CS 341: ALGORITHMS

Lecture 16: max flow
Readings: CLRS 26.2

FLOWS AND PATHS

Edge-disjoint paths problem
Input: digraph G = (V, E) and two vertices s, t € V
Output: A maximal number of edge-disjoint paths in G

Paths P, and P, are edge-disjoint
if they do not share any edges

This is a special case of the maximum flow problem

... where the union of paths defines a flow

s-t FLOWS
 Let G = (V,E) be a digraph
where each edge e € E has a capacity c(e) > 0

» An s-t flow assigns a number f(e) to each edge satisfying:

» Capacity constraints

+ 0 < f(e) < c(e) for each ed
e -L(E’) or each edge - . ‘
« Conservation of flow

1/ 0 /, v
W 3/3
» Source f"(s) =0 : o

- Sink fou(¢) = 0

This is the value
of the flow 5

foul(s)=3 fin_gou_y pin_pout_p fin(e)=3

s-t FLOWS

* Llet G = (V,E) be a digraph
where each edge e € E has

DEFINING £ (uw) A

11 .

oig
11

FLOWS AND PATHS

a capacity c(e) > 0

N D fOlLt (u)

2023-11-09

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

MAX s-t FLOW

« Input: digraph G = (V, E) with capacities c(e) fore € E,
and two vertices s, t

» Output: a flow from s to t with maximum value
i.e., that maximizes f°%(s)

* Motivation

« Liquid flowing through pipes
Current through electrical networks
Internet/telephony traffic routing

+ Also useful for seemingly unrelated problems (next time)

7

LEMMA 1: DECOMPOSITION OF s-t FLOW
INTO CAPACITY-DISJOINT s-t PATHS

* Let f be an s-t flow where 1 e

f(e) is an integer foreach e € E, /1
f(s) = 0 and value(f) = k i i ‘ e !
» Then there are s-t paths Py, Py, ..., P : (]

such that each edge e appearsin
f(e) of these paths

« Proof sketch by induction / \ \
- Base case: when k=1 ' @
there is only one path /1
0o .,

value(f) = f(s) = f"(1) = 3

INDUCTIVE STEP

 Suppose lemma holds for k — 1, show it holds for k (where k = 2)
» Consider the edges with non-zero flow

) /1
Removing path P with flow 1
changes flow value from k to k — 1

Every vertexstill satisfies
o conservation of flow
. So this is an s-t flow
in these edges (\ with value =1
So the inductive
hypothesis applies...

» There must exist some

. the flow of each edge in P by 1

2023-11-09

CONNECTION BETWEEN FLOWS AND PATHS

+ In this example, max flow is 3 i
Note max flow is limited by

o 1/1
the sum of capacities out of s %—./0
1
«...andintot

Flows vs paths

» a flow can always be decomposed
into “capacity-disjoint" paths

INDUCTIVE STEP

* Suppose lemma holds for k — 1, show it holds for k (where k > 2)
+ Consider the edges with non-zero flow

1”1 —. 1/1 Wfl\‘

° VAl
11

* There must exist some

1
/1 71

in these edges (why?)
. the flow of each edge in P by 1

|NDUCT|VE STEP Lemma ° L»et f be an s-t flow where

f(e) is an integer foreach e € E,
f"(s) = 0 and value(f) =

» Then there are s-t paths Py, P,, ..., P

h that each edge e appearsin
f(e) of these paths

o :
/1
eQ, o/ o8
m n
171 il o

So, there are s-t paths Py, Py, ..., Py such that
each edge e appearsin f(e) of these paths

And by adding

Removing path P with flow 1
changes flow value from k fo k — 1
Every vertexstill satisfies
conservation of flow
So this is an s-t flow
with value k — 1
So the inductive

an obtain k such paths hvpoliessapoliex:

2023-11-09

EXAMPLE APPLICATION OF LEMMA 1 HOME EXERCISE

» Given a flow of value k where f(e) € {0,1} foralle € E

» Find a decomposition of the following flow into
+ The lemma says the flow f can be efelelelellEieIN{eligifeleligN
decomposed into k edge-disjoint paths

» Soif our goal is to find k edge-disjoint paths
we can just focus in finding such a flow instead

* (so we don’t need to worry about which edges
belong to which paths during the algorithm)

» Can extract paths from such a flow by repeatedly doing:
BFS on the non-zero flow edges, identifying an s-t path,
and decrementing the flows along that path

UPPER BOUNDING THE MAX FLOW FOR G

« What is a good upper bound on the value of a flowe 24&=17

* And how do we know a flow is maximal?2 ﬂiﬂ'«?g.x..
« Trivial upper bound

« Sum of capacities of all edges
« Slightly better

FLOWS AND CUTS « min (7(s), ¢™(0))

where c®(s) = ¥, suror s () anNd c™(t) = Xy into e €(€)
« Tightly bounds max flow in this case...

BUT WHAT ABOUT THIS CASE?

DEFINITIONS: AN s-t CUT AND ITS CAPACITY

* An s-t cutis a partition (S,V\S) where s € S and t € V\S
- i.e., the partition separates s and ¢

Let §°%(S) be the set of edges
directed outfrom s
¥ 594(S) = ((u,v) €E : u €S, v € N\S}
The capacity of the cut is the sum of
Estimate using min (c¥(s), c”l(,:)) =30 1 25 he capacities of these edges
; cout(s)y = .
But real answer s 1... c(s) @

= eedm(s)
(Recall s does not need
to be connected)

UPPER BOUNDING EDGE-DISJOINT PATHS BY S-T CUT

« For the edge-disjoint paths problem, where c(e) = 1 for all e,
cut capacity is just the number of edges crossing the cut

« If an s-t cut S has at most k edges crossing the cut,
then are at most k edge-disjoint s-t paths,
since each s-t path has an edge crossing the cut

COROLLARY: MAX FLOW < MIN s-t CUT

» Recalllemma 2: if an s-t cut S has capacity k,
the value of every flow must be < k

« This holds for any s-t cut
« Including the s-t cut S with the minimum capacity

» So, max s-t flow < min capacity over all possible s-t cuts

« In fact, it turns out max flow is exactly the min cut capacity
» So we can solve max flow by finding a min cut...

MAX-FLOW MIN-CUT THEOREM

» Theorem 3: every max s-t flow has value
equal to the capacity of a min s-t cut

« One of the most beautiful and important results in
combinatorial optimization and graph theory

« Diverse applicationsin CS and math
« We give an algorithmic proof of this theorem

« (showing that one algorithm solves both
max-flow and min-cut at the same time)

2023-11-09

GENERALIZING TO MAX FLOW

Lemma 2: if an s-t cut S has capacity k,
the value of every flow must be < k

« Proof sketch: for contra assume
a flow with value k' > k

* By earlierlemma, a flow with value k' :
can be decomposed into k' capacity-disjoint paths each w/flow 1

« Each such path crosses the cut,
and consumes one unit of the cut’s capacity (up to k' in total)

» But the cut's capacity is only k,
so the paths are not capacity-disjoint! Contradiction.

MIN s-t CUT PROBLEM

» Input: digraph G = (V, E) with capacities c(e) > 0 fore € E,
and two vertices s, t

+ Output: an s-t cut S with minimal capacity ¢ (S)

« Thisis a natural and useful problem on its own,
and we will see some other interesting applications soon...

FORD-FULKERSON METHOD

Algorithm development
(mixed together with proof of max-flow min-cut theorem)

NAIVE ALGORITHM ATTEMPT

« For simplicity, fry edge-disjoint path problem first (unit capacities)
» Greedy idea: find a shortest s-t path (to use few edges),
then repeat on the remaining edges

s

greedy solution opfimal solution
« Difficult for greedy is to decide on a path permanently

» Unclear how to find a path that belongs in the optimal solution

FORD-FULKERSON METHOD
« Ford-Fulkerson is a more general “local search” algorithm
which can undo previous decisions to improve the flow

» Greedy flow can be improved by “pushing back” some flow
using an augmenting path through a residual graph

1/1 1/1 1/1
n@Le e e e o o

(s] on 0 ./0
0@

mn iVl
707078
Pushesback the = “augmenting path

improved flow flow on this edge
(negating its flow)

Same Ford as in
Bellman-Ford ;)

ANOTHER EXAMPLE RESIDUAL GRAPH
» Recall: foreach edge e = uvin G,

« If f(e) < c(e), then Rr contains a forward edge (u, v)
with the remaining capacity c(e) — f(e)
« If f(e) > 0, then Ry contains a backwards edge (v, u)
with capacity f(e) representing flow that could be “pushed back”

/] g O/l g O/
Y% _mq mma e N
23 [}

o—/\o—-o—o Z
0/1 on 0/1

2023-11-09

FORD-FULKERSON METHOD

» Ford-Fulkerson is a more general “local search” algorithm
which can undo previous decisions to improve the flow
« Greedy flow can be improved by “pushing back” some flow
using an augmenting path through a residual graph
0/1

. 0/1 0/1
117 . . .\ >

0/1

" 0

0/1 . ,. ,. 77
o 01 0/1

Same Ford asin
Bellman-Ford :)

Pushesbackthe “augmenting path”
flow on this edge
(negating its flow)

RESIDUAL GRAPH

+ Aresidual graph R is defined for a given flow f and graph ¢
* Ry has the same vertices as G
» Foreachedgee =uvin G,

« If f(e) < c(e), then Ry contains a forward edge (u,v)
with the remaining capacity c(e) — f(e)

« If f(e) > 0, then R, contains a backwards edge (v, u)
with capacity f(e) representing flow that could be “pushed back”

. 0/1 0/1 0/1
11 . . O/\
1
.00
0/1 0/1

Forward edge: residual graph for this flow [EGckwards edge:
remaining capacity can undo flow

