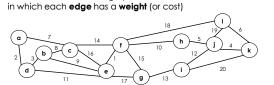
CS 341: ALGORITHMS

Lecture 13: graph algorithms IV – minimum spanning trees Readings: see website

> Trevor Brown https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

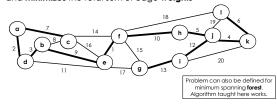
WEIGHTED UNDIRECTED GRAPH

Problem can also be defined for directed graphs... Consider an **undirected** graph



MINIMUM SPANNING TREE (MST)

A tree (connected acyclic graph) that includes every node, and minimizes the total sum of edge weights



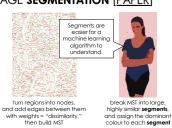
APPLICATION: INTERNET BACKBONE PLANNING

Want to connect n cities with internet backbone links

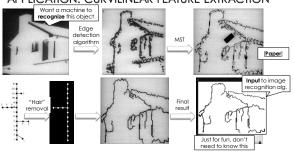
- Direct links possible between each pair of cities
- Each link has a certain dollar cost (excavation, materials, distance & time, legal costs...)
- Want to minimize total cost

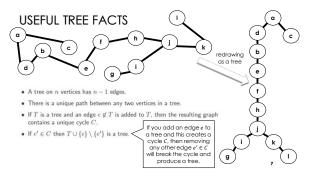
APPLICATION: IMAGE SEGMENTATION [PAPER]

break image into **regions**by colour similarity
via other techniques



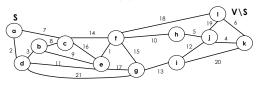
APPLICATION: CURVILINEAR FEATURE EXTRACTION





A CUT OF A GRAPH

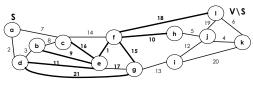
Definition: a **cut** in a graph G = (V,E) is a partition of Vinto two non-empty subsets ${\bf S}$ and ${\bf V} \setminus {\bf S}$



THE CUTSET OF A CUT

Edges in the cutset are also said to "cross the cut"

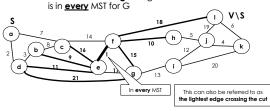
Definition: given a cut (S, V\S), the **cutset** is the **set of edges** with one endpoint in **S** and the other in $V\S$

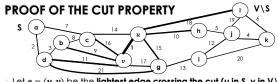


THE CUT PROPERTY

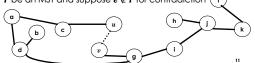
The minimum weight edge is also called the "lightest edge"

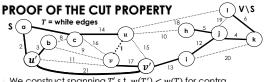
Theorem: for any cut (S, $V\S$) of a graph G, the minimum weight edge in the cutset





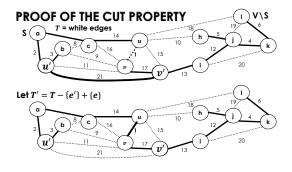
Let e = (u, v) be the lightest edge crossing the cut (u in S, v in V\S) Let T be an MST and suppose $e \notin T$ for contradiction (1)

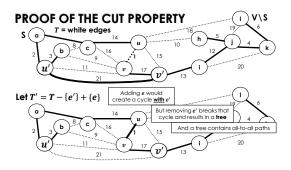


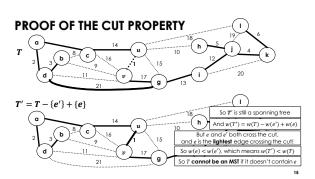


- We construct spanning T' s.t. w(T') < w(T) for contra.
- T is spanning, so exists path $u \leadsto v$
- Path starts in S and ends in V\S This edge crosses the cut so contains an edge e' = (u', v') with $u' \in S, v' \in V \setminus S$
- Let $T' = T \{e'\} + \{e\}$

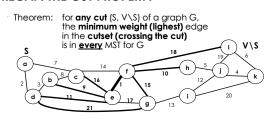
Exchanging edges that cross the cut







RECAP: THE CUT PROPERTY



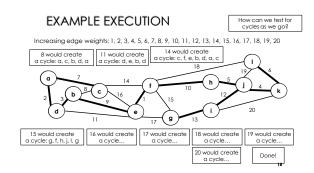
BUILDING AN MST

Kruskal's algorithm [introduced <u>in this 3-page paper</u> from 1955] Greedy

Sort edges from lightest to heaviest

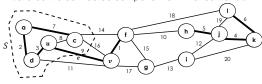
For each edge e in this order

Add e to T if it does not create a cycle



PROOF

- Let T be partial spanning tree just before adding e=(u,v), the lightest edge that does not create a cycle
- $^\circ$ Let S be the connected component of T that contains u

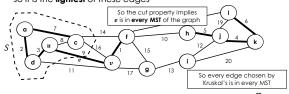


PROOF

19

21

- Note e = (u, v) crosses the cut $(S, V \setminus S)$ or it would create a cycle
- Out of all edges crossing the cut, e is considered first, so it is the **lightest** of these edges



IMPLEMENTING KRUSKAL'S

- Sort edges from lightest to heaviest
- For each edge e in this order
 - Add e to T if it does not create a cycle

How can we determine whether adding e would create a cycle?

UNION FIND

Represents a **partition** of set $S = \{e_1, ..., e_n\}$ into **disjoint subsets**

Initially n disjoint subsets $S_i = \{e_i\}$

Operations

 $Union(S_i, S_j)$ replaces S_i and S_j by their union $S_i \cup S_j$

 $Find(e_i)$ returns the **label** of the set containing e_i

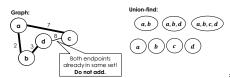
To avoid strange/long names, keep one of the original set names

22

 e_1, e_2

KRUSKAL'S USING UNION-FIND

- Each graph node is initially in its own subset
- Add an edge \rightarrow union two subsets
- An edge **creates a cycle IFF** its endpoints are in the **same subset**



PSEUDOCODE FOR KRUSKAL'S USING UNION-FIND

```
1 Kruskal(V[1..n], E[1..m])
2 sort E[1..m] in increasing order by weight
uf = new UnionFind data structure
mst = new List
for j = 1..m
est = uf.find(E[j].source)
set b = uf.find(E[j].target)
if set a != set b
mst.ad(E[j])
10
return mst
```

TIME COMPLEXITY?

OTHER NOTABLE MST ALGORITHMS

- Prim's algorithm
- Incrementally extend a tree T into an MST, by:
- Initializing T to contain any arbitrary node in G
- Repeatedly selecting the lightest edge < that crosses cut (T, V\T)

Use priority queue to store **outgoing** edges from T (and repeatedly extract the minimum weight one)

- Visualization: https://www.cs.usfca.edu/~galles/visualization/Prim.html
- Borůvka's algorithm

There is also a fast **parallel hybrid** of Prim and Borůvka

- Like Kruskal (merging components), but with phases
- In each phase, select an outgoing edge for **every** component, and add **all** edges found in the phase

26

A FUN APPLICATION: MAZE BUILDING

- Create grid graph with
- edges up/down/left/right
- Randomize edge weights

then run Kruskal's

[video clip]

union-by-rank only yields $O(m \log n)$ 25

VISUALIZING KRUSKAL'S (WITHOUT PATH COMPRESSION)

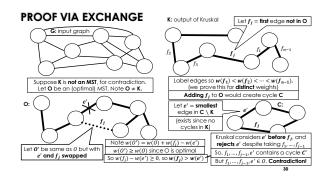
https://www.cs.usfca.edu/~galles/visualization/Kruskal.html

27

28

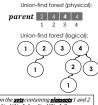
BONUS SLIDES

- Kruskal's proof via exchange argument instead
- Implementing union-find efficiently



UNION FIND IMPLEMENTATION

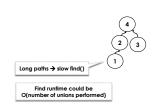
- Suppose we are partitioning set $\{1, ..., n\}$ into subsets $S_1, ..., S_n$
- Represent the partition as a forest of trees
- Initially one single-node tree per subset
- Each node has a parent pointer
- Find(i) returns the **root** of the tree containing element i
- Union(i,j) makes one root the parent of the other



Let's union the <u>sets</u> containing <u>elements</u> 1 and 2 $find(1) \rightarrow 1$, $find(2) \rightarrow 2$ Union(1,2): parent[1] = 2

How about elements 4 and 1? $find(4) \rightarrow 4$, $find(1) \rightarrow 2$ Union(4,2): parent[2] = 4How about elements 3 and 1? $find(3) \rightarrow 3$, $find(1) \rightarrow 4$ Union(3,4): parent[3] = 4

PROBLEM: SLOW FIND()



UNION-FIND WITH UNION BY RANK

- Keep track of heights of trees
- Make root with greater height be the parent
 - Union of two trees with height hhas height h+1
 - Union of tree with height h and tree with height < hhas height h
- Runtime with union by rank?

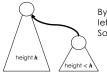
Let's union the <u>sets</u> containing <u>elements</u> 1 and 2 find(1) \Rightarrow 1, find(2) \Rightarrow 2
Union(1,2): same height \Rightarrow parent[1] = 2

How about elements 4 and 1? $find(4) \rightarrow 4, \quad find(1) \rightarrow 2$ $Union(4,2): \ \textbf{2's height is greater} \rightarrow parent[4] = 2$

33

RUNTIME OF UNION BY RANK

- Can prove the following lemma by induction: Each tree of height h contains at least 2^h nodes
- Case 1: trees of different height

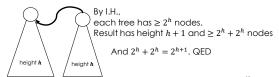


left tree already has $\geq 2^h$ nodes. So result has height h and $\geq 2^h$ nodes

RUNTIME OF UNION BY RANK

Can prove the following lemma by induction: Each tree of height h contains at least 2^h nodes

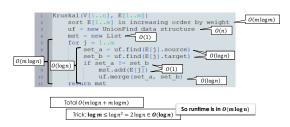
Case 2: trees of same height



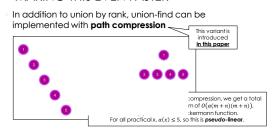
RUNTIME OF UNION BY RANK

- How does the **lemma** help?
 - Each tree of height h contains at least 2^h nodes
- There are only n nodes in the graph
 - So **height** is at most $\log n$
 - (Lemma: a tree of height log ncontains at least $2^{\log n}$ nodes and $2^{\log n} = n$
- So the longest path in the union-find forest is $\log n$ So all union-find operations run in $\Theta(\log n)$ time!

TIME COMPLEXITY USING UNION BY RANK



MAKING THIS EVEN FASTER



EFFICIENT UNION-FIND