 6 & 7 \\
2 & 5 & 10 & & 5 & 8 \\
3 & 11 & 12 & & 6 & 2
\end{array}\right) 3
$$

The topological ordering is 3,2,5,4,1,6 (reverse order of finishing time). 17

STRONGLY CONNECTED COMPONENTS

STRONGLY CONNECTED COMPONENTS

This graph could be divided into two graphs that are each strongly connected

STRONGLY CONNECTED COMPONENTS

So, the goal is to find these (maximal) SCCs:

STRONGLY CONNECTED COMPONENTS

APPLICATIONS OF SCCs AND COMPONENT GRAPHS

Finding all cyclic dependencies in code

Can find single cycle with an easier DFSbased algorithm
But it is nicer to find all cycles at once, so you don't have to fix one to expose another

BRAINSTORMING AN ALGORITHM

What if we run DFS, then reverse all edges, then run DFS (like checking whether an entire graph is strongly connected?)

SCC ALGORITHM

CORRECTNESS

Want to prove that each top-level call to SCCVisit explores exactly the nodes in one SCC

Proof hinges on a key lemma that talks about the finish times of SCCs in the component graph
To talk about finish times of SCCs, we need a definition...

A KEY LEMMA

Lemma: if C_{i}, C_{j} are SCCs and there is an edge $\boldsymbol{C}_{\boldsymbol{i}} \rightarrow \boldsymbol{C}_{\boldsymbol{j}}$ in \boldsymbol{G}, then $\boldsymbol{f}\left[\boldsymbol{C}_{\boldsymbol{i}}\right]>\boldsymbol{f}\left[\boldsymbol{C}_{\boldsymbol{j}}\right]$

$$
c_{j} \text { discovered first }
$$

Proof. Case 2 ($d\left[C_{j}\right]<d\left[C_{i}\right]$):

Since component graph is a DAG, there is no path $\boldsymbol{C}_{\boldsymbol{j}} \rightarrow \boldsymbol{C}_{\boldsymbol{i}}$
Thus, no nodes in C_{i} are reachable from C_{j}
So we discover C_{j} and finish C_{j} without discovering C_{i}
Therefore $d\left[C_{j}\right]<\boldsymbol{f}\left[\boldsymbol{C}_{\boldsymbol{j}}\right]<d\left[C_{i}\right]<\boldsymbol{f}\left[\boldsymbol{C}_{\boldsymbol{i}}\right]$. QED

COMPLETING THE PROOF

Suppose we have performed DFS to get our finish times, and we are about to perform SCCVisits on the reverse graph
We prove each top-level SCCVisit call visits precisely one SCC
Consider the first top-level SCCVisit (u)
Let C be the SCC containing u and C^{\prime} be any other SCC Since we call SCCVisit on nodes starting from the largest finish time,

We know $\boldsymbol{f}(\boldsymbol{C})>\boldsymbol{f}\left(\boldsymbol{C}^{\prime}\right)$

COMPLETING THE PROOF
We know $\boldsymbol{f}(\boldsymbol{C})>\boldsymbol{f}\left(\boldsymbol{C}^{\prime}\right)$
By Lemma: if there were an edge $C^{\prime} \rightarrow C$ in G,
\ldots. and sets comp [l] scc or all nodes in the SCC So each top-level call explores one scc... and larger finish hime then we would have $f\left(C^{\prime}\right)>f(C) \quad \ln G$, edges go from larger to So there is no edge $C^{\prime} \rightarrow C$ in G and hence no edge $\boldsymbol{C} \rightarrow \boldsymbol{C}^{\prime}$ in \boldsymbol{H} maller finish times. In H, edg go from smaller to larger. similar argument for subsequent . So, SCCVisit(\boldsymbol{u}) in \boldsymbol{H} cannot visit $\boldsymbol{C}^{\prime}<$ exactly the nodes in C

EXISTENCE OF A TOPOLOGICAL SORT ORDER
 Theorem 6.6
 A directed graph D has a topological sort if and only if it is a DAG.
 Proof.
 (\Rightarrow) : Suppose D has a directed cycle $v_{1}, v_{2}, \ldots, v_{j}, v_{1}$. Then
 $v_{1}<v_{2}<\cdots<v_{j}<v_{1}$, so a topological ordering does not exist.
 (\Leftrightarrow) : Suppose D is a DAG. Then the algorithm below constructs a
 topological ordering

IF WE HAVE TIME

EXAMPLE (KAHN'S ALGORITHM)

SCC: HOW ABOUT A DIFFERENT ORDERING?

Rather than doing DFS in the reverse graph in order of decreasing finish times
Why not do DFS in the original graph in order of increasing finish times?
Exercise: does this work?

SCC: HOW ABOUT A DIFFERENT ORDERING?

Why not do DFS in the original graph in order of increasing finish times?

