CS 341: ALGORITHMS

Lecture 12: graph algorithms III – DAG testing, topsort, SCC

Readings: see website

Trevor Brown https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

1

3

5

DFS APPLICATION: TESTING WHETHER A GRAPH IS A DAG

A directed graph G is a **directed acyclic graph**, or **DAG**, if G contains no directed cycle.

Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

back edges.

 Case (⇐): Suppose ∃ directed cycle. Show ∃ back edge. 	edge type $v_k \rightarrow v_1$ discovery/finish times
Let $v_1, v_2,, v_k, v_1$ be a directed cycle	tree $d[v_k] \le d[v_1] \le f[v_1] \le f[v_k]$ forward $d[v_k] \le d[v_1] \le f[v_1] \le f[v_k]$
WLOG let v_1 be earliest discovered node in the cycle	$ \begin{array}{ccc} back & d[v_1] < d[v_k] < f[v_k] < f[v_1] \\ cross & d[v_1] < f[v_1] < d[v_k] < f[v_k] \\ \end{array} $
$\begin{tabular}{ c c c c c } \hline \hline Discovered before $v_2,,v_k$ \\ \hline \hline \\ \hline $	

TURNING THE LEMMA INTO AN ALGORITHM

Lemma 6.7

A directed graph is a DAG if and only if a depth-first search encounters no back edges.

- Search for back edges
- How to identify a back-edge?

DFS: TESTING WHETHER A GRAPH IS A DAG

EXAMPLE

7

9

TOPOLOGICAL SORT Finding node orderings that satisfy given constraints

DEPENDENCY GRAPH

USEFUL FACT

TOPOLOGICAL SORT VIA DFS

- We can implement topological sort by using DFS!
- The finishing times of nodes help us
- Understanding this algo will be **key** for understanding **strongly connected components**

13

15

Lemma 6.8				
Suppose D is a L	AG. Then	f[v] < f[u]	for every arc uv.	
Recall from DAG-testing: there are no back edges	edge type tree forward	colour of v white black	$\begin{array}{c} \text{discovery/finish times} \\ \hline d[u] < d[v] < f[v] < f[u] \\ d[u] < d[v] < f[v] < f[u] \\ \end{array}$	
in a DAG	cross	black	$ \begin{array}{c} d[v] < d[u] < f[u] < f[v] \\ d[v] < f[v] < d[u] < f[u] \\ \end{array} $	0

HOME EXERCISE: RUN ON THIS GRAPH

The initial calls are DFSvisit(1), DFSvisit(2) and DFSvisit(3). The discovery/finish times are as follows:

(3)

v	d[v]	f[v]	v	d[v]	f[v]
1	1	4	4	6	7
2	5	10	5	8	9
3	11	12	6	2	3

The topological ordering is 3, 2, 5, 4, 1, 6 (reverse order of finishing time).

STRONGLY CONNECTED COMPONENTS

STRONGLY CONNECTED COMPONENTS

This graph could be divided into **two graphs** that are each strongly connected

STRONGLY CONNECTED COMPONENTS

STRONGLY CONNECTED COMPONENTS

So, the goal is to find **these** (maximal) SCCs:

APPLICATIONS OF SCC3 AND COMPONENT GRAPHS

- Finding **all cyclic** dependencies in code Can find **single** cycle with an easier DFS-
- based algorithm But it is nicer to find **all** cycles at once, so you

APPLICATIONS OF SCCs AND COMPONENT GRAPHS

- Data filtering before running other algorithms
- maps; nodes = intersections, edges = roads
- Don't want to run path finding algorithm on the entire **global** graph!
- Throw away everything except the (maximal) SCC containing source & target

BRAINSTORMING AN ALGORITHM

What if we run DFS, then reverse all edges, then run DFS (like checking whether an *entire graph* is strongly connected?)

CORRECTNESS

- Want to prove that each top-level call to SCCVisit explores exactly the nodes in one SCC
- Proof hinges on a key lemma that talks about the finish times of SCCs in the component graph
- To talk about finish times of SCCs, we need a definition...

A KEY LEMMA

Lemma: if C_i, C_i are SCCs and there is an edge $C_i \rightarrow C_i$ in G_i then $f[C_i] > f[C_i]$

Component graph for

C_i discovered first **Proof.** Case 1 $(d[C_i] < d[C_i])$:

- All nodes in $C_i \cup C_i$ are white-reachable from u,
- so they are descendants in the DFS forest and finish before u $So f[C_i] = f[u] > f[C_i]$

A KEY LEMMA

- **Lemma:** if C_i, C_i are SCCs and there is an edge $C_i \rightarrow C_i$ in G_i then $f[C_i] > f[C_i]$
- C_j discovered first
- Proof. Case 2 ($d[C_i] < d[C_i]$): Since component graph is a DAG, there is **no path** $C_i \rightarrow C_i$

Component graph for G

C_j

Ci

34

- Thus, **no nodes** in C_i are reachable from C_i
- So we discover C_i and finish C_i without discovering C_i
- Therefore $d[C_j] < f[C_j] < d[C_i] < f[C_i]$. QED

COMPLETING THE PROOF

- Suppose we have performed DFS to get our finish times, and we are about to perform SCCVisits on the reverse graph
- We prove each top-level SCCVisit call visits precisely one SCC
- Consider the first top-level SCCVisit(u)
- Let C be the SCC containing u and C' be any other SCC
- Since we call SCCVisit on nodes starting from the

largest finish time,

We know f(C) > f(C')

35

31

C,

u = earliest discovered

node in here

40

EXISTENCE OF A TOPOLOGICAL SORT ORDER

Theorem 6.6 A directed graph D has a topological sort if and only if it is a DAG.

- Proof.
- (⇒): Suppose *D* has a directed cycle $v_1, v_2, \ldots, v_j, v_1$. Then $v_1 < v_2 < \cdots < v_j < v_1$, so a topological ordering does not exist.
- ($\Leftarrow):$ Suppose D is a DAG. Then the algorithm below constructs a topological ordering.

IF WE HAVE TIME

topological sort without relying on DFS

37

EXAMPLE (KAHN'S ALGORITHM)

SCC: HOW ABOUT A DIFFERENT ORDERING?

Rather than doing DFS in the **reverse** graph in order of **decreasing** finish times

43

- Why not do DFS in the **original** graph in order of **increasing** finish times?
- Exercise: does this work?

SCC: HOW ABOUT A DIFFERENT ORDERING?

Why not do DFS in the **original** graph in order of **increasing** finish times?

