CS 341: ALGORITHMS

Lecture 15: graph algorithms VI- all pairs shortest paths
Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

ALL PAIRS SHORTEST PATHS (APSP) PROBLEM

Instance: A directed graph $G=(V, E)$, and a weight matrix W, where $W[i, j]$ denotes the weight of edge $i j$, for all $i, j \in V, i \neq j$.
Find: For all pairs of vertices $u, v \in V, u \neq v$, a directed path P from u to v such that

$$
w(P)=\sum_{j \in P} W[i, j]
$$

is minimized

We allow edges to have negative weights, but we assume there are no negative-weight directed cycles in G.

from: to: $a \quad b \quad c \quad d$
$\begin{aligned} & \boldsymbol{a} \\ & \boldsymbol{b} \\ & \boldsymbol{c} \\ & \boldsymbol{d}\end{aligned} W[i, j]=\left[\begin{array}{cccc}0 & 3 & \infty & \infty \\ \infty & 0 & 12 & 5 \\ 4 & \infty & 0 & -1 \\ 2 & -4 & \infty & 0\end{array}\right]$

BETTER SOLUTION: SUCCESSIVE DOUBLING

The idea is to construct $L_{1}, L_{2}, L_{4}, \ldots L_{2}$, where t is the smallest
integer such that $2^{t} \geq n-1$.
Initialization: $L_{1}=W$ (as before).
Arguing optimal Let $P=$ minimum weigh
substructure
ij)-path with $\leq 2 m$ edges

Then $P=P_{1} \cup P_{2}$ where: P_{1} is the minimum weight (i, k)-path with $\leq m$ edges and (or else we could Then $P=P_{1} \cup P_{2}$ where. P_{2} is the minimum weight (k, j)-path with $\leq m$ edges or $m \geq 1$
improving P1 or P2)
$L_{2 m}[i, j]=\min \left\{L_{m}[i, k]+L_{m}[k, j]: 1 \leq k \leq n\right\}$
Don't know which node is midpoint of P , so try all K .

Second Solution: Successive Doubling

Algorithm: FasterAllPairsShortestPath(W)
$L_{1} \leftarrow W$
$m \leftarrow 1$
while $m<n-1$

Complexity analysis

$O\left(n^{3} \log n\right)$ runtime
$O\left(n^{2}\right)$ space

- First solution: sub-problem is a
path to the predecessor node

SUMMARY \&
WHAT'S NEXT

- Optimality: try all possible predecessor nodes k
paths to/from the midpoint node

- Optimality: try all possible midpoint nodes k
- Third solution: sub-problems are paths in which all interior nodes are in $\{1 . . k-1\}$
- I.e., we restrict paths to using a prefix of all nodes
- Optimality: try all ways to use new node \boldsymbol{k} as an interior node

THIRD SOLUTION: FLOYD-WARSHALL

Let $D_{k}[i, j]$ denote the length of the minimum-weight path $i w j$ in which all interior nodes are in the set $\{\mathbf{1}, \ldots, \boldsymbol{k}\}$.
We want to compute \boldsymbol{D}_{n}.
Let P be a min-weight $(i, j$)-path in which all interior nodes are in $\{1, \ldots, k\}$

Optimal solution: interior nodes are all in $\{1, \ldots, k\}$

Case $2: k$ is used in P

$$
\begin{aligned}
& \text { interior nodes } \\
& \text { are all in }\{1, \ldots, k-1\}
\end{aligned}
$$

Then $D_{k}[i, j]=D_{k-1}[i, j]$ interior nodes

FLOYD-WARSHALL ALGORITHM

- Let $D_{k}[i, j]$ denote the length of the minimum-weight (i, j)-path in which all interior nodes are in the set of nodes $\{1 \ldots k\}$
- Base case: $D_{0}=W$
- Recurrence: $D_{k}[i, j]=\min \left\{D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}$

Overview of the Gale-Shapley Algorithm

Elements of X propose to elements of Y
If y_{j} accepts a proposal from x_{i}, then the pair $\left\{x_{i}, y_{j}\right\}$ is matched.
An unmatched y_{j} must accept a proposal from any x_{i}.
If $\left\{x_{i}, y_{j}\right\}$ is a matched pair, and y_{j} subsequently receives a proposal from x_{k}, where y_{j} prefers x_{k} to x_{i}, then y_{j} accepts and the pair $\left\{x_{i}, y_{j}\right\}$ is replaced by $\left\{x_{k}, y_{j}\right\}$.
If $\left\{x_{i}, y_{j}\right\}$ is a mathced pair, and y_{j} subsequently receives a proposal from x_{k}, where y_{j} prefers x_{i} to x_{k}, then y_{j} rejects and nothing changes.
A matched y_{j} never becomes unmatched.
An x_{i} might make a number of proposals (up to n); the order of the proposals is determined by x_{i} 's preference list.

Algorithm: Gale-Shapley (X,Y, pref) Keeps track of current matches
Match $\leftarrow \emptyset-$

\qquad

EXAMPLE:

Suppose we have the following preference list:

$x_{1}: y_{2}>y_{3}>y_{1}$	$y_{1}: x_{1}>x_{2}>x_{3}$
$x_{2}: y_{1}>y_{3}>y_{2}$	$y_{2}: x_{2}>x_{3}>x_{1}$
$x_{3}: y_{1}>y_{2}>y_{3}$	$y_{3}: x_{3}>x_{2}>x_{1}$

The Gale-Shapley algorithm could be executed as follows:

proposal	result	Match
x_{1} proposes to y_{2}	y_{2} accepts	$\left\{x_{1}, y_{2}\right\}$
x_{2} proposes to y_{1}	y_{1} accepts	$\left\{x_{1}, y_{2}\right\},\left\{x_{2}, y_{1}\right\}$
x_{3} proposes to y_{1}	y_{1} rejects	
x_{3} proposes to y_{2}	y_{2} accepts	$\left\{x_{3}, y_{2}\right\},\left\{x_{2}, y_{1}\right\}$
x_{1} proposes to y_{3}	y_{3} accepts	$\left\{x_{3}, y_{2}\right\},\left\{x_{2}, y_{1}\right\},\left\{x_{1}, y_{3}\right\}$

Proof of Correctness

First we need to show that the algorithm always terminates, i.e., it is impossible that an unmatched x_{i} has proposed to every y_{j}.
Termination of the algorithm: Once an element of Y is matched, they are never unmatched. If x_{i} has proposed to every y_{j}, then every y_{j} is matched But then every element of X is matched, which is a contradiction.

So the algorithm terminates, and each $\boldsymbol{x}_{\boldsymbol{i}}$ is matched with some \boldsymbol{y} Need to argue the matching is stable (i.e., optimal)

That is, no \boldsymbol{x}_{i} and $\boldsymbol{y}_{\boldsymbol{j}}$ prefer each other more than their current partners

COMPLEXITY

It is obvious that the number of iterations is at most n^{2} since every x_{i} proposes at most once to every y_{j}.

The average number of iterations is $\Theta(n \log n)$ (but we will not prove this).

Graphs are a very important formalism in computer science. Efficient algorithms are available for many important
problems:

- exploration
- shortest paths,
- minimum spanning trees, etc

If we formulate a problem as a graph problem, chances are
that an efficient non-trivial algorithm for solving the problem
is known.
Some problems have a natural graph formulation.

- For others we need to choose a less intuitive graph formulation.
- Some problems that do not seem to be graph problems at all can be formulated as such.

The RootBear Problem:

Suppose we have a canyon with perpendicular walls on either side of a forest.

- We assume a north wall and a south wall

Viewed from above we see the A\&W RootBear attempting to get through the canyon.

- We assume trees are represented by points.
- We assume the bear is a circle of given diameter d

We are given a list of coordinates for the trees
Find an algorithm that determines whether the bear can get through the forest.

Reliable network routing

- Suppose we have a computer network with many links
- Every link has an assigned reliability.
* The reliability is a probability between 0 and 1 that the link will operate correctly.
- Given nodes u and v, we want to choose a route between nodes u and v with the highest reliability.
\star The reliability of a route is a product of the reliabilities of all its links.

Reliability of path a->b->c->d: $0.5 * 0.9 * 0.75=\mathbf{0 . 3 3 7 5}$

A MORE FORMAL OPTIMALITY ARGUMENT FOR YOUR NOTES

By induction: suppose $\boldsymbol{D}_{\boldsymbol{m}-1}[i, j]$ is correct for all i, j. We show $D_{m}[i, j]$ is correct. (Base case $D_{0}[i, j]$ is left as an exercise)

