
2023-11-09

1

CS 341: ALGORITHMS
Lecture 16: max flow

Readings: CLRS 26.2

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

FLOWS AND PATHS

2

FLOWS AND PATHS

• Edge-disjoint paths problem

• Input: digraph 𝐺 = (𝑉, 𝐸) and two vertices 𝑠, 𝑡 ∈ 𝑉

• Output: A maximal number of edge-disjoint paths in 𝐺

• Paths 𝑃1 and 𝑃2 are edge-disjoint
if they do not share any edges

3

𝒔 𝒕

This is a special case of the maximum flow problem

… where the union of paths defines a flow

𝑠-𝑡 FLOWS

• Let 𝐺 = (𝑉, 𝐸) be a digraph

where each edge 𝑒 ∈ 𝐸 has a capacity 𝒄 𝒆 > 𝟎

4

𝒔

1

1

1

1

𝒕

3

𝑠-𝑡 FLOWS

• Let 𝐺 = (𝑉, 𝐸) be a digraph

where each edge 𝑒 ∈ 𝐸 has a capacity 𝒄 𝒆 > 𝟎

• An 𝑠-𝑡 flow assigns a number 𝑓(𝑒) to each edge satisfying:

• Capacity constraints

• 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) for each edge

• Conservation of flow

• 𝑓𝑖𝑛 𝑣 = 𝑓𝑜𝑢𝑡(𝑣) for 𝑣 ∉{𝑠,𝑡}

• Source 𝑓 𝑖𝑛 𝑠 = 0

• Sink 𝑓𝑜𝑢𝑡 𝑡 = 0

5

𝒔

1/1

1/1

1/1

0/1

𝒕

3/3

𝑓𝑜𝑢𝑡(𝑠) = 3 𝑓𝑖𝑛(𝑡) = 3𝑓𝑖𝑛 = 𝑓𝑜𝑢𝑡 = 1 𝑓𝑖𝑛 = 𝑓𝑜𝑢𝑡 = 2
This is the value

of the flow

DEFINING 𝑓𝑖𝑛 𝑢 AND 𝑓𝑜𝑢𝑡 𝑢

6

𝒔

𝒖

1/1

1/1

1/1

0/1

𝒕

3/3

𝑓𝑖𝑛 𝑢 =

𝒆 into 𝒖

𝑓(𝑒) 𝑓𝑜𝑢𝑡 𝑢 =

𝒆 outof 𝒖

𝑓(𝑒)

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-11-09

2

MAX 𝑠-𝑡 FLOW

• Input: digraph 𝐺 = 𝑉, 𝐸 with capacities 𝑐(𝑒) for 𝑒 ∈ 𝐸,

 and two vertices 𝑠, 𝑡

• Output: a flow from 𝑠 to 𝑡 with maximum value
 i.e., that maximizes 𝑓𝑜𝑢𝑡(𝑠)

• Motivation

• Liquid flowing through pipes
Current through electrical networks
Internet/telephony traffic routing

• Also useful for seemingly unrelated problems (next time)

7

CONNECTION BETWEEN FLOWS AND PATHS

• In this example, max flow is 3

• Note max flow is limited by

the sum of capacities out of 𝒔

• … and into 𝒕

• Flows vs paths

• a flow can always be decomposed
into “capacity-disjoint” paths

8

𝒔

𝒖

𝒕

1/1

1/1

1/1

0/1

LEMMA 1: DECOMPOSITION OF 𝒔-𝒕 FLOW
INTO CAPACITY-DISJOINT 𝒔-𝒕 PATHS

• Let 𝑓 be an 𝑠-𝑡 flow where

𝑓 𝑒 is an integer for each 𝑒 ∈ 𝐸,

𝑓 𝑖𝑛 𝑠 = 0 and 𝑣𝑎𝑙𝑢𝑒 𝑓 = 𝑘

• Then there are 𝑠-𝑡 paths 𝑃1, 𝑃2, … , 𝑃𝑘

such that each edge 𝒆 appears in
𝒇(𝒆) of these paths

• Proof sketch by induction

• Base case: when k=1
there is only one path

9

𝒔

1/1

1/1

1/1

0/1

𝒕

3/3

𝑣𝑎𝑙𝑢𝑒 𝑓 = 𝑓𝑜𝑢𝑡 𝑠 = 𝑓𝑖𝑛 𝑡 = 3

Appears in
0 paths

Appears in
3 paths

𝒔

0/1

1/1

0/1

0/1

𝒕

1/1

INDUCTIVE STEP

• Suppose lemma holds for 𝑘 − 1, show it holds for 𝑘 (where 𝑘 ≥ 2)

• Consider the edges with non-zero flow

• There must exist some 𝒔-𝒕 path 𝑷 in these edges (why?)

• Decrease the flow of each edge in 𝑷 by 1

10

𝒔

1/1

1/1

1/1

𝒕

3/3

1/1 1/1

1/1 1/1

1/1

1/1

1/1 1/1

1/1

𝑷

INDUCTIVE STEP

• Suppose lemma holds for 𝑘 − 1, show it holds for 𝑘 (where 𝑘 ≥ 2)

• Consider the edges with non-zero flow

• There must exist some 𝒔-𝒕 path 𝑷 in these edges (why?)

• Decrease the flow of each edge in 𝑷 by 1

11

𝒔

0/1

1/1

1/1

𝒕

2/3

0/1 1/1

0/1 0/1

1/1

1/1

1/1 1/1

1/1

Removing path 𝑃 with flow 1
changes flow value from 𝑘 to 𝑘 − 1

Every vertex still satisfies
conservation of flow

So this is an 𝒔-𝒕 flow
with value 𝑘 − 1

So the inductive
hypothesis applies…

𝑷

INDUCTIVE STEP

12

𝒔

0/1

1/1

1/1

𝒕

2/3

0/1 1/1

0/1 0/1

1/1

1/1

1/1 1/1

1/1 Every vertex still satisfies
conservation of flow

So this is an 𝒔-𝒕 flow
with value 𝑘 − 1

So the inductive
hypothesis applies…

Lemma

So, there are 𝒔-𝒕 paths 𝑷𝟏, 𝑷𝟐, … , 𝑷𝒌−𝟏 such that
each edge 𝒆 appears in 𝒇(𝒆) of these paths

And by adding 𝑷 we can obtain 𝒌 such paths

𝑷
Removing path 𝑃 with flow 1

changes flow value from 𝑘 to 𝑘 − 1

2023-11-09

3

EXAMPLE APPLICATION OF LEMMA 1

• Given a flow of value 𝑘 where 𝑓 𝑒 ∈ {0,1} for all 𝑒 ∈ 𝐸

• The lemma says the flow 𝑓 can be
decomposed into 𝑘 edge-disjoint paths

• So if our goal is to find 𝑘 edge-disjoint paths
we can just focus in finding such a flow instead

• (so we don’t need to worry about which edges
 belong to which paths during the algorithm)

• Can extract paths from such a flow by repeatedly doing:
BFS on the non-zero flow edges, identifying an s-t path,
and decrementing the flows along that path

13

HOME EXERCISE

• Find a decomposition of the following flow into

capacity-disjoint paths

14

FLOWS AND CUTS

15

UPPER BOUNDING THE MAX FLOW FOR 𝑮

• What is a good upper bound on the value of a flow?

• And how do we know a flow is maximal?

• Trivial upper bound

• Sum of capacities of all edges

• Slightly better

• min 𝑐𝑜𝑢𝑡 𝑠 , 𝑐𝑖𝑛 𝑡

where 𝑐𝑜𝑢𝑡 𝑠 = σ𝑒 outof 𝑠 𝑐(𝑒) and 𝑐𝑖𝑛 𝑡 = σ𝑒 into 𝑡 𝑐(𝑒)

• Tightly bounds max flow in this case…

16

𝒔

*/1

*/1

*/1

𝒕

*/3

*/1 */1

*/1 */1

*/1

*/1

*/1 */1

*/1

*/1

*/1

σ𝑐 𝑒 = 17

But max
flow is 3…

BUT WHAT ABOUT THIS CASE?

17

𝒔

*/10

*/10

*/10

𝒕

*/30

*/1

*/1 */1

*/1

*/1

*/1

*/1

*/1

*/1

*/1

*/1

*/1

Estimate using min 𝑐𝑜𝑢𝑡 𝑠 , 𝑐𝑖𝑛 𝑡 = 30

But real answer is 1…

Looks like an edge
crossing a cut…

DEFINITIONS: AN 𝒔-𝒕 CUT AND ITS CAPACITY

• An 𝑠-𝑡 cut is a partition (S,V\S) where 𝑠 ∈ S and 𝑡 ∈ 𝑉\S

• i.e., the partition separates 𝑠 and 𝑡

18

𝒔

*/10

*/10

*/10

𝒕

*/25

*/1 */1

*/1 */1

*/1

*/1

*/1 */1

*/1

*/1

*/1

𝑺 𝑽\S

(Recall 𝑆 does not need
to be connected)

𝑐𝑜𝑢𝑡 𝑆 =

𝑒∈𝛿𝑜𝑢𝑡(𝑆)

𝑐(𝑒)

Let 𝛿𝑜𝑢𝑡(𝑆) be the set of edges
directed out from 𝑺

𝛿𝑜𝑢𝑡 𝑆 = { 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉\S}

The capacity of the cut is the sum of
the capacities of these edges

2023-11-09

4

UPPER BOUNDING EDGE-DISJOINT PATHS BY S-T CUT

• For the edge-disjoint paths problem, where 𝑐 𝑒 = 1 for all 𝑒,

cut capacity is just the number of edges crossing the cut

• If an 𝑠-𝑡 cut 𝑆 has at most 𝑘 edges crossing the cut,
then are at most 𝑘 edge-disjoint 𝑠-𝑡 paths,
since each 𝑠-𝑡 path has an edge crossing the cut

19

𝒔 𝒕

1

1

1

1

GENERALIZING TO MAX FLOW
Lemma 2: if an 𝑠-𝑡 cut 𝑆 has capacity 𝑘,
the value of every flow must be ≤ 𝑘

• Proof sketch: for contra assume
a flow with value 𝑘′ > 𝑘

• By earlier lemma, a flow with value 𝑘′
can be decomposed into 𝑘′ capacity-disjoint paths each w/flow 1

• Each such path crosses the cut,
and consumes one unit of the cut’s capacity (up to 𝑘′ in total)

• But the cut’s capacity is only 𝑘,

so the paths are not capacity-disjoint! Contradiction.

20

𝒔

*/10

*/10

*/10

𝒕

*/25

*/1 */1

*/1 */1

*/1

*/1

*/2 */1

*/1

*/1

*/1

𝑺 𝑽\S

COROLLARY: MAX FLOW ≤ MIN 𝑠-𝑡 CUT

• Recall lemma 2: if an 𝑠-𝑡 cut 𝑆 has capacity 𝑘,

the value of every flow must be ≤ 𝑘

• This holds for any 𝑠-𝑡 cut

• Including the 𝑠-𝑡 cut 𝑆 with the minimum capacity

• So, max 𝒔-𝒕 flow ≤ min capacity over all possible 𝒔-𝒕 cuts

• In fact, it turns out max flow is exactly the min cut capacity

• So we can solve max flow by finding a min cut…

21

MIN 𝑠-𝑡 CUT PROBLEM

• Input: digraph 𝐺 = 𝑉, 𝐸 with capacities 𝑐 𝑒 > 0 for 𝑒 ∈ 𝐸,

 and two vertices 𝑠, 𝑡

• Output: an 𝑠-𝑡 cut 𝑆 with minimal capacity 𝑐𝑜𝑢𝑡(𝑆)

• This is a natural and useful problem on its own,

and we will see some other interesting applications soon…

22

MAX-FLOW MIN-CUT THEOREM

• Theorem 3: every max 𝑠-𝑡 flow has value
equal to the capacity of a min 𝑠-𝑡 cut

• One of the most beautiful and important results in
combinatorial optimization and graph theory

• Diverse applications in CS and math

• We give an algorithmic proof of this theorem

• (showing that one algorithm solves both

 max-flow and min-cut at the same time)

23

FORD-FULKERSON METHOD
Algorithm development

(mixed together with proof of max-flow min-cut theorem)

24

2023-11-09

5

NAÏVE ALGORITHM ATTEMPT

• For simplicity, try edge-disjoint path problem first (unit capacities)

• Greedy idea: find a shortest 𝑠-𝑡 path (to use few edges),

 then repeat on the remaining edges

• Difficult for greedy is to decide on a path permanently

• Unclear how to find a path that belongs in the optimal solution

25

𝒔 𝒕 𝒔 𝒕

greedy solution optimal solution

FORD-FULKERSON METHOD

• Ford-Fulkerson is a more general “local search” algorithm

which can undo previous decisions to improve the flow

• Greedy flow can be improved by “pushing back” some flow
using an augmenting path through a residual graph

26

𝒔 𝒕

greedy flow

Same Ford as in
Bellman-Ford :)

1/1

1/1

1/1

0/1
0/10/10/1

0/10/10/1
0/1

𝒔 𝒕

“augmenting path”Pushes back the
flow on this edge

(negating its flow)

FORD-FULKERSON METHOD

• Ford-Fulkerson is a more general “local search” algorithm

which can undo previous decisions to improve the flow

• Greedy flow can be improved by “pushing back” some flow
using an augmenting path through a residual graph

27

𝒔 𝒕

greedy flow

Same Ford as in
Bellman-Ford :)

1/1

0/1

1/1

1/1
1/11/11/1

1/11/11/1
1/1

𝒔 𝒕

“augmenting path”Pushes back the
flow on this edge

(negating its flow)

improved flow
So, what’s the residual graph,

how do we find an augmenting path,

and how do we improve the flow?

RESIDUAL GRAPH
• A residual graph 𝑹𝒇 is defined for a given flow 𝒇 and graph 𝑮

• 𝑅𝑓 has the same vertices as 𝐺

• For each edge 𝑒 = 𝑢𝑣 in 𝐺,

• If 𝑓 e < 𝑐(𝑒), then 𝑅𝑓 contains a forward edge (𝑢, 𝑣)
with the remaining capacity 𝒄 𝒆 − 𝒇 𝒆

• If 𝑓 𝑒 > 0, then 𝑅𝑓 contains a backwards edge 𝒗, 𝒖
with capacity 𝒇(𝒆) representing flow that could be “pushed back”

28

𝒔 𝒕

greedy flow 𝒇

1/1

1/1

1/1

0/1
0/10/10/1

0/10/10/1
0/1

𝒔 𝒕

1

1

1

1
111

111
1

residual graph for this flowForward edge:
remaining capacity

Backwards edge:
can undo flow

ANOTHER EXAMPLE RESIDUAL GRAPH
• Recall: for each edge 𝑒 = 𝑢𝑣 in 𝐺,

• If 𝑓 e < 𝑐(𝑒), then 𝑅𝑓 contains a forward edge (𝑢, 𝑣)
with the remaining capacity 𝒄 𝒆 − 𝒇 𝒆

• If 𝑓 𝑒 > 0, then 𝑅𝑓 contains a backwards edge 𝒗, 𝒖
with capacity 𝒇(𝒆) representing flow that could be “pushed back”

29

𝒔 𝒕

flow 𝒇 with value 2

2/2

2/3

2/2

0/1
0/10/10/1

0/10/10/1
0/1

𝒔 𝒕

2

2

2

1
111

111
1

residual graph for this flow

1

