
CS 341: ALGORITHMS
Lecture 14: graph algorithms V – single source shortest path

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca


DIJKSTRA’S ALGORITHM
Single-source shortest path

in a graph with non-negative edge weights

2



PROBLEM: SINGLE SOURCE SHORTEST PATHS (SSSP)

• Input: graph 𝐺 = (𝑉, 𝐸) and a

non-negative weight function 𝑤 𝑒 defined for every edge 𝑒

• Problem: for every node 𝑣 ≠ 𝒔, output a path 𝒔 ⇝ 𝑣
with the smallest total weight (among all paths 𝒔 ⇝ 𝑣)

• I.e., each path 𝑃 should minimize 𝑤 𝑃 = σ𝑒∈𝑃 𝑤(𝑒)

d

c
b

a

e

f

g

i

h j

l

k

7

2 3

8

11

15

6
18

14
4

1

9

17

10

20

12

13

5

16

19

21

22

d

a

c

a

e

f

i

h j
c

a

And so on… one path for each node.

Suppose 
this is 𝒔

Shortest 

path to 𝑑
Shortest 

path to 𝑐

Shortest 

path to 𝑖

“Shortest” means 

minimum weight

Let’s study directed G.

Can also be defined for undirected G…

3



APPLICATION: DRIVING DISTANCE 

TO MANY POSSIBLE DESTINATIONS

• Single source: from where you are

• Shortest paths: to all destinations

• Display a subset of destinations

• Include the optimal distances 

computed using SSSP algorithm

• Other heuristics… traffic? Lights?

• Weights can combine many factors

4



Game AI:

path finding

with waypoints

Divide game world 

into linear paths, 

then send game 

characters in 

straight lines 

between 

waypoints

Otherwise use BFS to find shortest sequence 

of waypoints (with fewest waypoints)

If some linear paths 

are much 

faster/slower, use 

weighted SSSP

5

[video clip]



𝒅𝒊𝒔𝒕[𝒅] is 
optimal

𝒅𝒊𝒔𝒕[𝒃] is 
optimal

𝒅𝒊𝒔𝒕[𝒄] is 
optimal

DIJKSTRA’S ALGORITHM
ILLUSTRATIVE EXAMPLE

d

c
b

a

e

f

g

i

h j

l

k

7

2 3

8

11

15

618

14
4

1

9

17

10

20

12

13

5

16

19

21

22

a,0

Start node 

𝒔 is here

Showing

𝑑𝑖𝑠𝑡-values

d,∞

c,∞
b,∞

e,∞

f,∞

h,∞
i,∞

g,∞ j,∞

l,∞

k,∞c,𝟕

d,𝟐d,𝟐

b,𝟓b,𝟓 c,𝟕

e,𝟐𝟑

𝒅𝒊𝒔𝒕[𝒆] is 
optimal

e,𝟐𝟑

f,𝟐𝟒

𝒅𝒊𝒔𝒕[𝒇] is 
optimal

f,𝟐𝟒

2

g,𝟒𝟓

h,𝟑𝟗

𝒅𝒊𝒔𝒕[𝒉] is 
optimal

h,𝟑𝟗

g,𝟒𝟏

𝒅𝒊𝒔𝒕[𝒈] is 
optimal

g,𝟒𝟏 j,𝟓𝟎

𝒅𝒊𝒔𝒕[𝒋] is 
optimal

j,𝟓𝟎

i,𝟔𝟐

l,𝟔𝟗

𝒅𝒊𝒔𝒕[𝒊] is 
optimal

i,𝟔𝟐

𝒅𝒊𝒔𝒕[ℓ] is 
optimal

l,𝟔𝟗

k,𝟕𝟓

𝒅𝒊𝒔𝒕[𝒌] is 
optimal

k,𝟕𝟓

Done!

6

This 𝑑𝑖𝑠𝑡 is 

optimal!

Can we use this optimal 𝑑𝑖𝑠𝑡 to 

improve the 𝑑𝑖𝑠𝑡 of neighbours

We call this relaxing 

the neighbours

Key insight: after relaxing all, the smallest 𝑑𝑖𝑠𝑡 (that we 

didn’t already know was optimal) is now optimal



7

Maintain nodes in priority order, 

ordered by smallest distance

Enqueue all nodes with distance ∞
except for 𝑠 with distance 0

Eventually dequeue all nodes (no more enqueues)

Relax neighbour 𝒗

Each dequeued node 𝒖 has optimal 𝒅𝒊𝒔𝒕



CORRECTNESS: INTUITION

• Dijkstra’s algorithm iteratively construct a set 𝑶𝑷𝑻 of nodes

for which we know the shortest path from 𝒔 (initially 𝑶𝑷𝑻 = {𝒔})

• After each relaxation step, we grow 𝑂𝑃𝑇 by adding

the node in 𝑽\𝑶𝑷𝑻 with the smallest 𝒅𝒊𝒔𝒕

8

d

c
b

a

e

f

g

i

h j

l

k

7

2 3

8

11

15

618

14
4

1

9

17

10

20

12

13

5

16

19

21

22

a,0

d,∞

c,∞
b,∞

e,∞

f,∞

h,∞
i,∞

g,∞ j,∞

l,∞

k,∞c,𝟕

d,𝟐d,𝟐

b,𝟓b,𝟓 c,𝟕

e,𝟐𝟑e,𝟐𝟑

2

Nodes in 𝑶𝑷𝑻 are 

coloured like this

And so on…



PROOF

• Theorem: At the end of the algorithm, for all 𝑢,

𝑑𝑖𝑠𝑡[𝑢] is exactly the total weight of the shortest 𝑠 ⇝ 𝑢 path

• We prove this in two parts

• 𝑑𝑖𝑠𝑡 𝑢 ≤ the total weight of the shortest 𝑠 ⇝ 𝑢 path (case ≤)

• 𝑑𝑖𝑠𝑡 𝑢 ≥ the total weight of the shortest 𝑠 ⇝ 𝑢 path (case ≥)

9



CASE ≤ [ERICKSON THM.8.5]

• Let 𝑷 be any arbitrary 𝒔 ⇝ 𝒖 path 𝑣0 → 𝑣1 → ⋯ → 𝑣ℓ

where 𝑣0 = 𝑠 and 𝑣ℓ = 𝑢

• For any index 𝑗 let 𝑳𝒋 denote 𝒘 𝒗𝟎 → 𝒗𝟏 → ⋯ → 𝒗𝒋

• We prove by induction: 𝑑𝑖𝑠𝑡 𝑣𝑗 ≤ 𝐿𝑗 for all 𝑗

10

d

cb

a

e

7

2 3

8

11

16
22

𝒔, 𝟎

d,∞

c,∞b,∞

e,∞

𝒖,𝟕

d,𝟐d,𝟐

b,𝟓𝒄, 𝟓

𝒗𝒋

𝑷

𝑤(orange edges) = 𝑳𝒋



• Prove by induction: ∀𝑗 ∶ 𝑑𝑖𝑠𝑡 𝑣𝑗 ≤ 𝐿𝑗

• Base case: 𝑑𝑖𝑠𝑡 𝑣0 = 𝑑𝑖𝑠𝑡 𝑠 = 0 = 𝐿0

• Ind. step: suppose ∀𝒋>𝟎 ∶ 𝒅𝒊𝒔𝒕 𝒗𝒋−𝟏 ≤ 𝑳𝒋−𝟏

• When dequeueMin() returns 𝒗𝒋−𝟏:

we check if 𝑑𝑖𝑠𝑡 𝑣𝑗−1 + 𝑤 𝑣𝑗−1, 𝑣𝑗 < 𝑑𝑖𝑠𝑡[𝑣𝑗]

• If so, we set 𝑑𝑖𝑠𝑡 𝑣𝑗 = 𝑑𝑖𝑠𝑡 𝑣𝑗−1 + 𝑤 𝑣𝑗−1, 𝑣𝑗

• If not, 𝑑𝑖𝑠𝑡 𝑣𝑗 ≤ 𝑑𝑖𝑠𝑡 𝑣𝑗−1 + 𝑤 𝑣𝑗−1, 𝑣𝑗

• In both cases, 𝑑𝑖𝑠𝑡 𝑣𝑗 ≤ 𝑑𝑖𝑠𝑡 𝑣𝑗−1 + 𝑤 𝑣𝑗−1, 𝑣𝑗

• By I.H. 𝑑𝑖𝑠𝑡 𝑣𝑗−1 ≤ 𝐿𝑗−1 so 𝑑𝑖𝑠𝑡 𝑣𝑗 ≤ 𝐿𝑗−1 + 𝑤 𝑣𝑗−1, 𝑣𝑗

• And 𝐿𝑗−1 + 𝑤 𝑣𝑗−1, 𝑣𝑗 = 𝐿𝑗 by definition

• So 𝒅𝒊𝒔𝒕 𝒗𝒋 ≤ 𝑳𝒋
11

d

cb

a

e

7

2
3

8

11

16
22

𝒔, 𝟎

d,∞

c,∞b,∞

e,∞

𝒖,𝟕

d,𝟐d,𝟐

b,𝟓𝒄, 𝟓

𝒗𝒋

𝑤(orange edges) = 𝑳𝒋

𝒗𝒋−𝟏

This proves 𝑑𝑖𝑠𝑡 𝑢 ≤ 𝐿𝑢, 

the weight of an 
arbitrary 𝑠 ⇝ 𝑢 path.

So 𝑑𝑖𝑠𝑡 𝑢 ≤ the weight of EVERY 𝑠 ⇝ 𝑢 path.

Including the shortest 𝑠 ⇝ 𝑢 path!



CASE ≥

• Let 𝑷′ be the path 𝑠 → ⋯ → 𝑝𝑟𝑒𝑑 𝑝𝑟𝑒𝑑 𝑢 → 𝑝𝑟𝑒𝑑 𝑢 → 𝑢

• I.e., the reverse of following 𝑝𝑟𝑒𝑑 pointers from 𝑢 back to 𝑠

• We show 𝑑𝑖𝑠𝑡[𝑢] is as long as this path

(and hence as long as the shortest path)

• Denote the nodes in 𝑃′ by 𝑣0, 𝑣1, … , 𝑣ℓ where 𝑣0 = 𝑠 and 𝑣ℓ = 𝑢

• Let 𝐿𝑗 = 𝑤 𝑣0 → 𝑣1 → ⋯ → 𝑣𝑗

• Prove by induction: ∀𝑗>0 ∶ 𝑑𝑖𝑠𝑡 𝑣𝑗 = 𝐿𝑗

• Base case: 𝑑𝑖𝑠𝑡 𝑣0 = 𝑑𝑖𝑠𝑡 𝑠 = 0 = 𝐿0

12



CASE ≥

• 𝑷′ = 𝒗𝟎 → ⋯ → 𝒗ℓ = 𝑠 → ⋯ → 𝑝𝑟𝑒𝑑 𝑝𝑟𝑒𝑑 𝑢 → 𝑝𝑟𝑒𝑑 𝑢 → 𝑢

• 𝐿𝑗 = 𝑤 𝑣0 → 𝑣1 → ⋯ → 𝑣𝑗

• Inductive step: suppose ∀𝑗>0 ∶ 𝑑𝑖𝑠𝑡 𝑣𝑗−1 = 𝐿𝑗−1

• When we set 𝑝𝑟𝑒𝑑 𝑣𝑗 = 𝑣𝑗−1, we set 𝒅𝒊𝒔𝒕 𝒗𝒋 = 𝒅𝒊𝒔𝒕 𝒗𝒋−𝟏 + 𝒘 𝒗𝒋−𝟏, 𝒗𝒋

• By I.H., 𝑑𝑖𝑠𝑡 𝑣𝑗 = 𝑳𝒋−𝟏 + 𝑤 𝑣𝑗−1, 𝑣𝑗

• By definition 𝐿𝑗 = 𝐿𝑗−1 + 𝑤 𝑣𝑗−1, 𝑣𝑗

• So 𝒅𝒊𝒔𝒕 𝒗𝒋 = 𝑳𝒋
13

Recall:

So 𝑑𝑖𝑠𝑡[𝑢] is both ≤ and ≥ to the 

length of the shortest 𝑠 ⇝ 𝑢 path!

That means it’s equal to the length of the shortest path!

So 𝑑𝑖𝑠𝑡 𝑢 = length of 

a particular path 
𝑷′ in the graph

And length of 𝑷′ is ≥ 

length of shortest path

So 𝑑𝑖𝑠𝑡 𝑢 ≥ length of shortest path 𝑠 ⇝ 𝑢



RUNTIME

14

𝑂(𝑛)𝑂(𝑛)

𝑂(log 𝑛)
𝑂(𝑛 log 𝑛)

𝑂(log 𝑛)

𝑂(log 𝑛)

• Each node enqueued 

and dequeueMin’d once

• 𝑂 𝑛 log 𝑛

• For each dequeueMin, 

do 𝑂 log 𝑛 per neighbour

• 𝑂 log 𝑛 for each edge 

• 𝑂 𝑚 log 𝑛
w/adjacency lists

• Total time 𝑶 𝒏 + 𝒎 𝐥𝐨𝐠 𝒏

Space complexity?

𝑂(𝑛)



OUTPUTTING ACTUAL SHORTEST PATH(S)?

15

• To compute the actual shortest path 𝑠 ⇝ 𝑡

• Inspect 𝑝𝑟𝑒𝑑[𝑡]

• If it is NULL, there is no such path

• Otherwise, follow 𝑝𝑟𝑒𝑑 pointers back to 𝑠,

and return the reverse of that path



AN ALTERNATIVE

IMPLEMENTATION

16

• Instead of using

a priority queue

• Find the minimum dist[] 

node to add to OPT

via linear search

• Runtime?

• 𝑶(𝒏𝟐)

• Better or worse than

𝑶 𝒏 + 𝒎 𝐥𝐨𝐠 𝒏 ?



WEBSITE DEMONSTRATING DIJKSTRA’S ALG

• https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html

17

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html


BELLMAN-FORD
Single-source shortest path

in a graph with possibly negative edge weights

but no negative cycles

18



19



BELLMAN-FORD

𝑂(𝑛)

𝑂(𝑛)

𝑂(1)𝑂(𝑛) outer iterations

𝑂(𝑚) inner iterations 

per outer iteration

𝑂(1) work per 

inner iteration

Total 𝑂(𝑛𝑚)

Could 

be O(𝑛3)

20



BEST CASE EXECUTION

Edges happen to be processed 

left to right by the inner loop

It technically suffices to do one

iteration of the outer loop

21



WORST CASE EXECUTION

Edges happen to be processed 

right to left by the inner loop

Dijkstra’s is similar, but consistently achieves good ordering using its priority queue

Need 𝑛 iterations of 
outer loop

Since the longest possible path without a cycle can be 
𝑛 − 1 edges, the edges must be scanned 𝑛 − 1 times to 

ensure the shortest path has been found for all nodes.

22



WHY BELLMAN-FORD WORKS

• Not going to prove this (by induction), but the crucial lemma is:

• After 𝑖 iterations of the outer for-loop, 

• if 𝐷 𝑢 ≠ ∞, it is equal to the weight of some path 𝑠 ⇝ 𝑢; and

• if there is a path 𝑃 = (𝑠 ⇝ 𝑢) with at most 𝒊 edges, then 𝐷 𝑢 ≤ 𝑤(𝑃)

• So, after 𝑛 − 1 iterations, if ∃ path 𝑃 with at most 𝑛 − 1 edges,

then 𝐷 𝑢 ≤ 𝑤(𝑃). (Note: any more edges would create a cycle.)

• So, if 𝑢 is reachable from 𝑠, then 𝐷[𝑢] is the length of

the shortest simple path (no cycles) from 𝑠 to 𝑢

Of course every simple path 

has at most 𝑛 − 1 edges

So what if we do another iteration, 

and some 𝐷[𝑢] improves?

There is a 

negative cycle!

23



A MORE DETAILED 

IMPLEMENTATION

• With early stopping

• and checking for

negative cycles

24



BONUS SLIDE

• Why can’t you just modify a graph with negative weights 

by: finding the minimum edge weight Wmin, and adding 

that to each edge, so you no longer have negative edges 

and can run Dijkstra’s algorithm?

• Exercise: can you find a graph for which this will cause 

Dijkstra’s algorithm to return the wrong answer?

• Solution:

• Consider a graph with 5 nodes: s, a, b, c, t

• And edges s->a with weight -10, b->t with weight 10

s->b weight -1, b->c weight -1, c->t weight -1

• What happens if you modify this graph as proposed, 

then run Dijkstra’s to find the shortest path from s to t? 25


