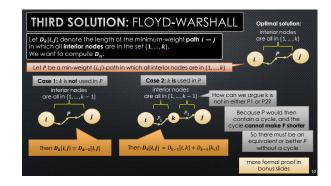


```
    First solution: sub-problem is a path to the predecessor node

            Optimality: try all possible predecessor nodes k
            Second solution: sub-problems are paths to/from the midpoint node
            Optimality: try all possible midpoint nodes k

    Third solution: sub-problems are paths in which all interior nodes are in {1.. k - 1}

            I.e., we restrict paths to using a prefix of all nodes
            Optimality: try all ways to use new node k as an interior node
```



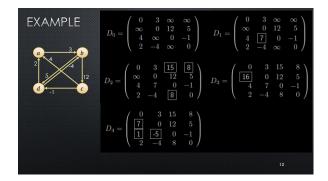
```
FLOYD-WARSHALL ALGORITHM

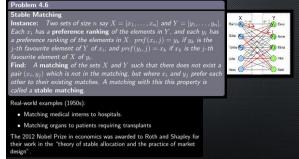
• Let D_k[i,j] denote the length of the minimum-weight (i,j)-path in which all interior nodes are in the set of nodes \{1...k\}.

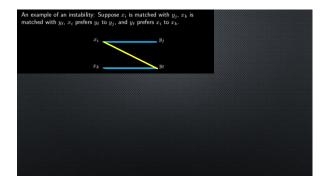
• Base case: D_0 = W

• Recurrence: D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}

| PloydMarshall (W[1..., 1...n]) | D0 = copy of weight maths W | Time complexity? | Space complexity? | Data = politicar to D0 | Data = politicar to D0 | Data = politicar to D0 | Data = politicar to D1 | This returns distances. | Conneconstact politics | Conneconstact politics | Conneconstact politics | Data = politics D1 | Data = politi
```







Overview of the Gale-Shapley Algorithm

Elements of X propose to elements of Y.

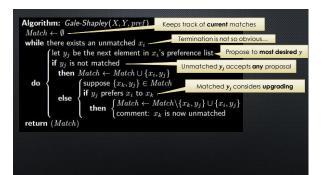
If y_j accepts a proposal from x_i , then the pair $\{x_i, y_j\}$ is matched. An unmatched y_j must accept a proposal from any x_i .

If $\{x_i, y_j\}$ is a matched pair, and y_j subsequently receives a proposal from x_k , where y_j prefers x_k to x_i , then y_j accepts and the pair $\{x_i, y_j\}$ is replaced by $\{x_k, y_j\}$.

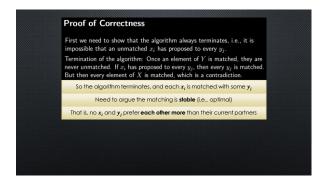
If $\{x_i, y_j\}$ is a matched pair, and y_j subsequently receives a proposal from x_k , where y_j prefers x_i to x_k , then y_j rejects and nothing changes.

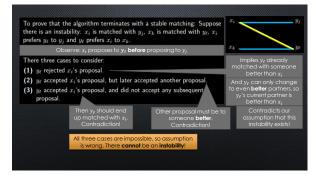
A matched y_j never becomes unmatched.

An x_i might make a number of proposals (up to n); the order of the proposals is determined by x_i 's preference list.



EXAMPLE: Suppose we have the following preference lists: $x_1: y_2 > y_3 > y_1$ $y_2: x_2 > x_3 > x_1$ $x_3: y_1 > y_2 > y_3$ The Gale-Shapley algorithm could be executed as follows: proposal Match result x_1 proposes to y_2 y_2 accepts y_1 accepts $\{x_1, y_2\}$ $\{x_1, y_2\}, \{x_2, y_1\}$ x_2 proposes to y_1 x_3 proposes to y_1 y_1 rejects $\{x_3, y_2\}, \{x_2, y_1\}$ $\{x_3, y_2\}, \{x_2, y_1\}, \{x_1, y_3\}$ y_2 accepts y_3 accepts x_3 proposes to y_2 x_1 proposes to y_3



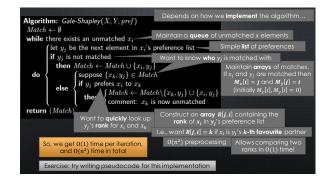


COMPLEXITY

It is obvious that the number of iterations is at most n^2 since every x_i proposes at most once to every y_j .

The average number of iterations is $\Theta(n \log n)$ (but we will not prove this).

But how much time does it take per iteration?



FORMULATING GRAPH PROBLEMS

Graphs are a very important formalism in computer science.

Efficient algorithms are available for many important problems:

• exploration,

• shortest paths,

• minimum spanning trees, etc.

If we formulate a problem as a graph problem, chances are that an efficient non-trivial algorithm for solving the problem is known.

Some problems have a natural graph formulation.

• For others we need to choose a less intuitive graph formulation.

• Some problems that do not seem to be graph problems at all can be formulated as such.

