CS 341: ALGORITHMS

Lecture 14: graph algorithms V - single source shortest path Readings: see website

Trevor Brown


```
Dijkstra(adj[1..n], s)
    pred[1..n] = [null, null, ..., null]
    dist[1..n] = [infty, infty, ..., infty]
    pq = new priority queue Maintain nodes in priority order,
    dist[s] = 0
    for u = 1..
            pq.enqueue (u
    while pq is not empty Eventually dequeve all nodes (no more enqueues)
    while pq is not empty 
            except fors with distance 0
            u=pq.dequeueMin() Each dequeved node u has optimal dist
            if dist[u] +w(u,v)<dist[v]
                    |ist[v] = dist[u]+w(u,v) R R {lax neighbourv
                    pred[v] = u
                    pred[v]=u
```

 return pred, dist

CORRECTNESS: INTUITION

- Djjkstra's algorithm iteratively construct a set OPT of nodes for which we know the shortest path from s (initially $O P T=\{s\}$)
- After each relaxation step, we grow OPT by adding the node in $V \backslash O P T$ with the smallest dist

PROOF

- Theorem: At the end of the algorithm, for all u, dist $[u]$ is exactly the total weight of the shortest $s m u$ path
- We prove this in two parts
- dist $[u] \leq$ the total weight of the shortest $s w u$ path (case \leq)
- $\operatorname{dist}[u] \geq$ the total weight of the shortest $s m u$ path (case \geq)

CASE \leq

[ERICKSON THM :8.5]

- Let P be any arbitrary $s w u$ path $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{\ell}$ where $v_{0}=s$ and $v_{\ell}=u$
- For any index j let L_{j} denote $w\left(v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{j}\right)$
- We prove by induction: $\operatorname{dist}\left[v_{j}\right] \leq L_{j}$ for all j $w($ orange edges $)=L_{j}$

CASE \geq

- Let P^{\prime} be the path $s \rightarrow \cdots \rightarrow \operatorname{pred}[\operatorname{pred}[u]] \rightarrow \operatorname{pred}[u] \rightarrow u$
- I.e., the reverse of following pred pointers from u back to s
- We show dist $[u]$ is as long as this path (and hence as long as the shortest path)
- Denote the nodes in P^{\prime} by $v_{0}, v_{1}, \ldots, v_{\ell}$ where $v_{0}=s$ and $v_{\ell}=u$
- Let $L_{j}=w\left(v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{j}\right)$
- Prove by induction: $\forall_{j>0}: \operatorname{dist}\left[v_{j}\right]=L_{j}$
- Base case: $\operatorname{dist}\left[v_{0}\right]=\operatorname{dist}[s]=0=L_{0}$

CASE \geq

- $P^{\prime}=v_{0} \rightarrow \cdots \rightarrow v_{\ell}=s \rightarrow \cdots \rightarrow \operatorname{pred}[\operatorname{pred}[u]] \rightarrow \operatorname{pred}[u] \rightarrow u$
- $\iota_{j}=w\left(v_{0} \rightarrow v_{1} \rightarrow \cdots v_{j}\right)$
- Inducive step: suppose $v_{\gg 0}:$ dist $\left[v_{j-1}\right]=L_{j-1}$
- When we set pred $\left[v_{j}\right]=v_{j-1}$, we set $\operatorname{dist}\left[v_{j}\right]=\operatorname{dist}\left[v_{j-1}\right]+w\left(v_{j-1}, v_{i}\right)$

| Recall: $\|$if $\operatorname{dist}[u]+w(u, v)<\operatorname{dist}[v]$

 $\operatorname{dist}[v]=\operatorname{dist}[u]+w(u, v)$
 $\operatorname{pred}[v]=u$ |
| :---: | :---: |

So dist $[u]=$ length
a particular path
P^{\prime} in the graph And length of P^{\prime} is \geq length of shortest path

- By I.H., dist $\left[v_{j}\right]=L_{j-1}+w\left(v_{j-1}, v_{j}\right)$
- By definition $L_{j}=L_{j-1}+w\left(v_{j-1}, v_{j}\right)$ So dist $[u] \geq$ length of shortest path $s m u$ So dist $[u]$ is both \leq and \geq to the length of the shortest $s w u$ path!
That means it's equal to the length of the shortest path!

OUTPUTIING ACTUAL SHORTEST PATH(S)?

- To compute the actual shortest path $s w t$
- Inspect pred[t]
- If it is NULL, there is no such path
- Otherwise, follow pred pointers back to s, and return the reverse of that path

```
kstra(adj[1..n], s)
```

kstra(adj[1..n], s)
pred[1..n] = [null, null, ..., null]
pred[1..n] = [null, null, ..., null]
dist[1,.n] = [infty, infty, infty]
dist[1,.n] = [infty, infty, infty]
dist[s] = 0
dist[s] = 0
num0pt = 1
num0pt = 1
while numOpt < n
while numOpt < n
choose u such that OPT[u] =- fals
choose u such that OPT[u] =- fals
and dist[u] is minimized
and dist[u] is minimized
OPT [u] = true
OPT [u] = true
for v = adj[u]
for v = adj[u]
if dist[u] +w(u,v)< dist[v]
if dist[u] +w(u,v)< dist[v]
dist[v] = dist[u] +w(u,v)
dist[v] = dist[u] +w(u,v)
pred[v] = u
pred[v] = u
return pred, dist

```
                            return pred, dist
```


AN ALTERNATIVE

 IMPLEMENTATION- Instead of using
a priority queue
- Find the minimum dist[] node to add to OPT via linear search

- Runtime?

$$
\cdot O\left(n^{2}\right)
$$

- Betfer or worse than

 $\boldsymbol{O}((n+m) \log n) ?$```
return pred, dist

WEBSITE DEMONSTRATING DIJKSTRA'S ALG
- httos:// Www.cs.usfca.edu/-galles/visualization/Dilikstra.html

\section*{Shortest Paths and Negative Weight Cycles}

Subsequent algorithms we will be studying will solve shortest path problems as long as there are no cycles having negative weight.
If there is a negative weight cycle, then there is no shortest path (why?). There is still a shortest simple path, but there are apparently no known efficient algorithms to find the shortest simple paths in in graphs congtaining negative weight cycles.
If there are no negative weight cycles, we can assume WLOG that shortest paths are simple paths (any path can be replaced by a simple path having the same weight).
Negative weight edges in an undirected graph are not allowed, as they would give rise to a negative weight cycle (consisting of two edges) in the associated directed graph.

\section*{BELLMAN-FORD}

The Bellman-Ford algorithm solves the single source shortest path problem in any directed graph without negative weight cycles.
The algorithm is very simple to describe:
Repeat \(n-1\) times: relax every edge in the graph (where relax is the updating step in Dijkstra's algorithm).

\section*{WORST CASE EXECUTION}

Need \(n\) iterations of outer loop

\section*{WHY BELLMAN-FORD WORKS}
- Not going to prove this (by induction), but the crucial lemma is:
- After \(i\) iterations of the outer for-loop,
- if \(D[u] \neq \infty\), it is equal to the weight of some path \(s m u\); and
- if there is a path \(P=(s>u)\) with at most \(i\) edges, then \(D[u] \leq w(P)\)
- So, after \(n-1\) iterations, if \(\exists\) path \(P\) with at most \(n-1\) edges, then \(D[u] \leq w(P)\). (Note: any more edges would create a cycle.)
- So, if \(u\) is reachable from \(s\), then \(D[u]\) is the length of the shortest simple path (no cycles) from \(s\) to \(u\)

\section*{A MORE DETAILED} IMPLEMENTATION
- With early stopping
- and checking for negative cycles

\section*{BONUS SLIDE}

Why can't you just modify a graph with negative weights by: finding the minimum edge weight Wmin, and adding that to each edge, so you no longer have negative edges and can run Dijkstra's algorithm?

Exercise: can you find a graph for which this will cause Dijkstra's algorithm to return the wrong answer?

Solution:
- Consider a graph with 5 nodes: s, a, b, c, \(\dagger\)
- And edges \(s->a\) with weight \(-10, b->t\) with weight 10 s->b weight \(-1, b \rightarrow c\) weight \(-1, c->t\) weight -1.
- What happens if you modify this graph as proposed then run Dijkstra's to find the shortest path from s to t? 25```

