CS 341: ALGORITHMS

Lecture 13: graph algorithms IV – minimum spanning trees

Readings: see website

Trevor Brown

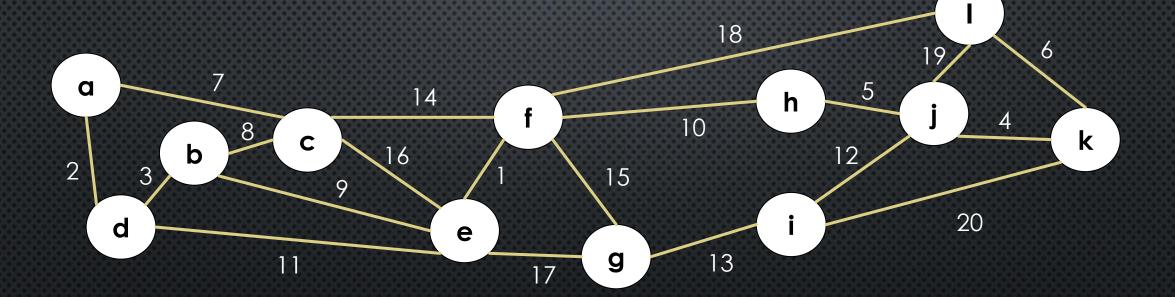
https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

WEIGHTED UNDIRECTED GRAPH

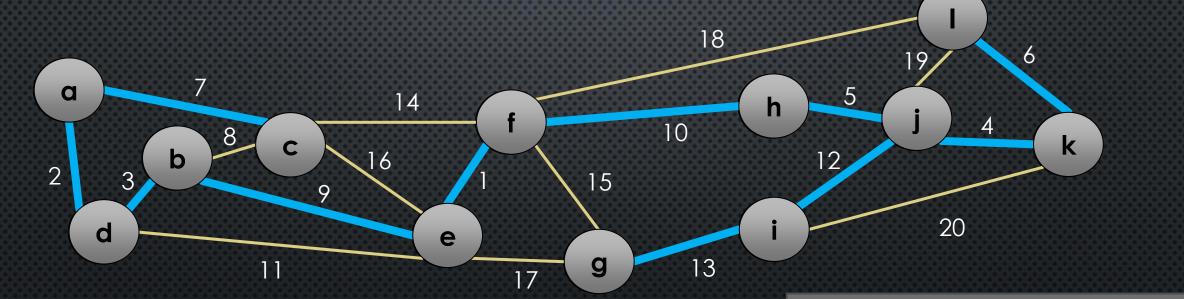
Problem can also be defined for directed graphs...

 Consider an undirected graph in which each edge has a weight (or cost)



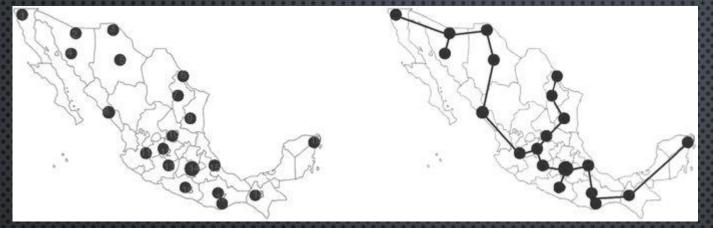
MINIMUM SPANNING TREE (MST)

 A tree (connected acyclic graph) that includes every node, and minimizes the total sum of edge weights



Problem can also be defined for minimum spanning **forest**. Algorithm taught here works.

APPLICATION: INTERNET BACKBONE PLANNING



- Want to connect n cities with internet backbone links
 - Direct links possible between each pair of cities
 - Each link has a certain dollar cost (excavation, materials, distance & time, legal costs...)
 - Want to minimize total cost

APPLICATION: IMAGE SEGMENTATION [PAPER]

break image into **regions** by colour similarity via other techniques turn regions into nodes, and add edges between them with weights = "dissimilarity," then build MST break MST into large, highly similar **segments**, and assign the dominant colour to each **segment**

Just for fun, don't need to know this

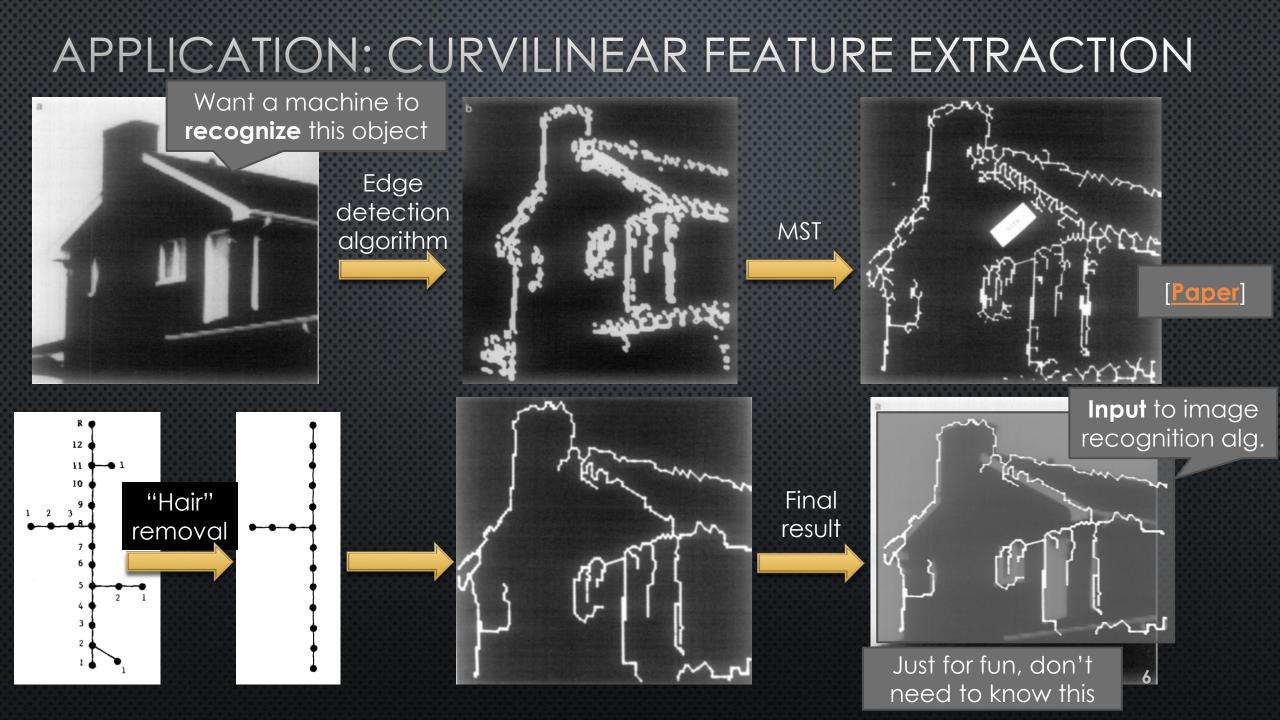
Segments are

easier for a

machine learning

algorithm to

understand.



USEFUL TREE FACTS

С

b

a

d

redrawing as a tree

g

k

a

С

d

b

e

h

k

7

• A tree on n vertices has n-1 edges.

e

- There is a unique path between any two vertices in a tree.
- If T is a tree and an edge $e \notin T$ is added to T, then the resulting graph contains a unique cycle C.

g

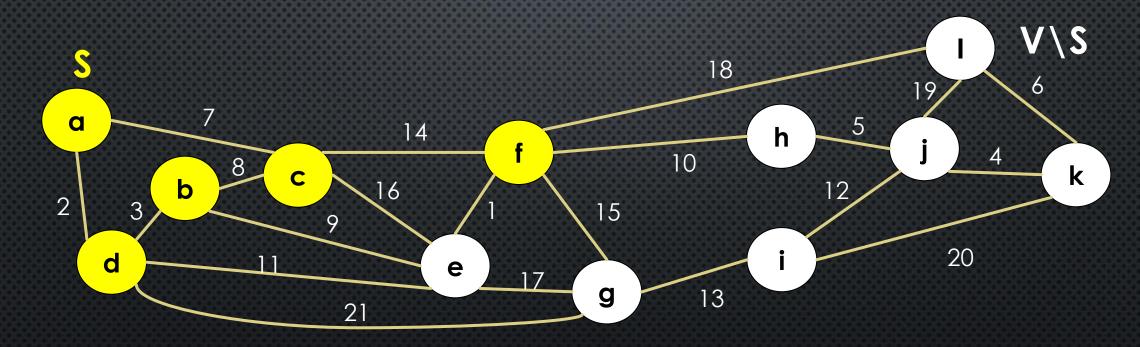
h

• If $e' \in C$ then $T \cup \{e\} \setminus \{e'\}$ is a tree.

If you add an edge e to a tree and this creates a cycle C, then removing any other edge $e' \in C$ will break the cycle and produce a tree.

A CUT OF A GRAPH

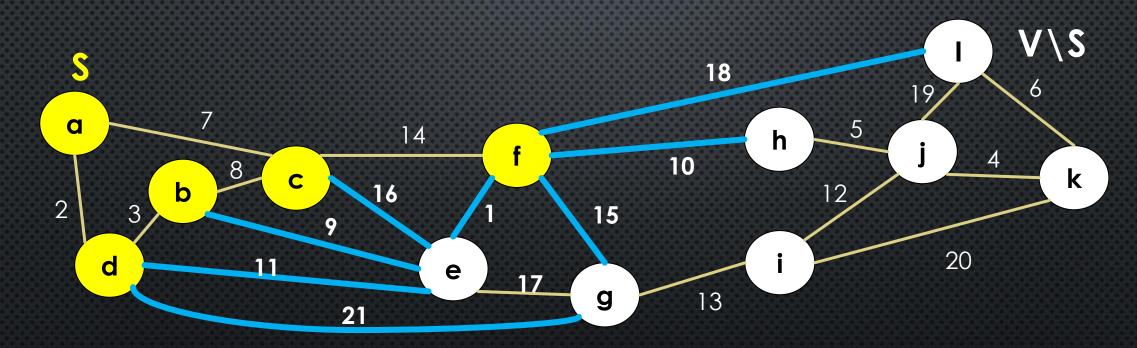
Definition: a cut in a graph G = (V,E) is a partition of V into two non-empty subsets S and V \ S



THE CUTSET OF A CUT

Edges in the cutset are also said to "cross the cut"

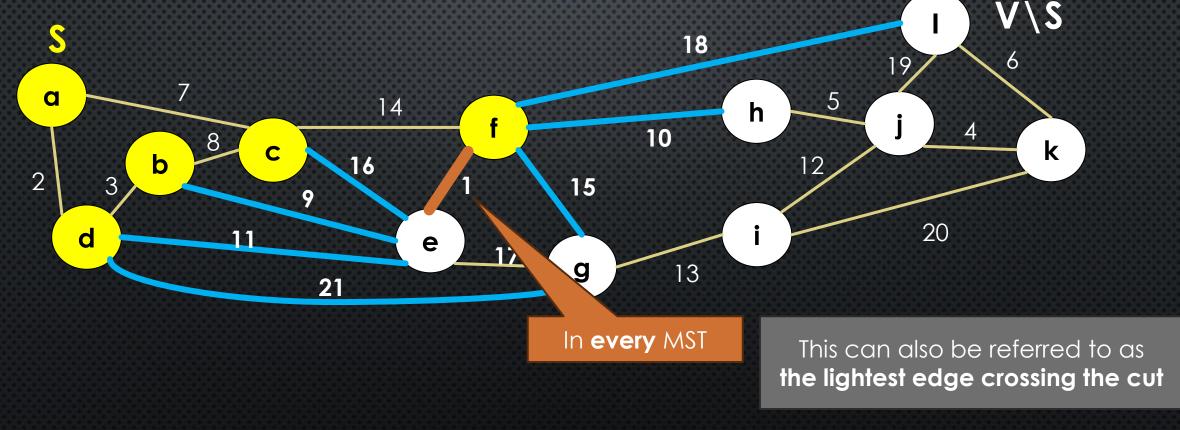
• Definition: given a cut (S, V\S), the cutset is the set of edges with one endpoint in S and the other in $V\S$

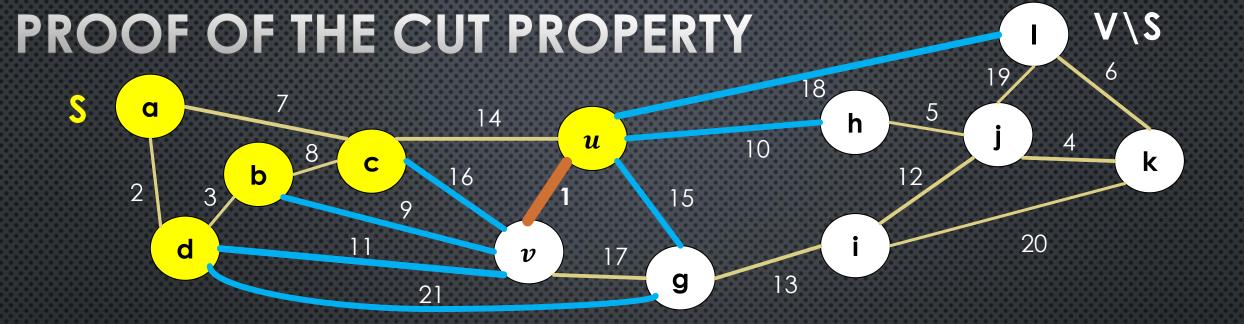


THE CUT PROPERTY

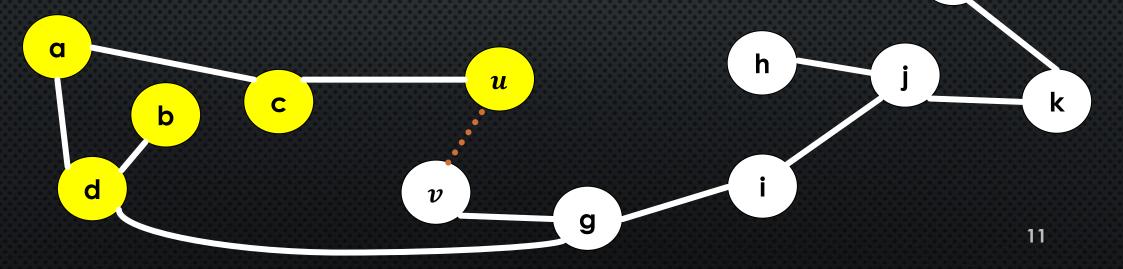
The minimum weight edge is also called the "**lightest edge**"

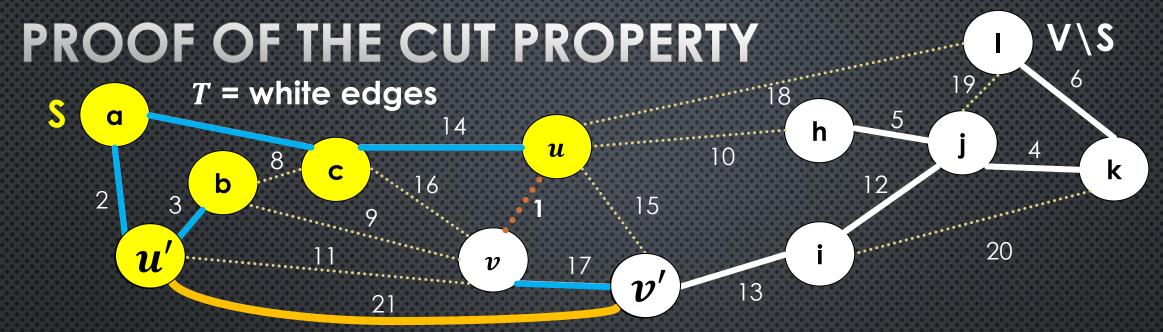
 Theorem: for any cut (S, V\S) of a graph G, the minimum weight edge in the cutset is in every MST for G





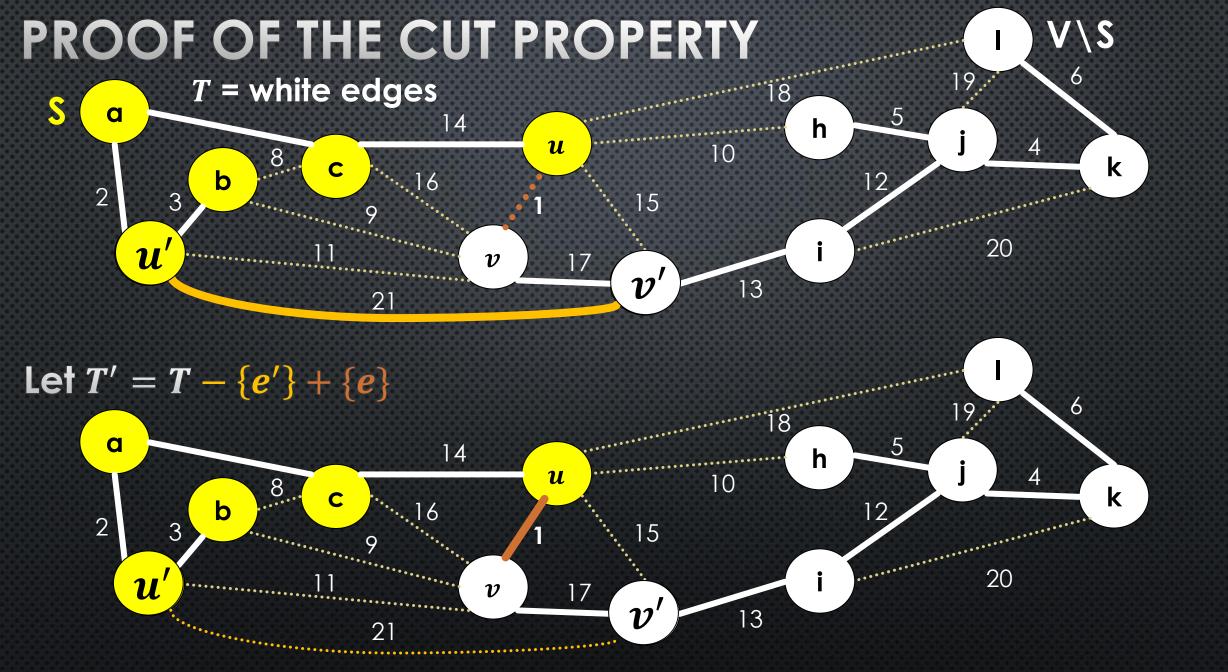
- Let e = (u, v) be the lightest edge crossing the cut (u in S, v in V\S)
- Let T be an MST and suppose $e \notin T$ for contradiction

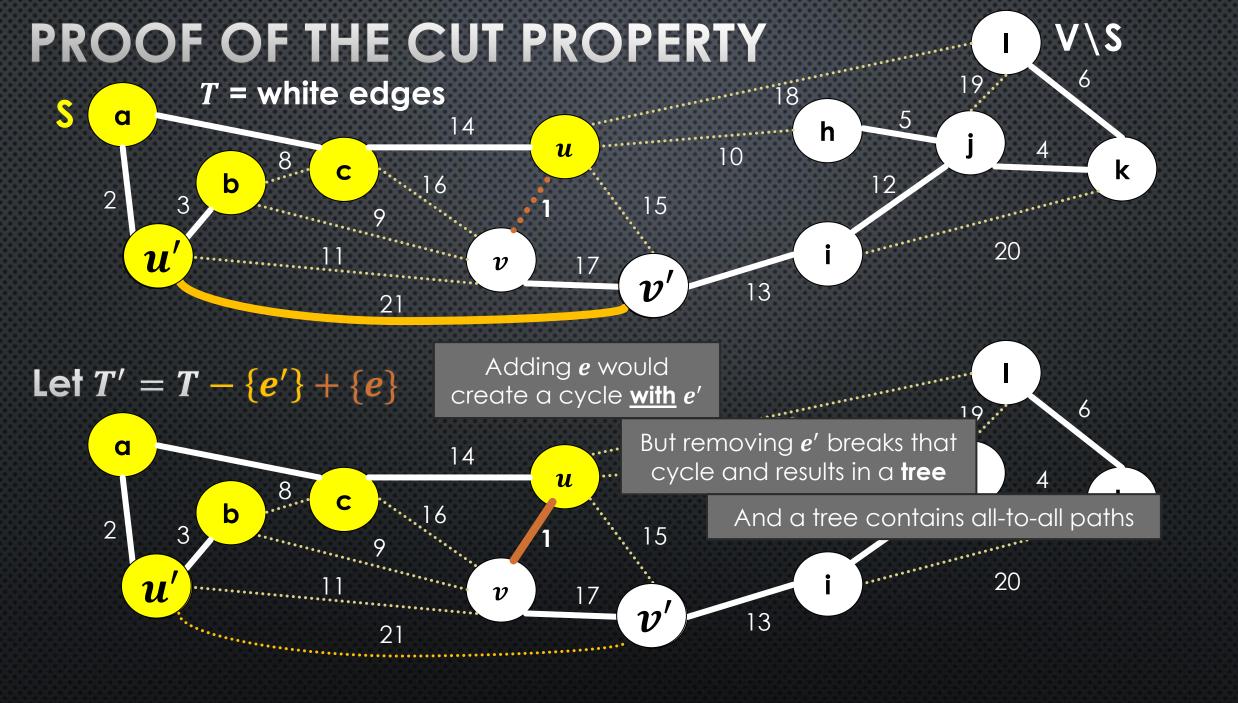


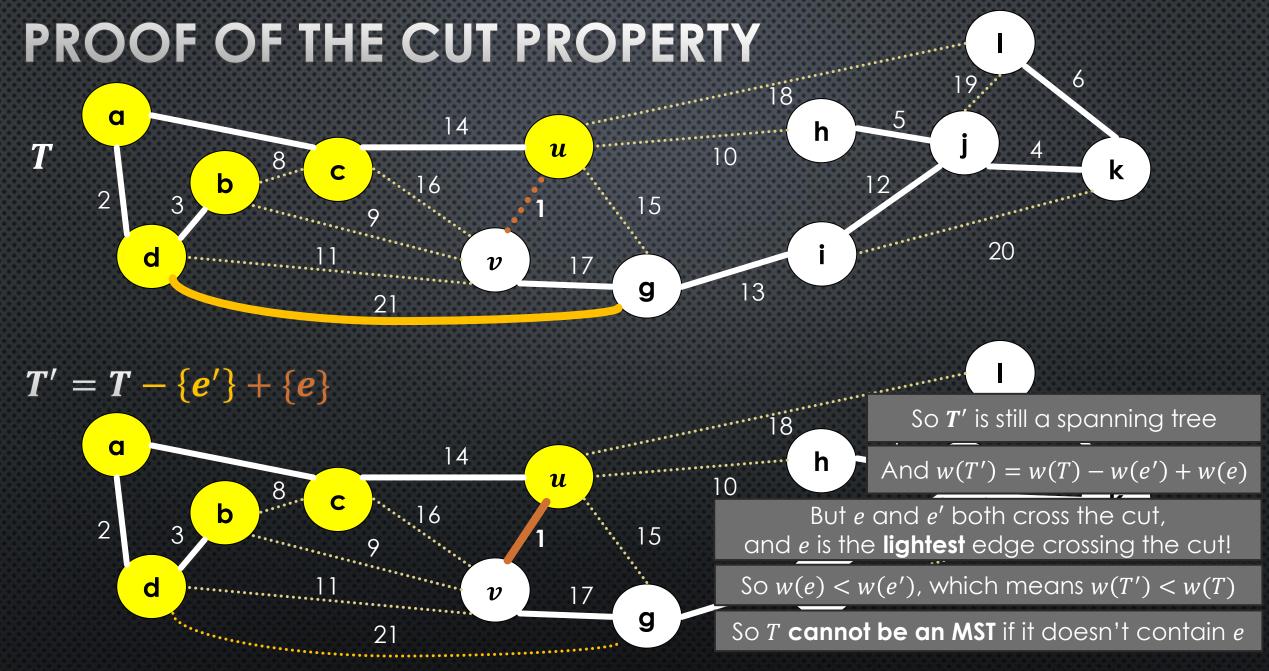


- We construct spanning T' s.t. w(T') < w(T) for contra.
- T is spanning, so exists path $u \dashrightarrow v$
- Path starts in S and ends in V\S so contains an edge e' = (u', v') with $u' \in S, v' \in V \setminus S$
- Let $T' = T \{e'\} + \{e\}$

Exchanging edges that cross the cut







RECAP: THE CUT PROPERTY

7

b

3

d

8

11

С

9

21

a

2

• Theorem: for **any cut** (S, $V \setminus S$) of a graph G, the minimum weight (lighest) edge in the cutset (crossing the cut) is in <u>every</u> MST for G S

14

e

17

16

18

13

10

15

g

h

V\S

k

6

4

20

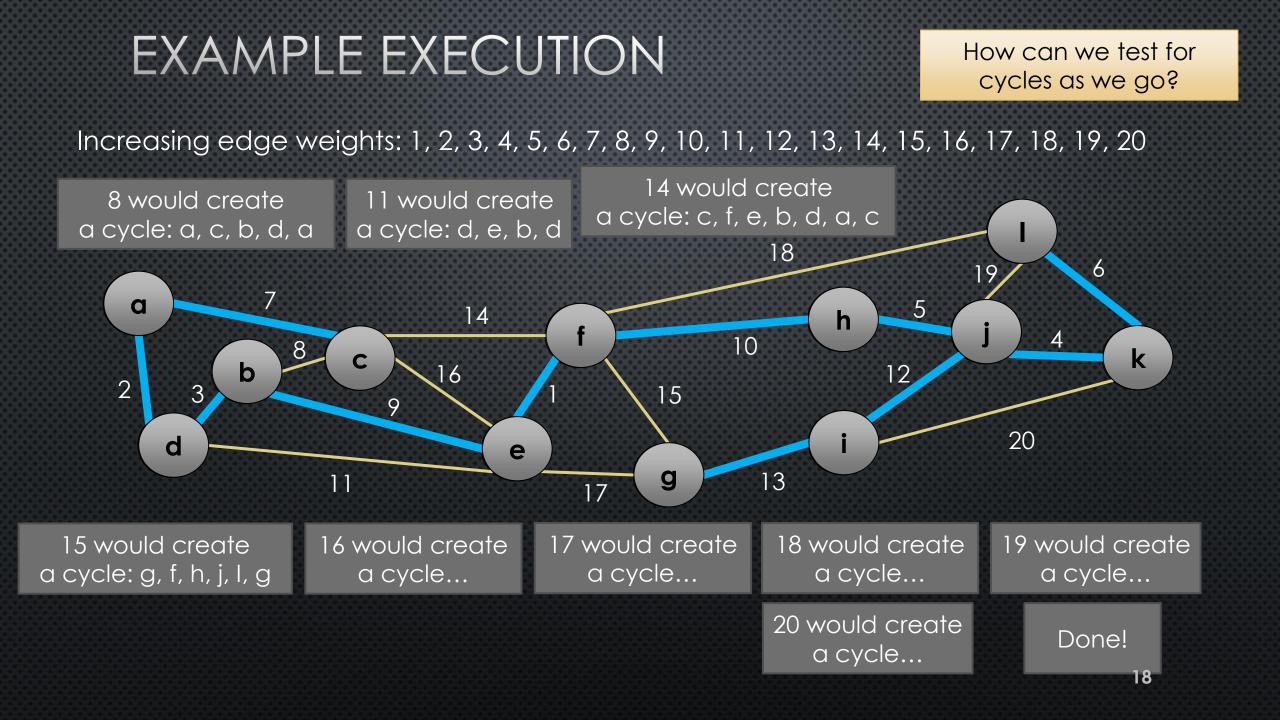
19

5

12

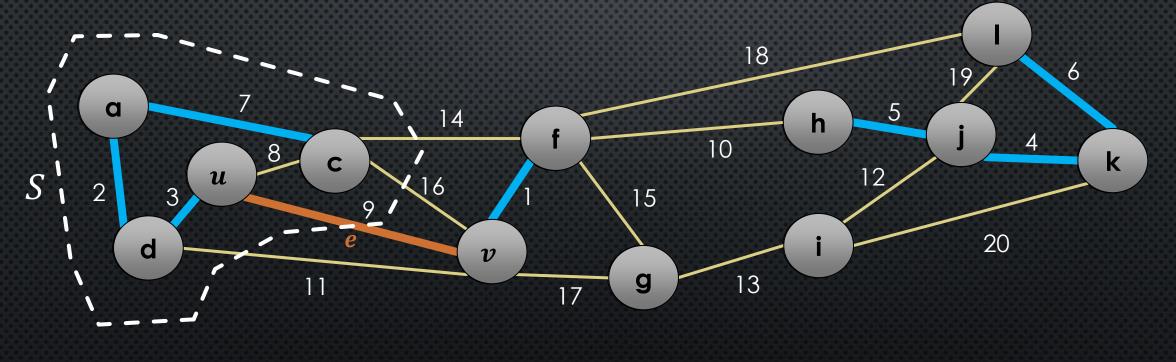
BUILDING AN MST

- Kruskal's algorithm [introduced in this 3-page paper from 1955]
- Greedy
 - Sort edges from lightest to heaviest
 - For each edge e in this order
 - Add e to T if it does not create a cycle



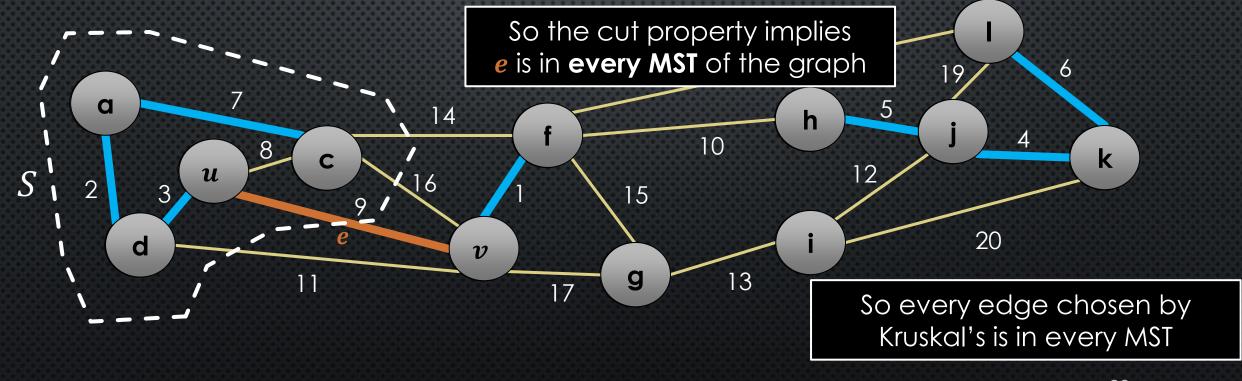
PROOF

- Let T be partial spanning tree just before adding e = (u, v), the lightest edge that does not create a cycle
- Let S be the connected component of T that contains u



PROOF

- Note e = (u, v) crosses the cut $(S, V \setminus S)$ or it would create a cycle
- Out of all edges crossing the cut, e is considered first, so it is the lightest of these edges



IMPLEMENTING KRUSKAL'S

- Sort edges from lightest to heaviest
- For each edge e in this order
 - Add e to T if it does not create a cycle

How can we determine whether adding e would create a cycle?

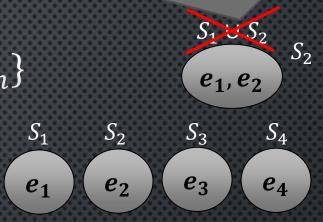
UNION FIND

To avoid strange/long names, keep one of the original set names

- Represents a partition of set S = {e₁, ..., e_n} into disjoint subsets
 - Initially *n* disjoint subsets $S_i = \{e_i\}$

Operations

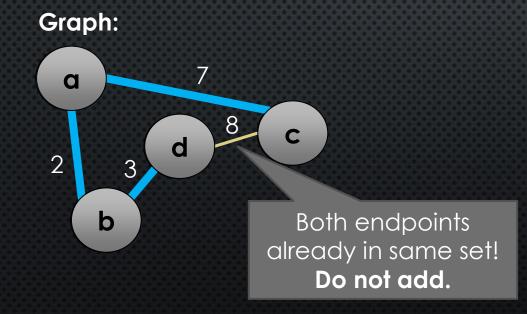
- $Union(S_i, S_j)$ replaces S_i and S_j by their union $S_i \cup S_j$
- $Find(e_i)$ returns the **label** of the set containing e_i



 $Union(S_1, S_2)$ $Find(e_3) \rightarrow S_3$ $Find(e_2) \rightarrow S_2$ $Find(e_1) \rightarrow S_2$

KRUSKAL'S USING UNION-FIND

- Each graph node is initially in its own subset
- Add an edge \rightarrow union two subsets
- An edge creates a cycle IFF its endpoints are in the same subset



Union-find:

a, b, c, d a, b, d a, b

a b c d

PSEUDOCODE FOR KRUSKAL'S USING UNION-FIND

```
Kruskal(V[1..n], E[1..m])
sort E[1..m] in increasing order by weight
uf = new UnionFind data structure
mst = new List
for j = 1..m
set_a = uf.find(E[j].source)
set_b = uf.find(E[j].target)
set_a != set_b
mst.add(E[j])
uf.merge(set_a, set_b)
return mst
```

TIME COMPLEXITY?

10

```
Kruskal(V[1..n], E[1..m])
sort E[1..m] in increasing order by weight
uf = new UnionFind data structure
mst = new List
for j = 1..m
set_a = uf.find(E[j].source)
set_b = uf.find(E[j].target)
if set_a != set_b
mst.add(E[j])
uf.merge(set_a, set_b)
return mst
```

Need to know runtime for union find...

For an efficient union-find algorithm (with union by rank and path compression), we get a total running time for Kruskal's algorithm of $O(\alpha(m+n)(m+n))$, where $\alpha(x)$ is the inverse Ackermann function. For all practical x, $\alpha(x) \leq 5$, so this is **pseudo-linear**.

A simpler implementation with union-by-rank only yields $O(m \log n)$

25

OTHER NOTABLE MST ALGORITHMS

- Prim's algorithm
 - Incrementally extend a tree T into an MST, by:
 - Initializing T to contain any arbitrary node in G
 - Repeatedly selecting the lightest edge that crosses cut (T, V\T)

Use priority queue to store **outgoing** edges from T (and repeatedly extract the minimum weight one)

- Visualization: <u>https://www.cs.usfca.edu/~galles/visualization/Prim.html</u>
- Borůvka's algorithm

There is also a fast **parallel hybrid** of Prim and Borůvka

- Like Kruskal (merging components), but with phases
- In each phase, select an outgoing edge for **every** component, and add **all** edges found in the phase

A FUN APPLICATION: MAZE BUILDING

- Create grid graph with
- edges up/down/left/right
- Randomize edge weights then run Kruskal's

VISUALIZING KRUSKAL'S (WITHOUT PATH COMPRESSION)

<u>https://www.cs.usfca.edu/~galles/visualization/Kruskal.html</u>

28

BONUS SLIDES

- Kruskal's proof via exchange argument instead

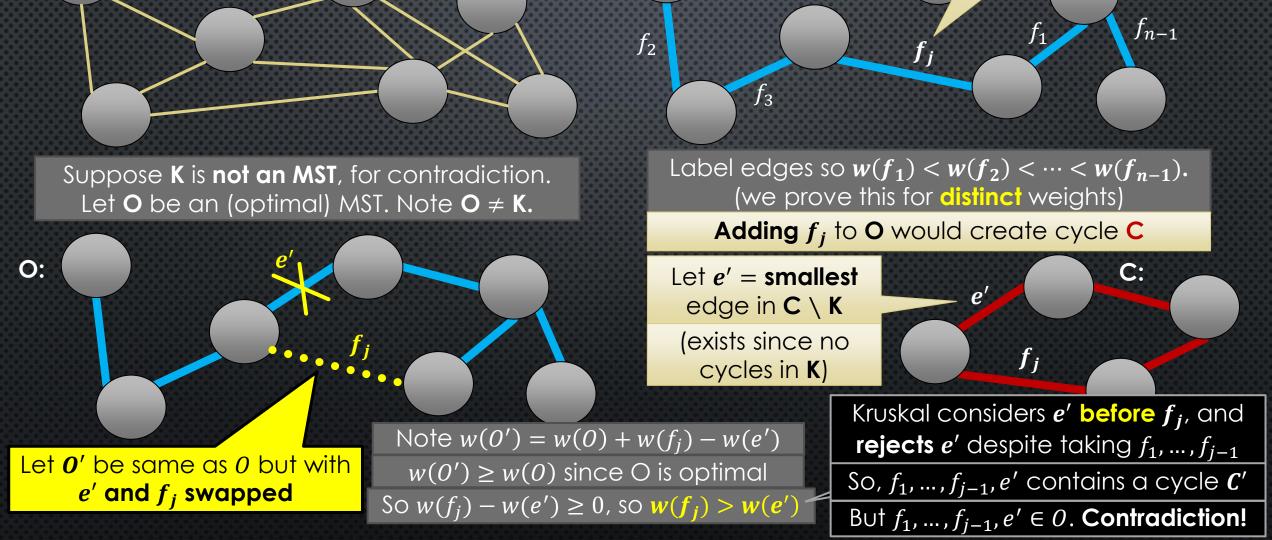
- Implementing union-find efficiently

PROOF VIA EXCHANGE

G: input graph

K: output of Kruskal

Let f_i = first edge not in O



UNION FIND IMPLEMENTATION

Union-find forest (logical):

parent 2 4 4

2

- Suppose we are partitioning set {1, ..., n}
 into subsets S₁, ..., S_n
- Represent the partition as a forest of trees
 - Initially one single-node tree per subset
 - Each node has a parent pointer
- *Find(i)* returns the **root** of the tree containing **element** *i*
- Union(i, j) makes one root the parent of the other

 $find(1) \rightarrow 1$, $find(2) \rightarrow 2$ Union(1,2): parent[1] = 2

Let's union the <u>sets</u> containing <u>elements</u> 1 and 2

How about elements 4 and 1? find(4) \rightarrow 4, find(1) \rightarrow 2 Union(4,2): parent[2] = 4 How about elements 3 and 1? find(3) \rightarrow 3, find(1) \rightarrow 4 Union(3,4): parent[3] = 4

2

3

PROBLEM: SLOW FIND()

4

3

2

1

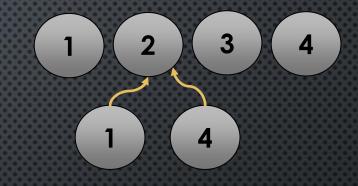
Long paths \rightarrow slow find()

Find runtime could be O(number of unions performed)

UNION-FIND WITH UNION BY RANK

- Keep track of heights of trees
- Make root with greater height be the parent
 - Union of two trees with height h has height h + 1
 - Union of tree with height h and tree with height < h has height h
- Runtime with union by rank?

Union-find forest:



Let's union the <u>sets</u> containing <u>elements</u> 1 and 2 find(1) \rightarrow 1, find(2) \rightarrow 2 Union(1,2): some height \rightarrow parent[1] = 2

How about elements 4 and 1? $find(4) \rightarrow 4$, $find(1) \rightarrow 2$ Union(4, 2): **2's height is greater** \rightarrow parent[4] = 2

RUNTIME OF UNION BY RANK

Can prove the following **lemma** by induction:
Each tree of height *h* contains at least 2^h nodes

Case 1: trees of different height

height < h

By I.H., left tree already has $\geq 2^h$ nodes. So result has height *h* and $\geq 2^h$ nodes

height **h**

RUNTIME OF UNION BY RANK

Can prove the following **lemma** by induction:
 Each tree of height *h* contains at least 2^h nodes

Case 2: trees of same height

height **h**

By I.H., each tree has $\geq 2^{h}$ nodes. Result has height h + 1 and $\geq 2^{h} + 2^{h}$ nodes

And $2^{h} + 2^{h} = 2^{h+1}$. QED

height **h**

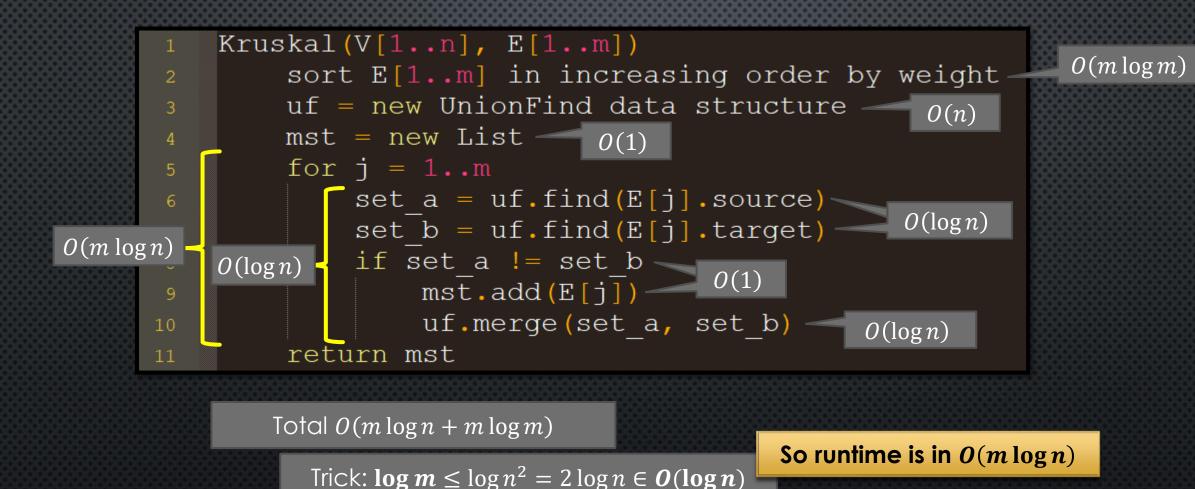
35

RUNTIME OF UNION BY RANK

How does the lemma help?

- Each tree of height h contains at least 2^h nodes
- There are only *n* nodes in the graph
 - So height is at most log n
 - (Lemma: a tree of height log ncontains at least $2^{\log n}$ nodes and $2^{\log n} = n$)
- So the longest path in the union-find forest is $\log n$
 - So all union-find operations run in $\Theta(\log n)$ time!

TIME COMPLEXITY USING UNION BY RANK

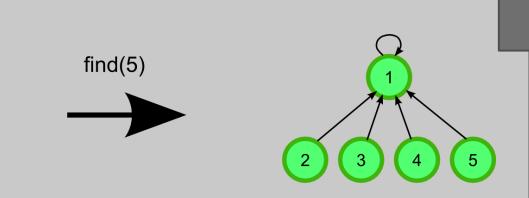


37

MAKING THIS EVEN FASTER

2

 In addition to union by rank, union-find can be implemented with path compression



This variant is introduced in this paper

Using both union by rank <u>and</u> path compression, we get a total running time for Kruskal's algorithm of $O(\alpha(m + n)(m + n))$, where $\alpha(x)$ is the inverse Ackermann function. For all practical x, $\alpha(x) \leq 5$, so this is **pseudo-linear**.

EFFICIENT UNION-FIND

