CS 341: ALGORITHMS

RECALL: MAX-FLOW MIN-CUT THEOREM

» Theorem 3: every max s-t flow has value
equal to the capacity of a min s-t cut

« We give an algorithmic proof of this theorem

« (showing that one algorithm solves both
max-flow and min-cut at the same time)

FORD-FULKERSON METHOD Pty

« Can undo previous decisions to improve the flow

» Can effectively “push back” some flow
using an augmenting path through a residual graph

1/1 1/1 1/1
lo'te'leun
9 0/1 o
11 7
L STiAATiA AT

improved flow

4.../0

Pushesbackthe “augmenting path”
flow on this edge
(negating ifs flow)

QUICK REVIEW OF LAST TIME

FORD-FULKERSON METHOD

Algorithm development
>f of max-flow min-cut theorem)

RESIDUAL GRAPH

+ Aresidual graph R is defined for a given flow f and graph ¢
* Ry has the same vertices as G
» Foreachedgee = uvin G,

« If f(e) < c(e), then Ry contains a forward edge (u,v)
with the remaining capacity c(e) — f(e)

« If f(e) > 0, then R, contains a backwards edge (v, u)

2023-11-15

with capacity f(e) representing flow that could be “pushed back”

1
FoWardedoe: Wl residual graph for this flow

Backwards edge:

remaining capacity can undo flow

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

ANOTHER EXAMPLE RESIDUAL GRAPH

* Recall: foreach edge e =uvin G,

« If f(e) < c(e), then Ry contains a forward edge (u,v)
with the remaining capacity c(e) — f(e)

« If f(e) > 0, then R, contains a backwards edge (v, u)
with capacity f(e) representing flow that could be “pushed back”

P 0/ g 0/1
2/2
2/3

000
o 0n 0/1

residual graph for this flow

FORD-FULKERSON METHOD

« Find a shortest path P from s fo t in the residual graph
« If it improves the flow, we call it an
» And use it to update the flow

0/1 0/1 /1
1 0Lel el

”n 0
0/1 iVl 1 1
o @5 O 00,
resldual graph for 'hls flow

Forward edge: Backwards edge:
remaining capacity undo some flow

/....\

FORD-FULKERSON METHOD

« Find a shortest path P from s fo t in the residual graph
« If it improves the flow, we call it an
» And use it to update the flow

1/1 g 1/1

1 o

171
mn Al mn
updated flow residual graph for this flow

Forward edge: Backwards edge:

remaining capacity undo some flow

2023-11-15

CONTINUING WITH NEW MATERIAL

FORD-FULKERSON METHOD

« Find a shortest path P from s to t in the residual graph
- If it improves the flow, we callit an
* And use it to update the flow orward edge in

10“—%&0#»0\/1 /00001
11 O

1/1 1 1
O O - -0—0;
resldual graph for this flow

Fol_w_ald edge:_ Backwards edge:
remaining capacity undo some flow

FORD-FULKERSON METHOD

« Find a shortest path P from s to t in the residual graph
- If it improves the flow, we callit an
» And use it to update the flow

.—'H—*.\ /....1

Yl 1 ./o
TR ATINATE 00,
updated flow resldual graph for this flow

Original greedy path Forwardedge:. Backwards edge:
no longer exists remaining capacity undo some flow

2023-11-15

5 IMPROVING A FLOW f
FORD-FULKERSON METHOD GIVEN AN AUGMENTING PATH P OCEEE)
« Find a shortest path P from s fo t in the residual graph - An augmenting path w.r.t a flow £ is a simple s-¢ path in R

« If it improves the flow, we callit an - Let P be an augmenting path w.rt f

TAnduseiliodpdde s « Let bottleneck(f, P) be the minimum capacity of an edge in P
« We show this subroutine

augment(f, P) always
improves the value of flow f

1 11 77
updated flow new residual graph for this flow

No path from s to tin
residual graph. Done!

LEMMA 4: AUGMENT() IMPROVES FLOW f PROOF

+ Claim: augment(f, P) increases the flow by bottleneck(f, P)

» Let f be a flowin G with f%(s) = 0,
» First check f' is a flow:

and P be an augmenting path w.r.t f
+ Let f’ be the resulting flow after running augment(f, P) » Prove capacity and conservation constraints, and f'm Q)
» Then f' is a flow with value(f’) = value(f) + bottleneck(f, P) « Are capacity constraints satisfied?
« We add/subtract bottleneck(f, P) fo/from each edge

» Thatis, augment(f, P) increases the flow by bottleneck(f, P) « And bottleneck(f, P) is the minimum of the smallest remaining
capacity, and the current flow

« So capacity constraints are satisfied

PROOF Case 1: forward / forward
» Claim: augment(f, P) increases the flow by bottleneck(f, P) 25 ffi"!((3
N Uty
» How about conservation of flow? 3 5 frma Sonvoid
. 3/1 5/8 . 7 3 7 0 3

« Consider how the flow into and out of each vertex u ¢ {s, t} : 3
- 3 residual graph Ry augmenting path 7 in R,
changes as a result of running augment(f, P)

+ We show the change in f(w) Let bottleneck(f, P) = b
is the same as the change in f2% (u) in
MW =5+b

« There are 4 cases, depending on whether the edges FM @ =5+b

entering/leaving u are forward or backward edges Case 2: backwards / backwards
Both f(u) and f°ut(u) are dec

Both fi(w) and fo%(u) ar
increased by bottlene)

new fl
(after a

Case 3: forward / backwards

() O
5/6 Fout () —
/6 AROEE] % forward _ backwards
o000 o
2/7 3/5 3 2 2

flow f ual graph Ry augmenting path 7 in Ry

Let bottleneck(f,P) = b
Added and subtracted
: 3 f"w=5 b terms cancel out

& Fo) =5
Case 4: backwards / forwards i
2+b/7 3.b/5

nting)

FINISHING LEMMA 4: AUGMENT() IMPROVES FLOW

« Finally we argue value(f') = value(f) + bottleneck(f, P)

- £ and f' are flows, so value(f’) = £'°“(s) and value(f) = fo“(s)

« We thus show £"°“!(s) = f2%(s) + bottleneck(f, P)

» The augmenting path P is a simple path (leaving s exactly once)

* And there is no flow into s,
so the edge e € P leaving s is a forward edge

« This means augment(f, P) adds bottleneck(f, P) to f(e)
« SO £/ (s) = fOu(s) + bottleneck(f, P)

What we have proved so far: augmenting improves flow.
We don't know yet if

1. we can actually obtain the max flow, or
2. whether max-flow = min-cut.

MAX-FLOW MIN-CUT THEOREM PROOF

2023-11-15

SHOWING £'™(s) = 0

* Last step in showing f' is a flow
= Prove: s still has no flow into it
« Since fis a flow, f%(s) = 0
- To get £'™(s) > 0, an augmenting
path must include an edge into s

* But then an augmenting path
starts at s, then returns to s,
forming a cycle -- contfradiction!

FORD-FULKERSON METHOD

* By Lemma 4, starting from any flow f,
if we can find an augmenting path P w.r.t f in Ry,
then we can use augment(f, P) to improve our flow
« Ford-Fulkerson does this repeatedly starting from an empty flow

1 FordFulke

3
4
5
6
7

PROOF STRATEGY

« Claim: when there is no augmenting path,
there is a cut with capacity equal to
the value of the current flow.

+ Proving this will simultaneously
« prove the max-flow min-cut theorem,
« prove correctness of the Ford-Fulkerson method,
« solve the max flow problem, and

« solve the min cut problem

2023-11-15

PROVING MAX FLOW = MIN CUT

if f is an s-t flow such that
there is no s-t path in the residual graph Ry,

then there is an s-t cut S s.t. value(f) = c%(.

PROVING MAX FLOW = MIN CUT

Two directions:
max flow < min cut and max flow > min cut
Understanding the proposition... !
VAl VAl |
i/
h
i

We actually proved the < direction already (Lemma 2 last time)
when discussing upper bounds for max flow
0/1 | ,0
/ 11
/ ey
! residual graph R,
containing no s-t paths

It remains to prove the > direction.

« Proposition:

1

If flow value =2
then cut exists with
capacity 2 = flow value

No outgoing edges
in Ry from s

PROVING THE PROPOSITION

+ Since there is no s-t path in Ry,
there is a subset S of vertices withs € S, t ¢ S

such that § has no outgoing edges in R,
= value(f)

PROVING THE PROPOSITION

» Claim:

» Consider two types of edges. Type 1:
« uv exiting Sin G (uv € §°“(S)IN G, u€E S, v & S)

« Since there is no s-t pathin Ry,
there is a subset S of verticeswiths €S, t ¢ §
No outgoing edges

such that S has no outgoing edges in R,
in Ry from s

« What does this statement look like2
'I
’I
« Since S has no outgoing edge in Ry,

!
II we know uv & R¢
1
! « Thisimplies f(uv) = c(uv), as otherwise
1t f 3 residual graph R, \ 4
igoing edges / uv would be a forward edge in Ry

outgoing edgesin ¢
from s carry the flow

PROVING THE PROPOSITION

PROVING THE PROPOSITION N R T
» Claim: = value(f) * We just showed
« Consider two types of edges. Type 2: « For edge uv directed out of S,
fuv) = c(uv)
« For edge uv directed into S,
fluv) =0
* So fou[(s) 22 fm(S) 2 Cout(s) -0 ‘au[(s)

« This proves the proposition. |.e.,
given flow f, if there are no s-t pathsin Ry, i
Note this was the last thing
remaining to prove the min-cut

max-flow theorem, and the

then there is a cut matching the flow
correctness of Ford-Fulkerson

» uv entering Sin G
(uv € 5™(S)ING, ug S, vES)

« Since S has no outgoing edge in Ry,
we know there is no edge vu ¢ Ry
(note vu would be directed out of S)
« Thisimplies f(uv) = 0, as otherwise
vu would be a backwards edge in Ry

30

TIME COMPLEXITY

RUNTIME OF FORD-FULKERSON

» Assume we find any arbitrary augmenting path P,
using any technique, in 0(n +m) time

« Then every time augment(f, P) is run, iEepesiiseroneEls (el

particular some are irrational),

we know only that the flow increases this may never terminate!
« If capacities are integers, the increase is at least 1
« In this case, if max flow is k then runtime is 0(k(n + m))
« For max flow we assume a connected graph, so this is 0(km)
« Very bad if k is large

EDMONDS-KARP APPROACH

Use BFS to find a shortest path (in ferms of number of edges)
and use that as an augmenting path

It turns out this always terminates after 0(nm) augmenting paths
« (even with real capacities)
BFS takes 0(n + m) time; 0(m) since the graph is connected

So total runtime is 0(nm?)

There are more sophisticated algorithms
with 0(V2E) and even 0(V?) runtimes
(opfional: CLRS 26.4, 26.5)

In 2022, researchers found cr ost

linea gorithm, which leverages

technigues from convex optimization
and sophisticated data structures

2023-11-15

RUNTIME OF FORD-FULKERSON

» Depends on the implementation

» How do we find an augmenting path?

» How many times do we need to augment before we terminate?

WORST CASE FOR THIS APPROACH

4)24, o2 U, (oA),

o8 Yo, o Yoy, o %

> D~ A A T~

s) - t) s - %3, P
Lon /r)/,\ L2 y 9
P p R), . AL
U v T 7 (TR T ¥

al

Figure ow ek fo RD-FULKERSON ¢
¢ *| = 200000

https://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2203.00671

