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CS 341: ALGORITHMS
Lecture 12: graph algorithms III – DAG testing, topsort, SCC

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341 

trevor.brown@uwaterloo.ca
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DFS APPLICATION:

TESTING WHETHER A GRAPH IS A DAG

2

Back edge:
points to an ancestor

in the DFS forest
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• Case ⇐ : Suppose ∃ directed cycle. 

Show ∃ back edge.

• Let 𝑣1, 𝑣2 , … , 𝑣𝑘 , 𝑣1 be a directed cycle

• WLOG let 𝑣1 be earliest discovered 

node in the cycle

𝑣1
𝑣2 𝑣3

𝑣4

𝑣5

𝑣6

𝑣𝑘

Discovered before 𝑣2, … , 𝑣𝑘

Recall: nodes become 
gray when discovered

So when 𝒗𝟏 is discovered, 
𝑣2, … , 𝑣𝑘 are all white

𝑣1
𝑣2 𝑣3

𝑣4

𝑣5

𝑣6

𝑣𝑘

Recall: every node 𝑣𝑖 that is
white-reachable from 𝑣1 when we 

discover 𝑣1 (call 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑣1)) turns
black before 𝒗𝟏 (𝑓 𝑣𝑖 < 𝑓[𝑣1])

So 𝑣𝑘 must turn black before 𝑣1, 
and we have 𝑓 𝑣𝑘 < 𝑓[𝑣1].

Thus, {𝒗𝒌, 𝒗𝟏} must be a back edge. QED

Consider edge {𝒗𝒌, 𝒗𝟏}

Since 𝑑 𝑣1 < 𝑑 𝑣𝑘 , 
{𝒗𝒌, 𝒗𝟏} must be a 

back or cross edge. 
Why?

𝒗𝒌 𝒗𝟏

𝑑[𝑣𝑘]

𝑑[𝑣𝑘]

𝑑[𝑣𝑘]

𝑑[𝑣𝑘]

𝑑[𝑣1]

𝑑[𝑣1]

𝑑[𝑣1]

𝑑[𝑣1] 𝑓[𝑣𝑘]

𝑓[𝑣𝑘]

𝑓[𝑣𝑘]

𝑓[𝑣𝑘]

𝑓[𝑣1]

𝑓[𝑣1]

𝑓[𝑣1]

𝑓[𝑣1]
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TURNING THE LEMMA INTO AN ALGORITHM

• Search for back edges

• How to identify a back-edge?

When we observe 
an edge from 𝑢 to 𝑣, 

check if 𝒗 is gray 𝒖 𝒗𝒗

Back edge

5

DFS: TESTING WHETHER A GRAPH IS A DAG
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https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca
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EXAMPLE

1

65

2

4

3 1

66

12

4

5

3

Back edge found!

4

So we set DAG = false
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TOPOLOGICAL SORT
Finding node orderings that satisfy given constraints
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DEPENDENCY GRAPH

• Edge {𝑢, 𝑣} means 𝑢 must be completed before 𝑣

Socks before 
shoes

Watch any time

Pants before belt

Example problem: 
getting dressed in 

the morning

Could do various things first. 
Which ones are possible?

What do they have in common?
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Topological sort

Try to order nodes 
linearly so there are 

only pointers from 
left to right!

Possible IFF
graph is a DAG
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FORMAL 

DEFINITION

1

65

2

4

3

523 614

Graph G

Topological sort of G

v3 < v2 < v5 < v4 < v1 < v6
Edges are directed only 

left-to-right in this ordering
11

USEFUL FACT

𝒗𝒏 𝒗𝟏𝒗𝟐𝒗𝟑
…𝒗𝒏+𝟏

One of these must 
be repeated.

So there is a cycle!

12
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TOPOLOGICAL SORT VIA DFS

• We can implement topological sort by using DFS!

• The finishing times of nodes help us

• Understanding this algo will be key for understanding 

strongly connected components

13

Recall from DAG-testing: 
there are no back edges 

in a DAG
𝒖 𝒗
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To see why, suppose D is a DAG and we order nodes in this way,
so 𝒇𝒗𝟏

> 𝒇𝒗𝟐
> ⋯ > 𝒇𝒗𝒏−𝟏

> 𝒇𝒗𝒏

𝒗𝟐 𝒗𝒏
…𝒗𝟏 𝒗 𝒖… …

For contradiction, 
suppose a right-to-left 

edge {𝑢, 𝑣} exists

By our node ordering, 𝑓𝑣 > 𝑓𝑢
But the lemma says for every edge 

{𝑢, 𝑣}, we must have 𝑓𝑣 < 𝑓𝑢

Contradiction! Right-to-left edge cannot exist. 
So is is a topological ordering.

Theorem: if D is a DAG, and we order vertices in reverse order of finishing time,  

(i.e., by largest to smallest finish time) then we get a topological ordering!
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TOPOLOGICAL ORDERING VIA DFS

16

Save each node 
when it finishes

Push smallest 
finishing time first 
→ pop largest first

𝑶(𝒏 + 𝒎) w/adj. lists

HOME EXERCISE: RUN ON THIS GRAPH

1

65

2

4

3

17

10

STRONGLY CONNECTED COMPONENTS

18
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STRONGLY CONNECTED COMPONENTS

• This graph could be divided into two graphs
that are each strongly connected

d

cba

e

f

g

i

h

These are called strongly 

connected components (SCCs)

19

STRONGLY CONNECTED COMPONENTS

• It could also be divided into three graphs…

• But we want our SCCs to be maximal (as large as possible)

d

cba

e

f

g

i

h

Maximal SCC Not maximal

Not maximal

20

STRONGLY CONNECTED COMPONENTS

• So, the goal is to find these (maximal) SCCs:

d

cba

e

f

g

i

h

21

APPLICATIONS OF SCCS AND COMPONENT GRAPHS

• Finding all cyclic
dependencies in code

• Can find single cycle 
with an easier DFS-
based algorithm

• But it is nicer to find all 

cycles at once, so you 
don’t have to fix one 
to expose another
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APPLICATIONS OF SCCS AND COMPONENT GRAPHS

• Data filtering before running other algorithms

• maps;   nodes = intersections, edges = roads

• Don’t want to run path finding algorithm on 
the entire global graph!

• Throw away everything except the (maximal) 

SCC containing source & target
Crop & find SCCs

23

COMPONENT GRAPH

d

cba

e

f

g

i

h

j

l

k

Consider this graph These are its SCCs

The following is its 
component graph

a,b,c,d

f,e,g h,i

l,j,k

And an edge between 
two nodes IFF there is an 

edge between the 
corresponding SCCs

It has one node 
for each SCC

Can there be a cycle in the 
component graph?

No! If there are paths both ways
between components, they are 

actually the same SCC

Component graph is a DAG!

24
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j

l

k

l,20

k,21
j,19

i

hh,15

i,16d

cba

e

f

g

a,1

d,2

b,3 c,4

e,5

f,6

g,7g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18 k,22

l,23

j,24

• What if we run DFS, then reverse all edges, then run DFS

(like checking whether an entire graph is strongly connected?)

BRAINSTORMING AN ALGORITHM

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(ℎ) 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑗)

Showing 
finish times

Showing 
discovery times

This will definitely visit 
every node in 𝒂’s SCC

And in fact it might visit 
other SCCs as well…

25

lll

• What if we run DFS, then reverse all edges, then run DFS?

d

cba

e

f

g

i

h
j

l

ka

d

b c

e

f

g

l

k
j

h

i

g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18 k,22

l,23

j,24

d

cba

e

f

g

i

h
j

ka

d

b c

e

f

g

k
j

h

i

reverse 

edges

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎)

d

b ca

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑒)

j
k

i

h
f

g
e

We fail to identify SCC { h, i }

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎) 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(ℎ) 𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑗)

What if we perform 
DFSVisit calls in a 

different order in the 
reverse graph?

Problem: from ℎ, we 
can reach other SCCs

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(ℎ)

Other reachable SCCs 
should be visited first

26

(So we don’t 
visit them again)

Then, each DFSVisit will 
visit exactly one SCC

graph 𝑮

lll

d

cba

e

f

g

i

h j

l

k
a

d

b c

e

f

g

l

k
jh

i

g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18

k,22

l,23

j,24

d

cba

e

f

g i

h

j
k

a

d

b c

e

f

g
k

j

h

i

reversed
graph 𝑯d

b ca

j
k

i

h

f

ge

If we call DFSVisit in 𝑮 from largest to smallest 
finish times, we can reach other SCCs.

Consider component graph 𝑪𝑮 of 𝑮
(which we want to compute)

However, when we reverse the edges to get 
graph 𝑯 other SCCs can no longer be reached…

27

DFSVisit(j)

DFSVisit(a)

Recall lemma: 
edge uv in DAG 

implies f(u)>f(v)

28

SCC ALGORITHM This is called Sharir’s 
algorithm (sometimes 

Kosaraju’s algorithm).
This paper first introduced it.

lll,1

d

cba

e

f

g
i

h
j

l

k

a

d

b c

e

f

g

l

k
j

h

i
g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18 k,22

l,23

j,24

d

cba

e

f

g

i

h
j

ka

d

b c

e

f

g

k
j

h

i

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑗)

d,4

b,4 c,4a,4

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(ℎ)

j,1
k,1

i,2

h,2
f,3

g,3
e,3

Running Sharir’s Algorithm

𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑒)𝐷𝐹𝑆𝑉𝑖𝑠𝑖𝑡(𝑎)

Phase 1: DFS to get finish times

Phase 2: DFSVisit reverse graph by reverse finish times

𝒔𝒄𝒄 = 𝟏

𝑠𝑐𝑐 is shown

𝒔𝒄𝒄 = 𝟐𝒔𝒄𝒄 = 𝟑𝒔𝒄𝒄 = 𝟒

29 30

TIME COMPLEXITY?
𝑂(𝑛 + 𝑚)

Can be returned as part of the 
DFS with no added runtime

Finish times increase as we set 
them, so just use a stack…

𝑂(𝑛 + 𝑚)

𝑂(𝑛)𝑂(𝑛)

Total of 𝑂(𝑛 + 𝑚) work over 
all n iterations of the 𝑖 loop

(each edge is inspected once, each node is visited 
once, constant work per visited node/inspected edge)

Total 𝑶(𝒏 + 𝒎)

https://pdfs.semanticscholar.org/1912/4d1b464fdbb4e9dffb1c915468ae201b5df0.pdf
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CORRECTNESS

• Want to prove that each top-level call to SCCVisit

explores exactly the nodes in one SCC

• Proof hinges on a key lemma that talks about the
finish times of SCCs in the component graph

• To talk about finish times of SCCs, we need a definition…

31

A KEY DEFINITION
• For a strongly connected component 𝐶,

let 𝒅 𝑪 = 𝒎𝒊𝒏{𝑑 𝑣 ∶ 𝑣 ∈ 𝐶} and 𝒇 𝑪 = 𝐦𝐚𝐱{𝑓 𝑣 ∶ 𝑣 ∈ 𝐶}

32

d

cba

e

f

g

i

h
j

l

ka

d

b c

e

f

g

l

k
j

h

i

g,8

f,9

e,10

c,11b,12

d,13

a,14

i,17

h,18 k,22

l,23

j,24

𝑪𝟏

𝑪𝟐𝑪𝟑

𝑪𝟒

𝒅 𝑪𝟏 = 𝟏𝟗
= 𝐦𝐢𝐧 𝑑 𝑗 , 𝑑 𝑘 , 𝑑[𝑙] 

j

l

k

l,20

k,21
j,19

i

hh,15

i,16d

cba

e

f

g

a,1

d,2

b,3 c,4

e,5

f,6

g,7

𝑪𝟏

𝑪𝟐𝑪𝟑

𝑪𝟒

𝒅 𝑪𝟐 = 𝟏𝟓𝒅 𝑪𝟑 = 𝟓𝒅 𝑪𝟒 = 𝟏

𝒇 𝑪𝟏 = 𝟐𝟒
= 𝐦𝐚𝐱 𝑓 𝑗 , 𝑓 𝑘 , 𝑓[𝑙] 

𝒇 𝑪𝟐 = 𝟏𝟖

𝒇 𝑪𝟑 = 𝟏𝟎

𝒇 𝑪𝟒 = 𝟏𝟒

A KEY LEMMA

• Lemma: if 𝐶𝑖, 𝐶𝑗 are SCCs and there is an edge 𝑪𝒊 → 𝑪𝒋 in 𝑮,

then 𝒇 𝑪𝒊 > 𝒇[𝑪𝒋]

• Proof. Case 1 (𝒅 𝑪𝒊 < 𝒅[𝑪𝒋]):

• Let 𝑢 be the earliest discovered node in 𝐶𝑖

• All nodes in 𝐶𝑖 ∪ 𝐶𝑗 are white-reachable from 𝑢,

so they are descendants in the DFS forest and finish before 𝒖

• So 𝑓 𝐶𝑖 = 𝑓[𝑢] > 𝑓[𝐶𝑗]

𝑪𝒋
𝑪𝒊

𝒖 = earliest discovered 
node in here

33

𝑪𝒊 discovered first
Component graph for 𝑮

• Lemma: if 𝐶𝑖, 𝐶𝑗 are SCCs and there is an edge 𝑪𝒊 → 𝑪𝒋 in 𝑮,

then 𝒇 𝑪𝒊 > 𝒇[𝑪𝒋]

• Proof. Case 2 (𝒅 𝑪𝒋 < 𝒅[𝑪𝒊]):

• Since component graph is a DAG, there is no path 𝑪𝒋 → 𝑪𝒊

• Thus, no nodes in 𝐶𝑖 are reachable from 𝐶𝑗

• So we discover 𝐶𝑗 and finish 𝐶𝑗 without discovering 𝐶𝑖

• Therefore 𝑑[𝐶𝑗] < 𝒇[𝑪𝒋] < 𝑑 𝐶𝑖 < 𝒇 𝑪𝒊 . QED

𝑪𝒋
𝑪𝒊

A KEY LEMMA

34

𝑪𝒋 discovered first
Component graph for 𝑮

COMPLETING THE PROOF

• Suppose we have performed DFS to get our finish times,

and we are about to perform SCCVisits on the reverse graph

• We prove each top-level  SCCVisit call visits precisely one SCC

• Consider the first top-level SCCVisit(𝑢)

• Let 𝐶 be the SCC containing 𝑢 and 𝐶′ be any other SCC

• Since we call SCCVisit on
nodes starting from the

largest finish time,

• We know 𝒇 𝑪 > 𝒇(𝑪′)

35

𝑪′
𝑪

𝒖 in here

component graph 𝑪𝑮 of 𝑮

… and sets comp[v] = scc 
for all nodes in the SCC

So each top-level call 
explores one SCC…

and larger finish time 
means already explored!

In 𝐺, edges go from larger to 
smaller finish times. In 𝑯, edges 

go from smaller to larger.

COMPLETING THE PROOF

• We know 𝒇 𝑪 > 𝒇(𝑪′)

• By Lemma: if there were an edge 𝐶′ → 𝐶 in 𝐺,

then we would have 𝑓 𝐶′ > 𝑓(𝐶)

• So there is no edge 𝐶′ → 𝐶 in 𝐺

• and hence no edge 𝑪 → 𝑪′ in 𝑯

• So, SCCVisit(𝒖) in 𝑯 cannot visit 𝑪′

36

𝑪′
𝑪

component graph 𝑪𝑮 of 𝑮

𝑪′
𝑪

component graph 𝑪𝑯 of 𝑯

Similar argument for subsequent 
top-level calls to SCCVisit.

So SCCVisit(𝒖) visits 
exactly the nodes in 𝑪

?

𝒖 in here
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IF WE HAVE TIME
topological sort without relying on DFS

37

EXISTENCE OF A TOPOLOGICAL SORT ORDER

38

Nodes with 𝒊𝒏𝒅𝒆𝒈 0 
have no unsatisfied 

dependencies
So this step is enqueuing 

nodes whose dependencies 

are already satisfied

Add 𝑣 to the 
topological order

𝑖𝑛𝑑𝑒𝑔 𝑣 = # of edges 
pointing into node 𝑣 = number of unsatisfied 

constraints on 𝑣

39

Remove 𝑣’s out edges. If we 
have now satisfied all 

dependencies for some 𝑤, add 
𝑤 to the queue also. 

No such order!

𝒒 always contains nodes 
with no unsatisfied 

dependencies (indeg 0)

EXAMPLE (KAHN’S ALGORITHM)

1

65

2

4

3

Queue Q

3
Compute indegree for all 

vertices

1

For each node u
For each w in adj(u)

w.deg = w.deg+1

1

1

1

1 2

12

12

vertices with indeg 0
go into the queue

Output

Until Q is empty: pop, 
output that element, 

decrement its neighbours, 
enqueue new indeg 0’s

0
2

1

1

0

5

0

4

1

0
1

0

6

40

Running time with 
adjacency lists?

Total 𝑂(𝑛 + 𝑚)

𝑂(𝑛 + 𝑚) total work 
over all iterations

𝑂(𝑛)

𝑂(𝑛) iterations

𝑂(1) per check

𝑂 1

𝑂 deg(𝑣)  per 
iteration 𝑖

෍

𝑣∈𝑉

deg(𝑣) ∈ 𝑶(𝒏 + 𝒎)

total work

over all nodes 𝒗

41

BONUS SLIDES

42
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SCC: HOW ABOUT A DIFFERENT ORDERING?

• Rather than doing DFS in the reverse graph in order of 
decreasing finish times

• Why not do DFS in the original graph in order of 
increasing finish times?

• Exercise: does this work?

43

SCC: HOW ABOUT A DIFFERENT ORDERING?

• Why not do DFS in the original graph in order of 
increasing finish times?

44

d

cba

e
g

c,2

d,3

b,4 a,1

e,8
g,10g,11

ef,9Doesn’t 
work!

f,12

e,13

c,14b,5

d,6

a,7

DFSVisit(b) would reach 
two SCCs.

Output depends where 
first DFS starts…

If first DFS starts at c, then…


