

MINIMUM SPANNING TREE (MST)

APPLICATION: INTERNET BACKBONE PLANNING

- Want to connect n cities with internet backbone links
 - Direct links possible between each pair of cities
 - Each link has a certain dollar cost (excavation, materials, distance & time, legal costs...)
 - Want to minimize total cost

BUILDING AN MST

- Kruskal's algorithm [introduced in this 3-page paper from 1955]
- Greedy
 - Sort edges from lightest to heaviest
 - For each edge e in this order
 - Add e to T if it does not create a cycle

PROOF

- Let T be partial spanning tree just before adding e = (u, v), the lightest edge that does not create a cycle
- Let S be the connected component of T that contains u

PROOF

• Note e = (u, v) crosses the cut $(S, V \setminus S)$ or it would create a cycle • Out of all edges crossing the cut, e is considered first,

IMPLEMENTING KRUSKAL'S

- Sort edges from lightest to heaviest
- For each edge e in this order
 - Add e to T if it does not create a cycle

UNION FIND • Represents a **partition** of set $S = \{e_1, \dots, e_n\}$ into disjoint subsets (e₁) (e₂ • Operations • $Union(S_i, S_j)$ replaces S_i and S_j

• $Find(e_i)$ returns the **label** of the set containing e_i

KRUSKAL'S USING UNION-FIND • An edge creates a cycle IFF its endpoints are in the same subset

PSEUDOCODE FOR KRUSKAL'S USING UNION-FIND

<pre>sort E[1m] in increasing order by weight uf = new UnionFind data structure</pre>	
mst = new List	
for j = 1m	
<pre>set a = uf,find(E[j].source)</pre>	
set_b = uf.find(E[j].target)	
if set_a != set_b	
<pre>mst.add(E[j])</pre>	
uf.merge(set_a, set_b)	

There is also a fast hybrid of Prim and

2 sort 3 uf - 4 mst 5 for 6 7 8 9	<pre>(V[1n], E[1m]) t E[1m] in increasing order by weight = new UnionFind data structure = new List j = 1m set a = uf.find(E[j].source) set_b = uf.find(E[j].target) if set_a != set_b mst.ad(E[j]) uf.merge(set_a, set_b) urn mst</pre>	Need to know runtime for union find	 Prim's algorithm Incrementally extend a tree T into an MST, by: Initializing T to contain any arbitrary node in G Repeatedly selecting the lightest edge that crosses cut (T, V\T) Visualization: https://www.cs.ustca.edu/~galles/visualization 	Use pri store o from T (r extrac
	For an efficient union-find algorithm (with union by rank we get a total running time for Kruskal's algorithm of where $\alpha(x)$ is the inverse Ackermann to For all practical $x, \alpha(x) \leq S$ so this is preuv A simpler implement union-by-rank only yie	$O(\alpha(m+n)(m+n)),$ unction. do-linear. htation with	 Borůvka's algorithm Like Kruskal (merging components), but with p In each phase, select an outgoing edge for e component, and add all edges found in the p 	very

UNION FIND IMPLEMENTATION

- Suppose we are partitioning set $\{1, \dots, n\}$ into subsets S_1, \dots, S_n
- Represent the partition as a forest of trees
 - Initially one single-node tree per subset
 - Each node has a parent pointer
- *Find(i)* returns the **root** of the tree containing **element** *i*
- Union(i, j) makes one root the parent of the other

UNION-FIND WITH UNION BY RANK

- Keep track of heights of trees
- Make root with greater height be the parent
 - Union of two trees with height h has height h + 1
 - Union of tree with height h and tree with height < h has height h
- Runtime with union by rank?

RUNTIME OF UNION BY RANK

- Can prove the following lemma by induction:
 - Each tree of height *h* contains at least 2^{*h*} nodes

Case 1: trees of different height

By I.H., left tree already has $\geq 2^h$ nodes. So result has height h and $\geq 2^h$ nodes

RUNTIME OF UNION BY RANK

- Can prove the following **lemma** by induction:
 - Each tree of height *h* contains at least 2^{*h*} nodes

Case 2: trees of same height

RUNTIME OF UNION BY RANK

- How does the **lemma** help?
 - Each tree of height h contains at least 2^h nodes
- There are only *n* nodes in the graph
 - So height is at most log n
 - (Lemma: a tree of height log n contains at least 2^{log n} nodes and 2^{log n} = n)
- So the longest path in the union-find forest is log n
 So all union-find operations run in θ(log n) time!

TIME COMPLEXITY USING U sort E[1m] in increasing u = new UnionFind data st mst = new List (0(1)) o(ugn) if sort a = uf.find(E[j]). sot b = 1m o(ugn) if sort a = uf.find(E[j]). u = t.find(E[j]) if sort b = 1m Trick log m ≤ log n = 0(log	g order by weight $O(m \log m)$ cructure $O(n)$ source) $O(\log n)$ $O(\log n)$ $O(\log n)$ So runtime is in $O(m \log n)$
	37

