CS 341: ALGORITHMS

Lecture 13: graph algorithms IV - minimum spanning trees
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

MINIMUM SPANNING TREE (MST)

- A tree (connected acyclic graph) that includes every node, and minimizes the total sum of edge weights

Problem can also be defined for minimum spanning forest. Algorithm taught here works.

APPLICATION: INTERNET BACKBONE PLANNING

- Want to connect n cities with internet backbone links
- Direct links possible between each pair of cities
- Each link has a certain dollar cost (excavation, materials, distance \& time, legal costs...)
- Want to minimize tołal cost

THE CUTSET OF A CUT

Edges in the cutset are also said to "cross the cut"

- Definition: given a cut $(S, V \backslash S)$, the cutset is the set of edges with one endpoint in S and the other in $V \backslash S$

PROOF OF THE CUT PROPERTY

- Let $e=(u, v)$ be the lightest edge crossing the cut (u in \mathbf{S}, \mathbf{v} in $\mathbf{V} \backslash \mathbf{S}$)
- Let \boldsymbol{T} be an MST and suppose $e \notin T$ for contradiction 1

THE CUT PROPERTY

The minimum weight edge is

- Theorem: for any cut $(S, V \backslash S)$ of a graph G
the minimum weight edge in the cutset is in every MST for G
 the lightest edge crossing the cut

- We construct spanning T^{\prime} s.t. $w\left(T^{\prime}\right)<w(T)$ for contra.
- T is spanning, so exists path u ws v
- Path starts in S and ends in $V \backslash S$

This edge crosses the cut
so contains an edge $e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ with $u^{\prime} \in S, v^{\prime} \in V \backslash S$

- Let $T^{\prime}=T-\left\{e^{\prime}\right\}+\{e\} \quad$ Exchanging edges that cross the cut

RECAP: THE CUT PROPERTY

- Theorem: for any cut $(S, V \backslash S)$ of a graph G,
the minimum weight (lighest) edge

BUILDING AN MST

- Kruskal's algorithm [introduced in this 3-page paper from 1955]
- Greedy
- Sort edges from lightest to heaviest
- For each edge e in this order
- Adde to T if it does not create a cycle

PROOF

- Let T be partial spanning tree just before adding $e=(u, v)$,
the lightest edge that does not create a cycle
- Let S be the connected component of T that contains u

PROOF

- Note $e=(u, v)$ crosses the cut $(S, V \backslash S)$ or it would create a cycle
- Out of all edges crossing the cut, e is considered first,
so it is the lightest of these edges

UNION FIND

To avoid strange/long names, keep

- Represents a parition of set $S=\left\{e_{1}, \ldots, e_{n}\right\}$ into disjoint subsets
- Initially n disjoint subsets $S_{i}=\left\{e_{i}\right\}$
- Operations
- Union $\left(S_{i}, S_{j}\right)$ replaces S_{i} and S_{j} by their union $S_{i} \cup S_{j}$
- Find $\left(e_{i}\right)$ returns the label of the set containing e_{i}

For each edge e in this order

- Add e to T if it does not create a cycle

```
How can we determine
    whether adding e
would create a cycle?
```

PSEUDOCODE FOR KRUSKAL'S USING UNION-FIND

```
4 Kruskal(V[1, .n], E[1, .m])
    uf = new UnionFind data structure
    mst = new List
        for j =1..m
            set_a = uf.find(E[j].source)
            set_b = uf.find(E[j].target),
            If set_a l= set b
                mst.add (E[j])
            uf.merge(set_a, set_b)
    return mst
```


TIME COMPLEXITY?

OTHER NOTABLE MST ALGORITHMS

- Prim's algorithm
- Incrementally extend a tree T into an MST, by:
- Initializing T to contain any arbitrary node in G
- Repeatedly selecting the lightest edge

Use priority queve to store ouigoing eages
from Tand repeated from T and repearea that crosses cut (T, V TT) weight one

- Visualization: https://www.cs.usfca.edu/~galles/visualization/Prim.html
- Borůvka's algorithm There is also a fast parallel
- Like Kruskal (merging components), but with phases
- In each phase, select an outgoing edge for every component, and add all edges found in the phase

A FUN APPLICATION: MAZE BUILDING

- Create grid graph with
- edges up/down/left/right
- Randomize edge weights then run Kruskal's

VISUALIZING KRUSKAL'S
 (WITHOUT PATH COMPRESSION)

- httos://www.cs.usfca.edu/~adiles/visualization/Kruskal.htm

- Suppose we are partitioning set $\{1, \ldots, n\}$ into subsets S_{1}, \ldots, S_{n}
- Represent the partition as a forest of trees
- Initially one single-node tree per subset
Union-find forest (logicall:

- Each node has a parent pointer
Let's union the sets containing elements 1 and 2 find $(1) \rightarrow 1$, find (2) $\rightarrow 2$
of the tree containing element i
Union(1,2): $\operatorname{parent}[1]=2$
- Union (i, j) makes one root the parent of the other \qquad How about elements 3 and 1 ? find $(3) \rightarrow 3$, find $(1) \rightarrow 4$ Union $(3,4):$ parent $[3]=4$

UNION-FIND WITH UNION BY RANK

- Keep track of heights of trees
- Make root with greater height be the parent
- Union of two trees with height h

$$
\text { has height } h+1
$$

- Union of tree with height h and tree with height $<h$ has height h
- Runtime with union by rank?

Let's union the setscontaining elements 1 and 2 find (1) $\rightarrow 1$, find $(2) \rightarrow 2$ $\operatorname{Union}(1,2):$ same height \rightarrow parent $[1]=2$

Howabout elements 4 and 1 ?
find (4) $\rightarrow 4$ find $(1) \rightarrow 2$ find $(4) \rightarrow 4$, find $(1) \rightarrow 2$
Union $(4,2):$ 2'sheight is greater \rightarrow parent $[4]=2$

RUNTIME OF UNION BY RANK

- Can prove the following lemma by induction:
- Each tree of height h contains at least 2^{h} nodes

Case 1: trees of different height

RUNTIME OF UNION BY RANK

- How does the lemma help?
- Each tree of height h contains at least 2^{h} nodes
- There are only n nodes in the graph
- So height is at most $\log n$
- (Lemma: a tree of height $\log n$ contains at least $2^{\log n}$ nodes and $2^{\log n}=n$)
- So the longest path in the union-find forest is $\log n$
- So all union-find operations run in $\Theta(\log n)$ time!

TIME COMPLEXITY USING UNION BY RANK

Total $O(m \log n+m \log m)$
Trick: $\log m \leq \log n^{2}=2 \log n \in O(\log n)$

EFFICIENT UNION-FIND

