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CS 341: ALGORITHMS
Lecture 13: graph algorithms IV – minimum spanning trees

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca
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• Consider an undirected graph
in which each edge has a weight (or cost)

WEIGHTED UNDIRECTED GRAPH
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Problem can also be defined for 
directed graphs…
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• A tree (connected acyclic graph) that includes every node,

and minimizes the total sum of edge weights

MINIMUM SPANNING TREE (MST)
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Problem can also be defined for 
minimum spanning forest. 

Algorithm taught here works.
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APPLICATION: INTERNET BACKBONE PLANNING

• Want to connect n cities with internet backbone links

• Direct links possible between each pair of cities

• Each link has a certain dollar cost (excavation, 
materials, distance & time, legal costs…)

• Want to minimize total cost
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APPLICATION: IMAGE SEGMENTATION [PAPER]

break image into regions
by colour similarity

via other techniques

turn regions into nodes,
and add edges between them

with weights = “dissimilarity,”
then build MST

break MST into large,
highly similar segments,

and assign the dominant
colour to each segment

Segments are 
easier for a 

machine learning 
algorithm to 
understand.

Just for fun, don’t 
need to know this
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APPLICATION: CURVILINEAR FEATURE EXTRACTION

Edge
detection

algorithm MST

“Hair”
removal

Final
result

Input to image 
recognition alg.

Want a machine to 
recognize this object

[Paper]

Just for fun, don’t 
need to know this
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https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca
https://www.semanticscholar.org/paper/Geodesic-distance-and-MST-based-image-segmentation-Economou-Pothos/0b4c960785676939debee54f9983d1b5797ef5c1
https://www.sciencedirect.com/science/article/pii/0734189X84902214
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redrawing
as a tree

If you add an edge 𝑒 to 
a tree and this creates a 

cycle 𝐶, then removing 
any other edge 𝑒′ ∈ 𝐶 

will break the cycle and 

produce a tree.
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USEFUL TREE FACTS

• Definition: a cut in a graph G = (V,E) is a partition of V
into two non-empty subsets S and V \ S

A CUT OF A GRAPH
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• Definition: given a cut (S, V\S), the cutset is the set of edges
with one endpoint in S and the other in V\S

THE CUTSET OF A CUT
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Edges in the cutset are also 
said to “cross the cut”

• Theorem: for any cut (S, V\S) of a graph G,
the minimum weight edge in the cutset
is in every MST for G

THE CUT PROPERTY
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In every MST

The minimum weight edge is 
also called the “lightest edge”

This can also be referred to as
the lightest edge crossing the cut

• Let 𝒆 = (𝒖, 𝒗) be the lightest edge crossing the cut (u in S, v in V\S)

• Let 𝑻 be an MST and suppose 𝒆 ∉ 𝑻 for contradiction

PROOF OF THE CUT PROPERTY
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• We construct spanning 𝑇′ s.t. 𝑤 𝑇′ < 𝑤(𝑇) for contra.

• T is spanning, so exists path 𝒖 ⇝ 𝒗

• Path starts in S and ends in V\S
so contains an edge 𝒆′ = 𝒖′, 𝒗′ with 𝑢′ ∈ 𝑆, 𝑣′ ∈ 𝑉\𝑆

• Let 𝑇′ = 𝑇 − 𝒆′ + {𝒆}

PROOF OF THE CUT PROPERTY
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This edge crosses the cut

Exchanging edges that 
cross the cut

𝒖′

𝒗′
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Let 𝑻′ = 𝑻 − 𝒆′ + {𝒆}

PROOF OF THE CUT PROPERTY
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𝒖′

𝒗′

𝒖′

𝒗′

Let 𝑻′ = 𝑻 − 𝒆′ + {𝒆}

PROOF OF THE CUT PROPERTY
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Adding 𝒆 would 
create a cycle with 𝒆′ 

But removing 𝒆′ breaks that 
cycle and results in a tree

And a tree contains all-to-all paths

𝒖′

𝒗′

𝒖′

𝒗′

𝑻′ = 𝑻 − 𝒆′ + {𝒆}

PROOF OF THE CUT PROPERTY
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So 𝑻′ is still a spanning tree

And 𝑤 𝑇′ = 𝑤 𝑇 − 𝑤 𝑒′ + 𝑤(𝑒)

But 𝑒 and 𝑒′ both cross the cut,
and 𝑒 is the lightest edge crossing the cut!

So 𝑤 𝑒 < 𝑤 𝑒′ , which means 𝑤 𝑇′ < 𝑤(𝑇)

So 𝑇 cannot be an MST if it doesn’t contain 𝑒

• Theorem: for any cut (S, V\S) of a graph G,
the minimum weight (lighest) edge
in the cutset (crossing the cut)
is in every MST for G

RECAP: THE CUT PROPERTY
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BUILDING AN MST

• Kruskal’s algorithm [introduced in this 3-page paper from 1955]

• Greedy

• Sort edges from lightest to heaviest

• For each edge e in this order

• Add e to T if it does not create a cycle

17

EXAMPLE EXECUTION
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Increasing edge weights: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

8 would create
a cycle: a, c, b, d, a

11 would create
a cycle: d, e, b, d

14 would create
a cycle: c, f, e, b, d, a, c

15 would create
a cycle: g, f, h, j, I, g

16 would create
a cycle…

17 would create
a cycle…

18 would create
a cycle…

19 would create
a cycle…

Done!

How can we test for
cycles as we go?

20 would create
a cycle…

18

https://scinapse.io/papers/1965680834


2023-10-30

4

PROOF

• Let 𝑇 be partial spanning tree just before adding 𝒆 = (𝒖, 𝒗),

the lightest edge that does not create a cycle

• Let 𝑆 be the connected component of 𝑇 that contains 𝑢

19
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PROOF

• Note 𝒆 = (𝒖, 𝒗) crosses the cut (𝑆, 𝑉\𝑆) or it would create a cycle

• Out of all edges crossing the cut, 𝒆 is considered first,

so it is the lightest of these edges
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So the cut property implies

𝒆 is in every MST of the graph

So every edge chosen by 

Kruskal’s is in every MST

IMPLEMENTING KRUSKAL’S

• Sort edges from lightest to heaviest

• For each edge e in this order

• Add e to T if it does not create a cycle

21

How can we determine 
whether adding e 

would create a cycle?

UNION FIND

• Represents a partition of set 𝑆 = 𝑒1, … , 𝑒𝑛

into disjoint subsets

• Initially 𝑛 disjoint subsets 𝑆𝑖 = 𝑒𝑖

• Operations

• 𝑈𝑛𝑖𝑜𝑛(𝑆𝑖, 𝑆𝑗) replaces 𝑆𝑖 and 𝑆𝑗

by their union 𝑆𝑖 ∪ 𝑆𝑗

• 𝐹𝑖𝑛𝑑(𝑒𝑖) returns the label
of the set containing 𝑒𝑖

22

𝒆𝟏 𝒆𝟒𝒆𝟑𝒆𝟐

𝑆1 𝑆2 𝑆3 𝑆4

𝐹𝑖𝑛𝑑 𝑒3 → 𝑆3

𝑈𝑛𝑖𝑜𝑛 𝑆1, 𝑆2

𝐹𝑖𝑛𝑑 𝑒2 → 𝑆2

𝐹𝑖𝑛𝑑 𝑒1 → 𝑆2

𝒆𝟏, 𝒆𝟐

𝑆1 ∪ 𝑆2

To avoid strange/long names, keep 
one of the original set names

𝑆2

KRUSKAL’S USING UNION-FIND

• Each graph node is initially in its own subset

• Add an edge → union two subsets

• An edge creates a cycle IFF
its endpoints are in the same subset

23
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Graph:

𝒂 𝒅𝒄𝒃

𝒂, 𝒃 𝒂, 𝒃, 𝒅

Union-find:

𝒂, 𝒃, 𝒄, 𝒅

Both endpoints 
already in same set! 

Do not add.

PSEUDOCODE FOR KRUSKAL’S USING UNION-FIND

24
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TIME COMPLEXITY?

25

Need to know runtime 
for union find…

For an efficient union-find algorithm (with union by rank and path compression), 

we get a total running time for Kruskal’s algorithm of 𝑂 𝛼 𝑚 + 𝑛 𝑚 + 𝑛 ,

where 𝛼(𝑥) is the inverse Ackermann function.
For all practical x, 𝛼 𝑥 ≤ 5, so this is pseudo-linear.

A simpler implementation with 
union-by-rank only yields 𝑂 𝑚 log 𝑛

OTHER NOTABLE MST ALGORITHMS

• Prim’s algorithm

• Incrementally extend a tree T into an MST, by:

• Initializing T to contain any arbitrary node in G

• Repeatedly selecting the lightest edge
that crosses cut (T, V\T)

• Visualization: https://www.cs.usfca.edu/~galles/visualization/Prim.html

• Borůvka’s algorithm

• Like Kruskal (merging components), but with phases

• In each phase, select an outgoing edge for every 
component, and add all edges found in the phase

There is also a fast parallel
hybrid of Prim and Borůvka

26

Use priority queue to 
store outgoing edges 

from T (and repeatedly 
extract the minimum 

weight one)

A FUN APPLICATION: MAZE BUILDING

• Create grid graph with

• edges up/down/left/right

• Randomize edge weights
then run Kruskal’s

27

VISUALIZING KRUSKAL’S
(WITHOUT PATH COMPRESSION)

• https://www.cs.usfca.edu/~galles/visualization/Kruskal.html

28

BONUS SLIDES
- Kruskal’s proof via exchange argument instead

- Implementing union-find efficiently

29

𝑓2

G: input graph

K: output of Kruskal

Label edges so 𝒘 𝒇𝟏 < 𝒘 𝒇𝟐 < ⋯ < 𝒘(𝒇𝒏−𝟏).
(we prove this for distinct weights)

PROOF VIA EXCHANGE

𝑓𝑛−1𝑓1

𝑓3

Suppose K is not an MST, for contradiction.
Let O be an (optimal) MST. Note O ≠ K.

O:

Let 𝒇𝒋 = first edge not in O

𝒇𝒋

Adding 𝒇𝒋 to O would create cycle C

𝒇𝒋

Let 𝒆′ = smallest 
edge in C ∖ K 𝒆′

C:

Let 𝑶′ be same as 𝑂 but with 
𝒆′ and 𝒇𝒋 swapped

𝒇𝒋

𝒆′

Note 𝑤 𝑂′ = 𝑤 𝑂 + 𝑤(𝑓𝑗) − 𝑤(𝑒′)

𝑤 𝑂′ ≥ 𝑤 𝑂  since O is optimal

So 𝑤(𝑓𝑗) − 𝑤(𝑒′) ≥ 0, so 𝒘(𝒇𝒋) > 𝒘 𝒆′

Kruskal considers 𝒆′ before 𝒇𝒋, and 

rejects 𝒆′ despite taking 𝑓1, … , 𝑓𝑗−1

So, 𝑓1, … , 𝑓𝑗−1, 𝑒′ contains a cycle 𝑪′

But 𝑓1, … , 𝑓𝑗−1, 𝑒′ ∈ 𝑂. Contradiction!

(exists since no 
cycles in K)

30

https://www.cs.usfca.edu/~galles/visualization/Prim.html
https://www.cs.usfca.edu/~galles/visualization/Kruskal.html
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UNION FIND IMPLEMENTATION

• Suppose we are partitioning set 1, … , 𝑛
into subsets 𝑺𝟏, … , 𝑺𝒏

• Represent the partition as a forest of trees

• Initially one single-node tree per subset

• Each node has a parent pointer

• 𝐹𝑖𝑛𝑑 𝑖 returns the root
of the tree containing element 𝒊

• 𝑈𝑛𝑖𝑜𝑛 𝑖, 𝑗 makes one root

the parent of the other

31

1 2 3 42 2 3 42 4 3 42 4 4 4

Union-find forest (physical):

𝒑𝒂𝒓𝒆𝒏𝒕
1 2 3 4

Union-find forest (logical):

1 432

1

Let’s union the sets containing elements 1 and 2
𝑓𝑖𝑛𝑑 1  → 1,   𝑓𝑖𝑛𝑑(2) → 2
𝑈𝑛𝑖𝑜𝑛(1,2):  𝑝𝑎𝑟𝑒𝑛𝑡 1 = 2

How about elements 4 and 1?
𝑓𝑖𝑛𝑑 4  → 4,   𝑓𝑖𝑛𝑑(1) → 2
𝑈𝑛𝑖𝑜𝑛 4, 2 :  𝑝𝑎𝑟𝑒𝑛𝑡 2 = 4

How about elements 3 and 1?
𝑓𝑖𝑛𝑑 3  → 3,   𝑓𝑖𝑛𝑑(1) → 4
𝑈𝑛𝑖𝑜𝑛 3, 4 :  𝑝𝑎𝑟𝑒𝑛𝑡 3 = 4

32

1

PROBLEM: SLOW FIND()

32

4

32

1
Long paths → slow find()

Find runtime could be
O(number of unions performed)

UNION-FIND WITH UNION BY RANK

• Keep track of heights of trees

• Make root with greater height

be the parent

• Union of two trees with height ℎ
has height ℎ + 1

• Union of tree with height ℎ
and tree with height < ℎ
has height ℎ

• Runtime with union by rank?

33

Union-find forest:

1 432

1

Let’s union the sets containing elements 1 and 2
𝑓𝑖𝑛𝑑 1  → 1,   𝑓𝑖𝑛𝑑(2) → 2

𝑈𝑛𝑖𝑜𝑛(1,2): same height → 𝑝𝑎𝑟𝑒𝑛𝑡 1 = 2

How about elements 4 and 1?
𝑓𝑖𝑛𝑑 4  → 4,   𝑓𝑖𝑛𝑑(1) → 2

𝑈𝑛𝑖𝑜𝑛 4, 2 :  2’s height is greater → 𝑝𝑎𝑟𝑒𝑛𝑡 4 = 2

4

RUNTIME OF UNION BY RANK

• Can prove the following lemma by induction:

• Each tree of height ℎ contains at least 2ℎ nodes

34

height 𝒉

height < 𝒉

Case 1: trees of different height

By I.H.,

left tree already has ≥ 2ℎ nodes.

So result has height ℎ and ≥ 2ℎ nodes

RUNTIME OF UNION BY RANK

• Can prove the following lemma by induction:

• Each tree of height ℎ contains at least 2ℎ nodes

35

height 𝒉 height 𝒉

Case 2: trees of same height

By I.H.,

each tree has ≥ 2ℎ nodes.

Result has height ℎ + 1 and ≥ 2ℎ + 2ℎ nodes

And 2ℎ + 2ℎ = 2ℎ+1. QED

RUNTIME OF UNION BY RANK

• How does the lemma help?

• Each tree of height ℎ contains at least 2ℎ nodes

• There are only 𝒏 nodes in the graph

• So height is at most 𝐥𝐨𝐠 𝒏

• (Lemma: a tree of height log 𝑛
contains at least 2log 𝑛 nodes

and 2log 𝑛 = 𝑛)

• So the longest path in the union-find forest is log 𝑛

• So all union-find operations run in Θ log 𝑛 time!

36
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TIME COMPLEXITY USING UNION BY RANK

37

𝑂 𝑚 log 𝑚

𝑂 log 𝑛𝑂 log 𝑛

𝑂 log 𝑛

𝑂 1𝑂 1

𝑂 𝑛
𝑂 1

𝑂 log 𝑛
𝑂 𝑚 log 𝑛

Total 𝑂 𝑚 log 𝑛 + 𝑚 log𝑚

Trick: 𝐥𝐨𝐠 𝒎 ≤ log 𝑛2 = 2 log𝑛 ∈ 𝑶(𝐥𝐨𝐠 𝒏)
So runtime is in 𝑶 𝒎𝐥𝐨𝐠 𝒏

• In addition to union by rank, union-find can be 

implemented with path compression

MAKING THIS EVEN FASTER

Using both union by rank and path compression, we get a total 

running time for Kruskal’s algorithm of 𝑂 𝛼 𝑚 + 𝑛 𝑚 + 𝑛 ,

where 𝛼(𝑥) is the inverse Ackermann function.
For all practical x, 𝛼 𝑥 ≤ 5, so this is pseudo-linear.
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This variant is 
introduced

in this paper

EFFICIENT UNION-FIND

Path compression

Union by rank

Initialization

Free memory at end

39

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.437.8198&rep=rep1&type=pdf

