CS 341: ALGORITHMS

Lecture 16: max flow
Readings: CLRS 26.2

FLOWS AND PATHS

- Edge-disjoint paths problem

$s-t$ FLOWS

- Let $G=(V, E)$ be a digraph
where each edge $e \in E$ has a capacity $c(e)>0$
- Output: A maximal number of edge-disjoint paths in G
- Paths P_{1} and P_{2} are edge-disjoint if they do not share any edges

This is a special case of the maximum flow problem
... where the union of paths defines a flow

$s-t$ FLOWS

- Let $G=(V, E)$ be a digraph
where each edge $e \in E$ has a capacity $c(e)>0$
- An $s-t$ flow assigns a number $f(e)$ to each edge satisfying:
- Capacity constraints
- $0 \leq f(e) \leq c(e)$ for each edge
- Conservation of flow
- $f^{\text {in }}(v)=f^{\text {out }}(v)$ for $v \notin\{s, t\}$
- Source $f^{\text {in }}(s)=0$
- Sink $f^{\text {out }}(t)=0$

$f^{\text {out }}(s)=3$	$f^{\text {in }}=f^{\text {out }}=1$	$f^{\text {in }}=f^{\text {out }}=2$	$f^{\text {in }}(t)=3$

This is the value
of the flow

DEFINING $f^{\text {in }}(u)$ AND $f^{\text {out }}(u)$

MAX s-t FLOW

- Input: digraph $G=(V, E)$ with capacities $c(e)$ for $e \in E$, and two vertices s, t
- Output: a flow from s to t with maximum value i.e., that maximizes $f^{\text {out }}(s)$
- Motivation
- Liquid flowing through pipes Current through electrical networks
Internet/telephony traffic routing
- Also useful for seemingly unrelated problems (next time)

LEMMA 1: DECOMPOSITION OF st FLOW

 INTO CAPACITY-DISJOINT s-t PATHS- Let f be an $s-t$ flow where $f(e)$ is an integer for each $e \in E$, $f^{\text {in }}(s)=0$ and $v a l u e(f)=k$
- Then there are $s-t$ paths $P_{1}, P_{2}, \ldots, P_{k}$ such that each edge e appears in $f(e)$ of these paths
- Proof sketch by induction
- Base case: when $\mathrm{k}=1$
there is only one path

INDUCTIVE STEP

- Suppose lemma holds for $k-1$, show it holds for k (where $k \geq 2$)
- Consider the edges with non-zero flow

Removing path P with flow 1 changes flow value from k to $k-1$ Every vertex still satisfies
conservation of flow So this is an s-t flow

- There must exist some $s-t$ path P in these edges (1) So this is an $s-t$ fiow
with value $k-1$ So the inductive hypothesis applies..

CONNECTION BETWEEN FLOWS AND PATHS

- In this example, max flow is 3
- Note max flow is limited by the sum of capacities out of s - ... and into t

- Flows vs paths
- a flow can always be decomposed into "capacity-disjoint" paths

INDUCTIVE STEP

- Suppose lemma holds for $k-1$, show it holds for k (where $k \geq 2$)
- Consider the edges with non-zero flow

- There must exist some $s-t$ path P in these edges (why?)
- Decrease the flow of each edge in P by 1

EXAMPLE APPLICATION OF LEMMA 1

- Given a flow of value k where $f(e) \in\{0,1\}$ for all $e \in E$

HOME EXERCISE

- Find a decomposition of the following flow into capacity-disjoint paths
decomposed into k edge-disjoint paths
- So if our goal is to find k edge-disjoint paths we can just focus in finding such a flow instead
- (so we don't need to wory about which edges belong to which paths during the algorithm)
- Can extract paths from such a flow by repeatedly doing: BFS on the non-zero flow edges, identifying an s-t path, and decrementing the flows along that path

FLOWS AND CUTS

UPPER BOUNDING THE MAX FLOW FOR G

- What is a good upper bound on the value of a flow?
- And how do we know a flow is maximal?
$\Sigma c(e)=17$
But max
But max
flow is $3 .$.
- Trivial upper bound
- Sum of capacities of all edges
- Slightly better
- $\min \left(c^{\text {out }}(s), c^{\text {in }}(t)\right)$

Where $c^{\text {out }}(s)=\sum_{e \text { outof } s} c(e)$ and $c^{i n}(t)=\sum_{e \text { into } t} c(e)$

- Tightly bounds max flow in this case..

DEFINITIONS: AN s-t CUT AND ITS CAPACITY

- An $s-t$ cut is a partition $(S, V \backslash S)$ where $s \in S$ and $t \in V \backslash S$
- i.e., the partition separates s and t

Let $\delta^{\text {out }}(S)$ be the set of edges
directed out from S
$\delta^{\text {out }}(S)=\{(u, v) \in E: u \in S, v \in V \backslash S\}$
The capacily of the cut is the sum of the capacities of these edges
$c^{\text {out }}(S)=\sum_{e \in \delta \sigma^{m i}(S)} c(e)$

UPPER BOUNDING EDGE-DISJOINT PATHS BY S-T CUT

- For the edge-disjoint paths problem, where $c(e)=1$ for all e, cut capacity is just the number of edges crossing the cut
- If an $s-t$ cut S has at most k edges crossing the cut, then are at most k edge-disjoint $s-t$ paths, since each $s-t$ path has an edge crossing the cut

GENERALIZING TO MAX FLOW

Lemma 2: if an $s-t$ cut S has capacity k, the value of every flow must be $\leq k$

- Proof sketch: for contra assume a flow with value $k^{\prime}>k$
- By earlier lemma, a flow with value k^{\prime} can be decomposed into k^{\prime} capacity-disjoint paths each w/flow 1
- Each such path crosses the cut, and consumes one unit of the cut's capacity (up to k^{\prime} in total)
- But the cut's capacity is only k,
so the paths are not capacity-disjoint! Contradiction.

COROLLARY: MAX FLOW \leq MIN s-t CUT

- Recall lemma 2: if an s - t cut S has capacity k. the value of every flow must be $\leq k$
- This holds for any s-t cut
- Including the $s-t$ cut S with the minimum capacity
- So, max s - t flow \leq min capacity over all possible s - t cuts
- In fact, it turns out max flow is exactly the min cut capacity
- So we can solve max flow by finding a min cut..

MIN s-t CUT PROBLEM

- Input: digraph $G=(V, E)$ with capacities $c(e)>0$ for $e \in E$, and two vertices s, t
- Output: an $s-t$ cut S with minimal capacity $c^{\text {out }}(S)$
- This is a natural and useful problem on its own, and we will see some other interesting applications soon...

NAÏVE ALGORITHM ATTEMPT

- For simplicity, try edge-disjoint path problem first (unit capacities)
- Greedy idea: find a shortest $s-t$ path (to use few edges), then repeat on the remaining edges

optimal solution
- Difficult for greedy is to decide on a path permanently
- Unclear how to find a path that belongs in the optimal solution

RESIDUAL GRAPH

- A residual graph R_{f} is defined for a given flow f and graph G
- R_{f} has the same vertices as G
- For each edge $e=u v$ in G,
- If $f(\mathrm{e})<c(e)$, then R_{f} contains a forward edge (u, v)
with the remaining capacity $c(e)-f(e)$
- If $f(e)>0$, then R_{f} contains a backwards edge (v, u)
with capacity $f(e)$ representing flow that could be "pushed back"

ANOTHER EXAMPLE RESIDUAL GRAPH

- Recall: for each edge $e=u v$ in G,
- If $f(\mathrm{e})<c(e)$, then R_{f} contains a forward edge (u, v) with the remaining capacity $c(e)-f(e)$
- If $f(e)>0$, then R_{f} contains a backwards edge (v, u) with capacity $f(e)$ representing flow that could be "pushed back"

flow f wilh value 2

29

