2

ALL PAIRS SHORTEST PATHS (APSP) PROBLEM

Instance: A directed graph G = (V, E), and a weight matrix W, where W[i, j] denotes the weight of edge ij, for all $i, j \in V$, $i \neq j$. **Find:** For all pairs of vertices $u, v \in V$, $u \neq v$, a directed path P from u to v such that

 $w(P) = \sum_{ij \in P} W[i, j]$

is minimized.

We allow edges to have negative weights, but we assume there are no negative-weight directed cycles in G.

We use the following conventions for the weight matrix $W\!\!:$

CS 341: ALGORITHMS

Lecture 15: graph algorithms VI – all pairs shortest paths

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

	wij	if $(i, j) \in E$
$W[i,j] = \langle$	0	if $i = j$
	∞	

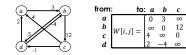
d

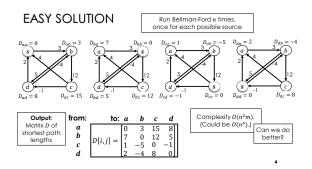
8

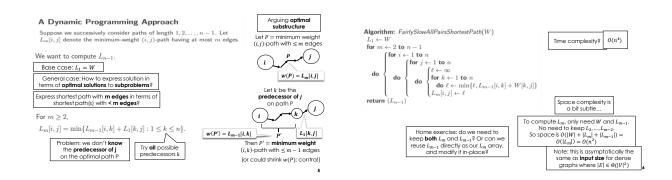
5

 $^{-1}$

3



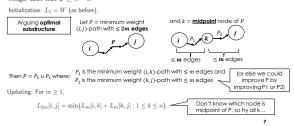


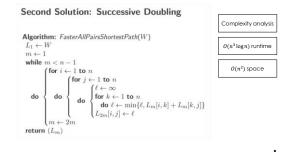


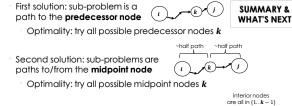
1

BETTER SOLUTION: SUCCESSIVE DOUBLING

The idea is to construct $L_1, L_2, L_4, \ldots L_{2^t}$, where t is the smallest integer such that $2^t > n - 1$.







<u>Third solution</u>: sub-problems are paths in which all interior nodes are in $\{1.. k - 1\}$

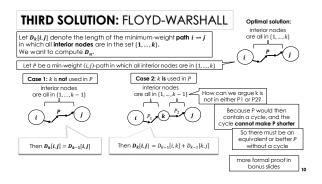
- all interior nodes are in $\{1, k-1\}$
- Optimality: try all ways to use **new node** *k* as an interior node

الن حال

(k)

11

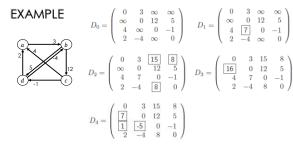
r



FLOYD-WARSHALL ALGORITHM

Let $D_k[i, j]$ denote the length of the minimum-weight (i, j)-path in which all interior nodes are in the set of nodes $\{1 ... k\}$.

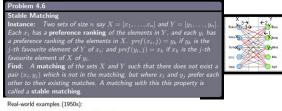
- Base case: $D_0 = W$
- Recurrence: $D_k[i, j] = \min\{D_{k-1}[i, j], D_{k-1}[i, k] + D_{k-1}[k, j]\}$



12

STABLE MATCHING PROBLEM (SOLVED WITH A GREEDY GRAPH ALGORITHM)

13



· Matching medical interns to hospitals.

• Matching organs to patients requiring transplants

The 2012 Nobel Prize in economics was awarded to Roth and Shapley for their work in the "theory of stable allocation and the practice of market design".

13

An example of an instability: Suppose x_i is matched with y_j, x_k is matched with y_ℓ, x_i prefers y_ℓ to y_j , and y_ℓ prefers x_i to $x_k.$

Overview of the Gale-Shapley Algorithm

Elements of X propose to elements of Y.

If y_j accepts a proposal from x_i , then the pair $\{x_i, y_j\}$ is **matched**.

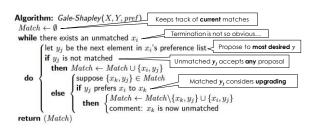
An unmatched y_j must accept a proposal from any x_i .

If $\{x_i,y_j\}$ is a matched pair, and y_j subsequently receives a proposal from x_k , where y_j prefers x_k to x_i , then y_j accepts and the pair $\{x_i,y_j\}$ is replaced by $\{x_k,y_j\}$.

If $\{x_i,y_j\}$ is a mathced pair, and y_j subsequently receives a proposal from $x_k,$ where y_j prefers x_i to $x_k,$ then y_j rejects and nothing changes.

A matched y_j never becomes unmatched.

An x_i might make a number of proposals (up to n); the order of the proposals is determined by x_i 's preference list.



EXAMPLE:

Suppose we have the following preference lists:

$x_1: y_2 > y_3 > y_1$	$y_1: x_1 > x_2 > x_3$
$x_2: y_1 > y_3 > y_2$	$y_2: x_2 > x_3 > x_1$
$x_3: y_1 > y_2 > y_3$	$y_3: x_3 > x_2 > x_1$

The Gale-Shapley algorithm could be executed as follows:

proposal	result	Match
x_1 proposes to y_2	y_2 accepts	$\{x_1, y_2\}$
x_2 proposes to y_1	y_1 accepts	$\{x_1, y_2\}, \{x_2, y_1\}$
x_3 proposes to y_1	y_1 rejects	
x_3 proposes to y_2	y_2 accepts	$\{x_3, y_2\}, \{x_2, y_1\}$
x_1 proposes to y_3	y_3 accepts	$\{x_3, y_2\}, \{x_2, y_1\}, \{x_1, y_3\}$

Proof of Correctness

First we need to show that the algorithm always terminates, i.e., it is impossible that an unmatched x_i has proposed to every y_j . Termination of the algorithm: Once an element of Y is matched, they are never unmatched. If x_i has proposed to every y_j , then every y_j is matched, which is a contradiction.

So the algorithm terminates, and each x_i is matched with some y_j	
Need to argue the matching is stable (i.e., optimal)	1
That is, no x_i and y_j prefer each other more than their current partners	i

To prove that the algorithm terminates with a stable matching: Suppose there is an instability: x_i is matched with y_j, x_k is matched with y_ℓ, x_i prefers y_ℓ to y_j and y_ℓ prefers x_i to x_k .			x_i	
Observe: x_i proposes to y_i before proposing to y_j			x_k	
There three cases to consider: (1) y_ℓ rejected x_i 's proposal.			Implies y_{ℓ} already matched with someone better than x_{ℓ}	
 (2) y_l accepted x_l's proposal, but later accepted another proposal. (3) y_l accepted x_l's proposal, and did not accept any subsequent proposal. 			And y_{ℓ} can only change to even better partners, so y_{ℓ} 's current partner is better than x_i	
	Then y_{ℓ} should end up matched with x_i . Contradiction!	Other proposal must be to someone better . Contradiction!		Contradicts our assumption that this instability exists!
	All three cases are imposs is wrong. There cannot			

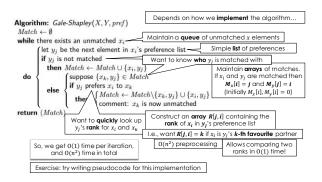
COMPLEXITY

It is obvious that the number of iterations is at most n^2 since every x_i proposes at most once to every $y_j. \label{eq:xi}$

The average number of iterations is $\Theta(n \log n)$ (but we will not prove this).

FORMULATING GRAPH PROBLEMS

But how much time does it take per iteration?



Graphs are a very important formalism in computer science. Efficient algorithms are available for many important problems:

- ► exploration,
- shortest paths,
- minimum spanning trees, etc.

If we formulate a problem as a graph problem, chances are that an efficient non-trivial algorithm for solving the problem is known.

- Some problems have a natural graph formulation.
 - For others we need to choose a less intuitive graph formulation.
 Some problems that do not seem to be graph problems at all can be formulated as such.

24

28

The RootBear Problem:

Suppose we have a canyon with perpendicular walls on either side of a forest.

► We assume a north wall and a south wall.

Reliable network routing:

its links

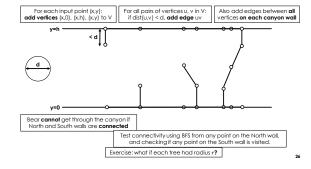
Reliability of path a->b->c->d: 0.5 * 0.9 * 0.75 = 0.3375

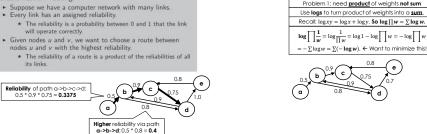
will operate correctly.

Viewed from above we see the A&W RootBear attempting to get through the canyon.

- We assume trees are represented by points.
 We assume the bear is a circle of given diameter d.
- We are given a list of coordinates for the trees.

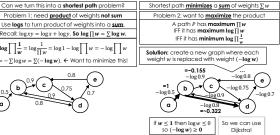
Find an algorithm that determines whether the bear can get through the forest.



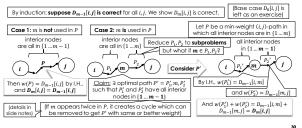


27

25



A MORE FORMAL OPTIMALITY ARGUMENT FOR YOUR NOTES



BONUS SLIDES