CS 341: ALGORITHMS

Lecture 12: graph algorithms IIl - DAG testing, topsort, SCC
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

Back edge:
points o an ancestor
in the DFS forest

w

TURNING THE LEMMA INTO AN ALGORITHM

Search for back edges

How to identify a back-edge?
edge type | colour of v |

discovery /finish times

When we observe tree white | dfu] < d[v] < flo] < flu]
an edge fromu fov, forward black | dfu] < d[v] < f[v] < f[u] H
checkifvis gray back gray dfv] < du] < flu] < f[v] o °
cross black | dfv] < f[v] < du] < f[u]

no directed cycle.

2023-10-24

DFS APPLICATION:
TESTING WHETHER A GRAPH IS A DAG

A directed graph G is a directed acyclic graph, or DAG, if ¢ contains

Case («): Suppose 3 directed cycle.

Show 3 back edge.

(> (on)

edge type | discovery/finish times

dlve] < dlvy]= fv1] < f[v%]

. tree
Let vy, vy, ..., vy, vy be a directed cyCle fomad dpw,] < dv]< flv,]< fIvd

WLOG let v, be earliest discovered

node in the cycle

Discovered before v, ..., vg

Consider edge (v, 1)

Since d[v] < d[vi].
{v,v1} must be a
back or cross edge.
Why2

back d[v)] < d[v]= f[vel= flv,]
cross dlv] < fn]< dvd< flvpe

Recall: every node v; that is
white-reachable from v; when we
discoverv, (call DFSVisit(vy)) turns

black before vy (f[v;] < f[v4])

So vy must turn black before v,,
and we have flv] < f[vi].

So when v is discovered,
V3, ..., v are all white

[Thus. (v, s} must be o back edge. GED

4

DFS: TESTING WHETHER A GRAPH IS A DAG

global variables:

predil..n] = [null, null, ...
colour[1l..n] = [white, white, ..

di1..n] = [0, B

IsDAG(adj[1..n])
for v =1..n

, null]
.. white]
0] // discovery times
8] // finish times

if colour[v] == white

DFSVisitiadj,

[T

vl

FSVisit(adj[1..n], v)

colour[v] = gray
time = time + 1
dlv] = time

for each w in adj(v]
if colour[w] == white

pred(w] = v

DFSVisit(w)

if color[w] == gray
DAG = false

colour[v] = black
time = time + 1
flv] = time

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

EXAMPLE

\{k/edge found! ‘ So we set DAG = false

DEPENDENCY GRAPH

Edge {u, v} means u must be completed before v

Example problem:
getting dressedin
the morning

FORMAL

DEFINITION

@ Watch any fime

Socks before
shoes

Could do various things first.
Which ones are possible?
What do they have in common?

A directed graph @ = (V, E) has a topological ordering, or
topological sort, if there is a linear ordering < of all the vertices in
such that u < v whenever uv € E.

S

:
Edges are directed only
left-to-right in this ordering

USEFUL FACT

TOPOLOGICAL SORT

Finding node orderings that satisfy given constraints

Topological sort

(socks) (andershors) »»pants) = shoes)

Try to order nodes
linearly so there are
only pointfers from
left to right!

3

2023-10-24

Possible IFF
graph is a DAG

2023-10-24

TOPOLOGICAL SORT VIA DFS Lemma 6.8

Suppose I is a DAG. Then f[v] < f[u] for every arc uv.
edge type | colour of v discovery /finish times

We can implement topological sort by using DFS! Recal TomDAG e tree white | d[u] < d[v] <] f[v] < [1u]
e . th back ed forward black | d[u] < d[v] < f[v] < flu
The finishing times of nodes help us oA o Bk =]‘ —(

Understanding this algo will be key for understanding I m
strongly connected components

BT T
cross black df;

Theorem: if D is a DAG, and we order vertices in reverse order of finishing time, TO PO LOG' CAL OR D ER I N G Vl A D FS

(i.e., by largest to smallest finish time) then we get a tfopological ordering!

global variables: 17 DFSvisit(adj[l..n], v, S)
pred(1..n] = [null, null null] 18 colour[v] = gray
colour[l..n] = i .., white] 19 time « time + 1

To see why, suppose D is a DAG and we order nodes in this way,
SO Soy > fo, > > fons > fon

1

2

zl -

4 dll..n] = [8, 8, ..., 8] // discovery times |20 div] = time
—»@— —»@ 5 f[1..n] = [0, O, ..., B] // finish times 21

6 0 22

7

8

T ' 3 time = 0 for each w in adj(v]
For contradiction, i Ut The lemma says for every edge DAG = true 23 if colour(w] =~ white
suppose a right-to-left ﬁ By our node ordering, f, > f“ﬁ {u, v}, we must have f, < fy, 24 pred(w] = v
edge {u,v} exists 9 TopologicalSort(adill nl) 25 DFSVisit (w)
Lemma 6.8 ‘ B = 26 ficotonilies orky
U D is 3 DAG. Then < for arcav. 11 or v = 1..n 27 DAG - false
phes Tt < £ vae 12 if colourlv] == white 28
13 DFSVisit(adj, v, S) 29 colour(v] = black

Contradiction! Right-to-left edge cannot exist.
Sois is a topological ordering.

= +1

Save each node -
flv] = time

when it finishes

14 SAS—them T=to
i
Push smallest

finishing time first

1 - pop largest first 1
HOME EXERCISE: RUN ON THIS GRAPH
The initial calls are DFSvisit(1), DFSvisit(2) and DFSvisit(3) WHY'ARE'YOU
The discovery/finish times are as follows IGNORING ME?
v | dp] | flv] v | dfv] | flo
T Y I STRONGLY CONNECTED COMPONENTS
2| 5| 10 5 8 9
3 11 12 6 2 3
The topological ordering is 3,2, 5,4, 1,6 (reverse order of finishing time) ” 18

STRONGLY CONNECTED COMPONENTS

This graph could be divided into two graphs
that are each strongly connected

These are called strongly
connected components (SCCs)

STRONGLY CONNECTED COMPONENTS

So, the goal is to find these (maximal) SCCs:

6@iozo e&e O

APPLICATIONS OF SCCs AND COMPONENT GRAPHS
Data filtering before running other algorithms :
maps; nodes = intersections, edges = roads

Don't want to run path finding algorithm on
the entire global graph!

Throw away everything except the (maximal)

SCC containing source & target . Cropafindsces

2023-10-24

STRONGLY CONNECTED COMPONENTS

It could also be divided into three graphs...

But we want our SCCs to be maximal (as large as possible)

 Depentency stars + |

APPLICATIONS OF SCCs AND COMPONENT GRAPHS

e R 0 2

Finding all cyclic
dependencies in code

Can find single cycle
with an easier DFS-
based algorithm

But it is nicer to find all
cycles at once, so you
don't have to fix one
to expose another

COMPONENT GRAPH

‘Conswderrhisgroph‘ ‘ These are its SCCs ‘

And an edge between
two nodes IFF there is an
edge between the

It has one node corresponding SCCs

foreachSCC

Can there be a cycle in the
component graph?

The following is its
component graph

Component graph is a DAG!

Nol! If there are paths both ways
between components, they are
actually the same SCC

BRAINSTORMING AN ALGORITHM

What if we run DFS, then reverse all edges, then run DFS
(like checking whether an entire graph is strongly connected?)

This will definitely visit |

And in fact it might visit
everynode in a's SCC

other SCCs as well...

‘ DFSVisit(a) H DFSVisit(h) H DFSVisit(j) ‘

Showing
discovery times

Consider component graph € of G
(which we wanf fo compute)

If we call DFSVisit in G from largest to smallest
finish times, we can reach other SCCs.

Recalllemma:
edge uvin DAG
implies f(u)>f(v)

However, when we reverse the edges to get
graph H other SCCs can no longer be reached...

Running Sharir's Algorithm

@ Gk
@)

Phase 2: DFSVisit reverse graph by reverse finish times

‘DFSszit(j) HDFSVLSlt(h) Hupsv[su(a) HDFSVLSH(E) ‘ ‘

©

©

What if we run DFS, then

‘ DFSVisit(a) H DFSVisit(h) H DFSVisit(j) ‘

@9
@

G

‘DFSV[SLt(a) H DFSVisit(e) HDFSVLS(t(h) ‘

reverse

edges

reverse all edges, then run DF

2023-10-24

S2

What if we perform
DFsVisit calls in a
different order in the

reverse graph?

Then, each DFSVisit wi

exactly one SCC

SCC ALGORITHM

18 scovisit(adj(1.
9

(So we don't

This is called Sharir's
algorithm (sometimes
Kosaraiju's algorithm).

This paper first infroduced it.

v, scc, colour, comp)
colour(v] = gray
complv] = scc

for each w in adjv]
if colour(w] == white
SCCVisit(w)

colour(v] = black

1 scC(adj(1..n])

2 DFS(adj)

3 let order[l 1l - node labels sorted by

4 largest to smallest finish time

5

6 reverse all edges in adj

i 20

8 colour[l .n] = [white, , white] 21

9 comp[1..n] = [0, ..., 0] 22

10 for i = =

11 v = order[i] a2
25

12 if colour[v] == white 2%

13 scc = scc +

14 SCCVisit(adj, v, scc, colour, comp)

15

16 return comp

TIME COMPLEXITY?

Scevisit(adj(1.

Can be returned as part of the
DFS with no added runtime
i

inish fimes increase as we set
them, so just use a stack...

v, scc, colour, comp)
colour(v] = gray
complv] = scc

for each w in adj[v]
if eelour| == white
SCCVisit(w)

colour(v] = black

SCCVisit(adj, v, scc, colour, comp) Total of 0(n + m) work over
all n iterations of the i loop

1 sccladj(1 ‘1

2 DFS(adj)

3 let order[1. n] = node labels sorted by

4 largest to smallest finish time

5

6 | reverse all edges in sty S 00+ JIB

i 20

. L, colour[l..n] = [white, , white] 21
[Com X amtio i o 2

10 for i = e

11 v = order[i] 25

12 if colour[v] = white 2%

13 scc = scc +

14

15

16 return comp

(each edge s inspected once, each node is visited
once, constant work per visited node/inspected edge)

Total 0(n +m)

30

https://pdfs.semanticscholar.org/1912/4d1b464fdbb4e9dffb1c915468ae201b5df0.pdf

CORRECTNESS
Want to prove that each top-level call to SCCVisit
explores exactly the nodes in one SCC

Proof hinges on a key lemma that talks about the
finish times of SCCs in the component graph

To talk about finish times of SCCs, we need a definition...

A KEY LEMMA
Lemma: if C;, ¢; are SCCs and there is an edge €; - C;in G,
then flCi] > fIC;]

¢, discovered first
Proof. Case 1 (d[C;] < d[C;]):
Let u be the earliest discovered node in ¢;

Component graph for G

Allnodes in C; U ; are white-reachable from u,
so they are descendants in the DFS forest and finish before u

So fIC] = flu] > fIG]

COMPLETING THE PROOF

Suppose we have performed DFS to get our finish times,
and we are about to perform SCCVisits on the reverse graph

We prove each top-level SCCVisit call visits precisely one SCC
Consider the first top-level SCCVisit(u)

Let € be the SCC containing u and ¢’ be any other SCC

Since we call SCCVisit on .

nodes starting from the m
OO

largest finish time,
We know £(C) > f(C") -

2023-10-24

A KEY DEFINITION = minld i)

For a strongly connected component C,
let d[€] = min{d[v] : v € C} and f[C] = max{f[v] : v € C}

d[C3] =5 d[C;] =15

32

A KEY LEMMA

Lemma: if C;, (; are SCCs and there is an edge €; > C; in G,
then f[Ci] > f[C;]

¢; discoveredfirst Component graph for ¢

Proof. Case 2 (d[C;] < d[C;]):
Since component graph is a DAG, there is no path C; - C;
Thus, no nodes in C; are reachable from ¢;

So we discover ¢; and finish ; without discovering ¢;
Therefore d[(j] < f[C;] < d[C] < fIC;]. QED

... and sets compl[v] = scc
for all nodes in the SCC
So each top-level call
explores one SCC...
and larger finish time
means already explored!
In G, edges go from larger to
smaller finish times. In H, edges
go from smaller fo larger.
Similar argument for subsequent
top-level calls to SCCVisit.

COMPLETING THE PROOF
We know f(C) > f(C")

By Lemma: if there were an edge ¢’ - Cin G,
then we would have f(C") > f(C)

Sothereisnoedge C' - CinG

andhencenoedgeC - C'inH

e . . So SCCVisit(u) visits
So, SCCVisit(u) in H cannot visit C’%L‘ y the nodes in ¢

component graph €y of H

component graj/o

IF WE HAVE TIME

topological sort without relying on DFS

Kahn(adj[1..n])
indeg[1..n] = [0, ..., 0]

indeglv]

of edges
pointing into node v

=number of unsatisfied

for each edge (u,v) in adj
indeg[v] = indeglv] + 1

Nodes with indeg 0
have no unsatisfied

Order = ned List dependencies
q = new queue containing {v : indeg[v] == 0}
fori=1..n

if q.empty() return nu‘ll

V=9 ()

order.append(v) Add v to the
topological order
for each w in adj[v]

indeg[w] = indeglw] - 1
if indeg(w] == O then q

q

return order

Kahn(adj[1..n])
indeali. 1 = 10, ..., o) =22

dependencies for some w, add

ints on v

2023-10-24

EXISTENCE OF A TOPOLOGICAL SORT ORDER

EXAMPLE (KAHN'S ALGORITHM)

So this step is enqueuing
nodes whose dependencies
are already satisfied

Compute indegree for all
verfices

q always contains nodes
with no unsatisfied

For each node u
For eachw in adij(u)
w.deg = w.deg+1

dependencies (indeg 0)

verfices with indeg 0
gointo the queue

Remove v's out edges. If we
have now satisfied all

w to the queue also.

39

Running time with
adjacency listse

for each edge (u,v) in adj

0(n +m) total work
indeg[v] = indeglv] + 1 overalliterations

order = new list
q = new queue containing {v :
fori=1..n
if q.empty() return null
v = q.dequeue() o)

indeg[v] == 0}

0(n) iterations

0(1) per check

order.append(v)
0(d
for each w in adj[v] g
indeg[w] = indeg[w] - T
if indeglw] == 0 then q (w)

return order

Z deg(v) € 0(n+m)

vev

total work
over gll nodes v

Total O(n +m)

Unfil Q is empty: pop,
output that element,
decrement its neighbours,
enqgueue new indeg 0's

0]
D)

O
o

[

[

38
Queve Q a
I 325416
Output
40

BONUS SLIDES

SCC: HOW ABOUT A DIFFERENT ORDERING?

Rather than doing DFS in the reverse graph in order of
decreasing finish times

Why not do DFS in the original graph in order of
increasing finish times?

Exercise: does this work?2

2023-10-24

SCC: HOW ABOUT A DIFFERENT ORDERING?

Why not do DFS in the original graph in order of
increasing finish fimes?

Doesn't Output depends where @
work! first DFS starts... Q @ @
If first DFS starts at c, then... @‘

DFSVisit(b) would reach @ @

two SCCs.

