2023-10-30

CS 341: ALGORITHMS

Lecture 14: graph algorithms V - single source shortest path
Readings: see website

DIJKSTRA'S ALGORITHM

Trevor Brown Single-source shortest path
in a graph with non-negative edge weights
https://student.cs.uwaterloo.ca/~cs341 grap! 9 9

trevor.brown@uwaterloo.ca

PROBLEM: SINGLE SOURCE SHORTEST PATHS (SSSP) wess e APPLICATION: DRIVING DISTANCE
Input: graph 6 = (v, E) and a [[canaio o tudy shected edc. S C' TO MANY POSSIBLE DESTINATIONS

non-negative weight function w(e) defined for every edge e

TShorfesT” means LT (G0 i .

Problem: for every node v # s, output a path s = v Single source: from where you are

with the smallest total weight (among all paths s = v) Shortest paths: to all destinations
I.e., each path P should minimize w(P) = X.cp w(e) = m'h{m:] S Display a subset of destinations

;2?;?;: Include the optimal distances
e '"'"'”‘7'“"'-:] 10 computed using SSSP algorithm

Other heuristics... traffic? Lights2

ot Weights can combine many factors

)
Shortest < o
pathtod

Shortest
pathto ¢

p— DIJKSTRA'S ALGORITHM
path finding ILLUSTRATIVE EXAMPLE

with waypoints

dist[k] is
optimal

Showing
Divide game world dist-values
into linear paths,
then send game
. . charactersin
[V|deo C||p] straight lines
between
waypoints

This dist is
optimall

Can we use this optimal dist to
improve the dist of neighbours

If some linear paths
are much
faster/slower, use
weighted SSSP

We call this relaxing
the neighbours

Key insight: after relaxing all, the smallest dist (that we

Otherwise use BFS to find shortest sequence didn't already know was optimal) is now optimal

of waypoints (with fewest waypoints)

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

1 Dijkstra(adj[l..n], s)

2 pred(1l. .n] [null, null, ..., null]

3 dist{l. n] = [infty, infty, ..., infty]

5 ordered by smallest distance

6 dist[s] = ¢

7 for u = 1..s }ﬁ Enqueue all nodes with distance co ‘

8 pg.enqueue(u, distlu]) except for s with distance 0

9
10 while pq is not empty Eventually dequeue all nodes (no more enqueues)
11 u = pq. in() " -
2 for v Ar sditul [Each dequeued node u has optimal dist_|
13 if dist[u] + w(u,v) < dist[v]
14 dist(v] = dist{u] + w(u,v) -
15 prediv] - u
16 pq.changePriority(v, dist[v])

17
18 return pred, dist
7
PROOF

Theorem: At the end of the algorithm, for all u,
dist[u] is exactly the total weight of the shortest s w» u path

We prove this in two parts
dist[u] < the total weight of the shortest s «w u path (case <)
dist[u] = the total weight of the shortest s w u path (case =)

Prove by induction: vj : dist[v;] < L;
w(orange edges) = L;
Base case: dist[vy] = dist[s] =0 =L,
Ind. step: suppose Vjsq : dist[vj_1] < Ly
When dequeueMin() returns vj_y:
we check if dist[v;j_;] + w(vj_1, ;) < dist[v;]
If so, we set dist[v;] = dist[vj_,] + w(vj_1,v;)
If not, dist[v;] < dist[vj_1] + w(vj_1,v})

In both cases, dist[v;] < dist[v;_,] + w(vj_1,v})

By IH. dist[vj_y] < L;_y so dist[v;] < Lj_y +w(vj_,v;)| This proves dist[u] < Ly,
the weight of an
arbitrary s «» u path.

[o dist[u] < the weight of EVERY s = u path. |
Including the shortest s +» u path! n

And L;_; + w(vj_y,v;) = L; by definition

so dist[v)] < L;

2023-10-30

CORRECTNESS: INTUITION

Dijkstra’s algorithm iteratively construct a set OPT of nodes
for which we know the shortest path from s (initially OPT = {s})

After each relaxation step, we grow OPT by adding
the node in V\OPT with the smallest dist

CASE <

Let P be any arbitrary s «» u path vy, > v; > - > v,
wherevy, =sandv, =u

[ERICKSON THM.8.5]

For any index j let L; denote w(vy — vy - - - ;)
We prove by induction: dist[v;] < L; for all j

w(orange edges) = L;

CASE =
Let P’ be the path s - - - pred[pred[u]] - pred[u] > u
l.e., the reverse of following pred pointers from u back to s

We show dist[u] is as long as this path
(and hence as long as the shortest path)

Denote the nodesin P’ by vy, vy, ..., v, Where vy = s and v, = u
letL; = w(vg > vy > > V]-)

Prove by induction: V;. : dist[v;] = L;

Base case: dist[vy] = dist[s] =0 =L,

CASE 2

P' =vg > > vy =5 - > pred|pred[u]] > pred[u] - u
L =w(vo = v1 > > v))
Inductive step: suppose Vs : dist[vj_1] =Lj1

When we set pred[vl-] = vj_1, We set dist[vi] = dist[vi_l] + w(v]-_l, v]-)

if dist[u]l + w(u,v) < dist[v]®
dist[v] = dist[u] + w(u,v)
pred[v] = u

So dist[u] = length of
a particular path
P' in the graph
And length of P'is >
length of shortest path
l So dist[u] = length of shortest path s «» u]
So dist[u] isboth < and = to the
length of the shortest s w u pathl!

Recall:

By IL.H., dist[vj] =Lj 1+ w(vl-_l,vj)

By definition L; = L;_y + w(vj_1,v;)
So dist[v;] = I;

l That means it's equal to the length of the shortest path!] 13

OUTPUTTING ACTUAL SHORTEST PATH(S)?

To compute the actual shortest path s «» ¢
Inspect pred|[t]
If it is NULL, there is no such path

Otherwise, follow pred pointers back o s,
and return the reverse of that path

WEBSITE DEMONSTRATING DIJKSTRA'S ALG

14
15

1
2
3
4
5
6
g
8
9
10
11
12
13
14
15
16
17
18
19
20

2023-10-30

Dijkstraladj[! 1, s)
pred[1] = [null, null, ool — RUNTlME
dist[1..n] = [infty, infty, .
pq = new priority queue ~ Each node enqueuved
: and dequeueMin'd once
foru=1..n 0(nlogn)

Pq.enquete(u, dist[u]) .
For each dequeueMin,
do 0(logn) per neighbour

0(logn) for each edge

0(nlogn)
while pq is not empty
u = pq.dequeueMin()

for v in adj[u]
if dist{u] + w(u,v) < dist[v]
distv] = dist[u] + w(u,v)
predlv] = u
pq.changePriority(v, dist[v])

0(mlogn)
w/adjacency lists

Total time 0((n + m) logn)

Space complexity? ”

return pred, dist

Dijkstra(adjll. .01, s)
pred(i..n] = [null, aull, ..., null]

dist[l..n] - [infty, infty, ..., infty]
OPT - [false, false, ..., false]]

AN ALTERNATIVE
IMPLEMENTATION

Instead of using
a priority queve

Find the minimum dist[]
node to add to OPT
via linear search

dist([s])
OPT[s] = true
numOpt - |
while numOpt < n

choose u such that OPT[u] =« false|
and dist[u] is minimized

OPT[u] = true Runtime?
numOpt = numOpt + 1
For v - adjul on?)
if dist[u] + w(u,v) < dist[v]
distlv] = dist{u] + w(u,v) Better or worse than
prediv] = u o((n+m)logn)?
return pred, dist 1

BELLMAN-FORD

Single-source shortest path
in a graph with possibly negative edge weights
but no negative cycles

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html

Shortest Paths and Negative Weight Cycles

Subsequent algorithms we will be studying will solve shortest path
problems as long as there are no cycles having negative weight

If there is a negative weight cycle, then there is no shortest path (why?)

There is still a shortest simple path, but there are apparently no known
efficient algorithms to find the shortest simple paths in in graphs
congtaining negative weight cycles.

If there are no negative weight cycles, we can assume WLOG that shortest
paths are simple paths (any path can be replaced by a simple path having
the same weight).

Negative weight edges in an undirected graph are not allowed, as they

would give rise to a negative weight cycle (consisting of two edges) in the
associated directed graph

EST CASE EXECUTION

iteration of the outer loop

It technically suffices to do one

2023-10-30

BELLMAN-FORD

The Bellman-Ford algorithm solves the single source shortest path problem
in any directed graph without negative weight cycles.
The algorithm is very simple to describe:

Repeat n — 1 times: relax every edge in the graph (where relax is the
updating step in Dijkstra's algorithm)

mmnrwcn. El1..n),)
pred[1..n] = new array filled with null
D[1..nl = new array filled with infinity
D =0
0(n) outer iterations 3 e TN

0(m) inner iterations - for (u,v,w) in E
per outer iteration if Dlul + w < DIv]

7
2 - Div] = Dlu] + w
0(1) work per g prediv] = u
Could inner iteration 10 return (D, pred)
be 0(n®) e
Total 0(nm)

Need n iterations of
outer loop

WORST CASE EXECUTION

=3 ek 1 5t Edges happen to be processed
left o right by the inner loop
0

® o0 @ 0

BollmanFard(n, E[1. 2], 3)
_3 1 1 1 pred(L..n] = new array filled with mull
DLL..n] = new array filled with infinity
D] = ©
0 = P ~il Q fori=1..n

for {u,v,w] in E

if Dlu] + w = Dlv]
Div] = Dlu] +w
prediv] = u
return (0, pred)

SNV A WN

=

WHY BELLMAN-FORD WORKS

Not going to prove this (by induction), but the crucial lemma is:
After i iterations of the outer for-loop,
if D[u] # o0, it is equal to the weight of some path s » u; and
if there is a path P = (s = u) with at most i edges, then D[u] < w(P)

So, after n — 1 iterations, if 3 path P with at most n — 1 edges,
then D[u] < w(P). (Note: any more edges would create a cycle.)

So, if u is reachable from s, then D[u] is the length of
the shortest simple path (no cycles) from s to u

Of course every simple path So what if we do another iteration, There isa
has at most n — 1 edges and some D[u] improves? negative cycle!
23

-3 1 1 1
.—’.—-.—-.—“‘)‘a‘:"a Edges happen to be processed
right to left by the inner loop

0 o =3 0 0

-3 & (c) LS (D) 1 (E) | [meuimoraie, 11 o1,
2 pred[1 n] = new array filled with null
0 -3 oo = = 3 DIl o] = new array filled with infinity
o 1 4 B[3] =0
0; 00,00l Ba5%
6 for (u,v,w) in E
0 = = o o 7 if D[u] + w = D[v]
-3 1 il il 8 Dlv] = Dlu] +w
10 return (B, pred)
0 =3 o

'3 9 1 o 1 o 1 e Since the longest possible path without a cycle can be
0

0 e b e

n — 1 edges, the edges must be scanned n — 1 timesto
ensure the shortest path has been found for all nodes.

l Dijkstra’s is similar, but consistently achieves good ordering using its priority queue

BellmanFordCheck(n, E[1..n], s)

pred(1..n] = new array filled with null A MORE DETA".ED
D[1..n] = new array filled with infinity
Fisiae IMPLEMENTATION

fori=1..n

1
2
3
4
5 . .
6 With early stopping
7
8
9
10

and checking for
negative cycles

for (u,v,w) in E
if D{u] + w < D[v]
D{v] = D[u] + w

pred[v] u
11 [changed = true |
12 if not changed
13 exit loop
14 if i == n // assert: changed == true
15 return NEGATIVE_CYCLE
16 retUrn U, preEdT

BONUS SLIDE

Why can't you just modify a graph with negative weights
by: finding the minimum edge weight Wmin, and adding
that to each edge, so you no longer have negative edges
and can run Dijkstra’s algorithm?
Exercise: can you find a graph for which this will cause
Dijkstra's algorithm to return the wrong answer?2
Solution:
Consider a graph with 5 nodes: s, a, b, c, t
And edges s->a with weight -10, b->t with weight 10
s->b weight -1, b->c weight -1, c->t weight -1
What happens if you modify this graph as proposed,
then run Dijkstra’s to find the shortest path fromsto t2

2023-10-30

