
2023-11-01

1

CS 341: ALGORITHMS
Lecture 15: graph algorithms VI – all pairs shortest paths

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1 2

ALL PAIRS SHORTEST PATHS (APSP) PROBLEM

3

𝑎 𝑏

𝑑 𝑐

5

-4

4
2

3

12

-1

𝑊 𝑖, 𝑗 =

0
0

0
0

𝑊 𝑖, 𝑗 =

0 3
0

0
0

to: 𝒂 𝒃 𝒄 𝒅from:
𝒂
𝒃
𝒄
𝒅

𝑊 𝑖, 𝑗 =

0 3
0

∞ ∞

0
0

𝑊 𝑖, 𝑗 =

0 3
0

∞ ∞
12 5
0

0

𝑊 𝑖, 𝑗 =

0 3
∞ 0

∞ ∞
12 5
0

0

𝑊 𝑖, 𝑗 =

0 3
∞ 0

∞ ∞
12 5

4 0 −1
0

𝑊 𝑖, 𝑗 =

0 3
∞ 0

∞ ∞
12 5

4 ∞ 0 −1
0

𝑊 𝑖, 𝑗 =

0 3
∞ 0

∞ ∞
12 5

4 ∞
2 −4

0 −1
0

𝑊 𝑖, 𝑗 =

0 3
∞ 0

∞ ∞
12 5

4 ∞
2 −4

0 −1
∞ 0

𝐷𝑎𝑏 = 3

𝐷𝑎𝑐 = 15𝐷𝑎𝑑 = 8

𝐷𝑎𝑎 = 0

Run Bellman-Ford 𝑛 times,

once for each possible source

Complexity 𝑂(𝑛2𝑚).

(Could be 𝑂(𝑛4).)
Can we do

better?

4

𝑎 𝑏

𝑑 𝑐

5

-4

4
2

3

12

-1

EASY SOLUTION

𝒔 𝑎 𝑏

𝑑 𝑐

5

-4

4
2

3

12

-1

𝐷𝑏𝑏 = 0

𝐷𝑏𝑐 = 12𝐷𝑏𝑑 = 5

𝐷𝑏𝑎 = 7

𝒔 𝑎 𝑏

𝑑 𝑐

5

-4

4
2

3

12

-1

𝐷𝑐𝑏 = −5

𝐷𝑐𝑐 = 0𝐷𝑐𝑑 = −1

𝐷𝑐𝑎 = 1

𝒔

𝑎 𝑏

𝑑 𝑐

5

-4

4
2

3

12

-1

𝐷𝑑𝑏 = −4

𝐷𝑑𝑐 = 8𝐷𝑑𝑑 = 0

𝐷𝑑𝑎 = 2

𝒔

to: 𝒂 𝒃 𝒄 𝒅from:
𝒂
𝒃
𝒄
𝒅

𝐷 𝑖, 𝑗 =

0 3
7 0

15 8
12 5

1 −5
2 −4

0 −1
8 0

Output:
Matrix 𝐷 of

shortest path

lengths

𝒋
𝒊

𝑷

Let 𝑃 = minimum weight
𝑖, 𝑗 -path with ≤ 𝑚 edges

𝒋
𝒊

𝑷′

𝒌

Then 𝑃′ = minimum weight
𝑖, 𝑘 -path with ≤ 𝑚 − 1 edges

Let 𝑘 be the
predecessor of 𝒋

on path P

Arguing optimal
substructure

Try all possible
predecessors 𝑘

General case: How to express solution in
terms of optimal solutions to subproblems?

Express shortest path with m edges in terms of
shortest path(s) with < m edges?

(or could shrink 𝑤(𝑃); contra!)

𝒘 𝑷 = 𝑳𝒎[𝒊, 𝒋]

𝒘 𝑷′ = 𝑳𝒎−𝟏[𝒊, 𝒌] 𝑳𝟏[𝒌, 𝒋]

Problem: we don’t know
the predecessor of j

on the optimal path P

5

Base case: 𝐿1 = 𝑊

Time complexity? 𝑂(𝑛4)

Space complexity is
a bit subtle…

To compute 𝐿𝑚, only need 𝑊 and 𝐿𝑚−1.
No need to keep 𝐿2, … , 𝐿𝑚−2.

So space is 𝑂 𝑊 + 𝐿𝑚 + 𝐿𝑚−1 =
𝑂 𝐿𝑚 = 𝑂(𝑛2)

Home exercise: do we need to
keep both 𝐿𝑚 and 𝐿𝑚−1? Or can we

reuse 𝐿𝑚−1 directly as our 𝐿𝑚 array,
and modify it in-place? Note: this is asymptotically the

same as input size for dense

graphs where 𝐸 ∈ Θ(𝑉 2)
6

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-11-01

2

BETTER SOLUTION: SUCCESSIVE DOUBLING

𝒋
𝒊

𝑷

Let 𝑃 = minimum weight
𝑖, 𝑗 -path with ≤ 𝟐𝒎 edges

𝒋
𝒊

≤ 𝒎 edges

𝒌

Then 𝑃 = 𝑃1 ∪ 𝑃2 where:

and 𝑘 = midpoint node of 𝑃

≤ 𝒎 edges

𝑃1

𝑃2

𝑃1 is the minimum weight 𝑖, 𝑘 -path with ≤ 𝑚 edges and

𝑃2 is the minimum weight 𝑘, 𝑗 -path with ≤ 𝑚 edges

7

Arguing optimal
substructure

(or else we could
improve P by

improving P1 or P2)

Don’t know which node is
midpoint of P, so try all k…

Complexity analysis

𝑂(𝑛3 log 𝑛) runtime

𝑂(𝑛2) space

8

• First solution: sub-problem is a

path to the predecessor node

• Optimality: try all possible predecessor nodes 𝒌

• Second solution: sub-problems are

paths to/from the midpoint node

• Optimality: try all possible midpoint nodes 𝒌

• Third solution: sub-problems are paths in which
all interior nodes are in {1. . 𝒌 − 1}

• I.e., we restrict paths to using a prefix of all nodes

• Optimality: try all ways to use new node 𝒌 as an interior node

𝒋
𝒊 𝒌

𝒋𝒊

~half path

𝒌

~half path

𝒋
𝒊

interior nodes
are all in {1. . 𝒌 − 1}

𝒌

9

SUMMARY &
WHAT’S NEXT

𝒋𝒊

interior nodes
are all in 1, … , 𝑘 − 1

𝒋
𝒊

interior nodes
are all in 1, … , 𝑘 − 1

𝒌

Case 1: 𝑘 is not used in 𝑃

THIRD SOLUTION: FLOYD-WARSHALL

Let 𝑃 be a min-weight 𝑖, 𝑗 -path in which all interior nodes are in {1, … , 𝑘}

Then 𝑫𝒌 𝒊, 𝒋 = 𝑫𝒌−𝟏[𝒊, 𝒋]

Case 2: 𝑘 is used in 𝑃

𝑷

How can we argue k is
not in either P1 or P2?

𝑃1

𝑃2

10

𝒋
𝒊

𝑷

interior nodes
are all in 1, … , 𝑘

Optimal solution:

Because P would then
contain a cycle, and the

cycle cannot make P shorter

So there must be an
equivalent or better 𝑃

without a cycleThen 𝑫𝒌[𝒊, 𝒋] = 𝐷𝑘−1 𝑖, 𝑘 + 𝐷𝑘−1 𝑘, 𝑗

more formal proof in
bonus slides

1, … , 𝑘

Let 𝑫𝒌[𝒊, 𝒋] denote the length of the minimum-weight path 𝒊 ⇝ 𝒋
in which all interior nodes are in the set {𝟏, … , 𝒌}.
We want to compute 𝑫𝒏.

FLOYD-WARSHALL ALGORITHM

Time complexity?
Space complexity?

• Let 𝐷𝑘[𝑖, 𝑗] denote the length of the minimum-weight (𝑖, 𝑗)-path
in which all interior nodes are in the set of nodes {1 … 𝑘}.

• Base case: 𝐷0 = 𝑊

• Recurrence: 𝐷𝑘 𝑖, 𝑗 = min{𝐷𝑘−1 𝑖, 𝑗 , 𝐷𝑘−1 𝑖, 𝑘 + 𝐷𝑘−1[𝑘, 𝑗]}

This returns distances.
Can reconstruct paths from this.

11

copy of weight matrix 𝑊

Dlast

EXAMPLE

12

𝑎 𝑏

𝑑 𝑐

5

-4

4
2

3

12

-1

https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm#Path_reconstruction

2023-11-01

3

STABLE MATCHING PROBLEM
(SOLVED WITH A GREEDY GRAPH ALGORITHM)

13

5→ 2
3→

1

X
x1

x2

x3

Y
y1

y2

y3

Keeps track of current matches

Termination is not so obvious…

Unmatched 𝒚𝒋 accepts any proposal

Matched 𝒚𝒋 considers upgrading

Propose to most desired 𝑦

EXAMPLE:

2023-11-01

4

So the algorithm terminates, and each 𝒙𝒊 is matched with some 𝒚𝒋

Need to argue the matching is stable (i.e., optimal)

That is, no 𝒙𝒊 and 𝒚𝒋 prefer each other more than their current partners
Other proposal must be to

someone better.

Contradiction!

Observe: 𝑥𝑖 proposes to 𝒚ℓ before proposing to 𝑦𝑗

Implies 𝑦ℓ already
matched with someone

better than 𝑥𝑖

And 𝑦ℓ can only change
to even better partners, so

𝑦ℓ’s current partner is
better than 𝑥𝑖

Then 𝑦ℓ should end
up matched with 𝑥𝑖.

Contradiction!

Contradicts our
assumption that this

instability exists!

All three cases are impossible, so assumption
is wrong. There cannot be an instability!

COMPLEXITY

But how much time does it take per iteration?

Depends on how we implement the algorithm…

Maintain arrays of matches.
If 𝑥𝑖 and 𝑦𝑗 are matched then

𝑴𝒙 𝒊 = 𝒋 and 𝑴𝒚 𝒋 = 𝒊

(Initially 𝑀𝑥 𝑖 , 𝑀𝑦 𝑖 = 0)

Maintain a queue of unmatched 𝑥 elements

Simple list of preferences

Want to know who 𝑦𝑗 is matched withWant to know who 𝑦𝑗 is matched with

Want to quickly look up
𝑦𝑗’s rank for 𝑥𝑖 and 𝑥𝑘

Construct an array 𝑹 𝒋, 𝒊 containing the
rank of 𝒙𝒊 in 𝒚𝒋’s preference list

I.e., want 𝑹 𝒋, 𝒊 = 𝒌 if 𝑥𝑖 is 𝑦𝑗’s 𝒌-th favourite partner

Allows comparing two

ranks in O(1) time!
So, we get O 1 time per iteration,

and O(𝑛2) time in total

O(𝑛2) preprocessing

Exercise: try writing pseudocode for this implementation

FORMULATING GRAPH PROBLEMS

23 24

2023-11-01

5

25

d

< d

y=h

y=0

For each input point (x,y):
add vertices (x,0), (x,h), (x,y) to V

For all pairs of vertices u, v in V:
if dist(u,v) < d, add edge uv

Bear cannot get through the canyon if
North and South walls are connected

Test connectivity using BFS from any point on the North wall,
and checking if any point on the South wall is visited.

26

Also add edges between all
vertices on each canyon wall

Exercise: what if each tree had radius 𝑟?

0.5

0.9
0.8

1.0
0.75

0.9

a

b
c

d

e
Reliability of path a->b->c->d:

0.5 * 0.9 * 0.75 = 0.3375

0.8

Higher reliability via path
a->b->d: 0.5 * 0.8 = 0.4

27

0.5

0.9
0.8

0.7
0.75

0.9

a

b
c

d

e

0.8

Problem 1: need product of weights not sum

Can we turn this into a shortest path problem?

Problem 2: want to maximize the product

−log 0.5

−log 0.9 −log 0.8

−log 0.7−log 0.9

a

b
c

d

e

−log 0.8

Use logs to turn product of weights into a sum. A path 𝑃 has maximum ς 𝒘
IFF it has maximum 𝐥𝐨𝐠 ς 𝒘

IFF it has minimum 𝐥𝐨𝐠 ς
𝟏

𝒘

Shortest path minimizes a sum of weights σ 𝑤

So we can use
Dijkstra!

𝐥𝐨𝐠 ෑ
𝟏

𝒘
= log

1

ς 𝑤
= log1 − log ෑ 𝑤 = − log ෑ 𝑤

= − σ log 𝑤 = σ − 𝐥𝐨𝐠 𝒘 . Want to minimize this!

Solution: create a new graph where each
weight 𝑤 is replaced with weight −𝐥𝐨𝐠 𝐰

−log 0.75

28

if 𝒘 ≤ 𝟏 then log 𝑤 ≤ 0
so (−𝐥𝐨𝐠 𝒘) ≥ 𝟎

Recall: log 𝑥𝑦 = log𝑥 + log𝑦. So 𝐥𝐨𝐠 ς 𝒘 = σ 𝐥𝐨𝐠 𝒘.

=1

=~0.155

=~0.322

…

BONUS SLIDES

29

𝒋𝒊

interior nodes
are all in 1 … 𝑚 − 1

𝒋𝒊

interior nodes
are all in 1 … 𝑚

𝒎

Case 1: 𝑚 is not used in 𝑃

By induction: suppose 𝑫𝒎−𝟏 𝒊, 𝒋 is correct for all 𝑖, 𝑗. We show 𝐷𝑚[𝑖, 𝑗] is correct.

Let 𝑃 be a min-weight 𝑖, 𝑗 -path in
which all interior nodes are in {1 … 𝑚}

Then 𝑤(𝑃) = 𝐷𝑚−1[𝑖, 𝑗] by I.H.,
and 𝑫𝒎 𝒊, 𝒋 = 𝑫𝒎−𝟏[𝒊, 𝒋]

Case 2: 𝑚 is used in 𝑃

Claim: ∃ optimal path 𝑃′ = 𝑃1
′, 𝑚, 𝑃2

′

such that 𝑃1
′ and 𝑃2

′ have all interior

nodes in {𝟏 … 𝒎 − 𝟏}

𝒋𝒊

all interior nodes
in 1 … 𝒎 − 𝟏

𝒎

(If 𝑚 appears twice in 𝑃, it creates a cycle which can
be removed to get 𝑃′ with same or better weight)

By I.H., 𝑤(𝑃1
′) = 𝐷𝑚−1 𝑖, 𝑚

and 𝑤 𝑃2
′ = 𝐷𝑚−1[𝑚, 𝑗]

And 𝑤 𝑃1
′ + 𝑤 𝑃2

′ = 𝐷𝑚−1 𝑖, 𝑚 +
𝐷𝑚−1 𝑚, 𝑗 = 𝑫𝒎[𝒊, 𝒋]

𝑃1′
𝑃2′

𝑷

(Base case 𝐷0 𝑖, 𝑗 is
left as an exercise)

Reduce 𝑃1, 𝑃2 to subproblems

but what if 𝒎 ∈ 𝑃1, 𝑃2?

Consider 𝑷′𝑃1

𝑃2

(details in
slide notes)

30

A MORE FORMAL OPTIMALITY ARGUMENT
FOR YOUR NOTES

