

QUICK REVIEW OF LAST TIME

RECALL: MAX-FLOW MIN-CUT THEOREM

- Theorem 3: every max *s*-*t* flow has value equal to the capacity of a min *s*-*t* cut
- We give an algorithmic proof of this theorem
 - (showing that one algorithm solves both max-flow and min-cut at the same time)

FORD-FULKERSON METHOD

Algorithm development (mixed together with proof of max-flow min-cut theorem)

RESIDUAL GRAPH

• A residual graph R_f is defined for a given flow f and graph G

- R_f has the same vertices as G
- For each edge e = uv in G,
 - If f(e) < c(e), then R_f contains a **forward** edge (u, v) with the **remaining capacity** c(e) f(e)
 - If f(e) > 0, then R_f contains a backwards edge (v, u) with capacity f(e) representing flow that could be "pushed back"

ANOTHER EXAMPLE RESIDUAL GRAPH

Recall: for each edge e = uv in G

- If f(e) < c(e), then R_f contains a **forward** edge (u, v) with the **remaining capacity** c(e) f(e)
- If f(e) > 0, then R_i contains a **backwards** edge (v, u) with **capacity** f(e) representing flow that could be "pushed back"

CONTINUING WITH NEW MATERIAL

FORD-FULKERSON METHOD

- Find a shortest path P from s to t in the residual graph
 - If it **improves** the flow, we call it an **augmenting path**
 - And use it to update the flow

FORD-FULKERSON METHOD

- Find a shortest path P from s to t in the residual graph
- If it improves the flow, we call it an augmenting path
- And use it to update the flow
 For each forward edge in P,
 increase existing flow

<text><list-item><list-item><complex-block>

FORD-FULKERSON METHOD Find a shortest path P from s to t in the residual graph If it improves the flow, we call it an augmenting path And use it to update the flow

FORD-FULKERSON METHOD

- Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to **update the flow**

IMPROVING A FLOW f given an augmenting path p

- An augmenting path w.r.t a flow f is a simple s-t path in R_f
- Let P be an augmenting path w.r.t f
- Let bottleneck(f, P) be the minimum capacity of an edge in P
- We show this subroutine augment (f, P) always improves the value of flow f

LEMMA 4: AUGMENT() IMPROVES FLOW f

- Let f be a flow in G with $f^{in}(s) = 0$,
- and P be an augmenting path w.r.t f
- Let f' be the resulting flow after running $\operatorname{augment}(f, P)$
- Then f' is a flow with value(f') = value(f) + bottleneck(f, P)
- That is, augment(f, P) increases the flow by bottleneck(f, P)

PROOF

- Claim: augment(f, P) increases the flow by bottleneck(f, P)
- First check *f* ' is a flow
 - Prove capacity and conservation constraints, and $f^{in}(s) = 0$
- Are capacity constraints satisfied?
 - We add/subtract bottleneck(f, P) to/from each edge
 - And bottleneck(*f*, *P*) is the minimum of the smallest remaining capacity, and the current flow
 - So capacity constraints are satisfied

PROOF

- Claim: augment(f, P) increases the flow by bottleneck(f, P)
- How about conservation of flow?
 - Consider how the flow into and out of each vertex $u \notin \{s, t\}$ changes as a result of running $\operatorname{augment}(f, P)$
 - We show the change in $f^{in}(u)$ is the same as the change in $f^{out}(u)$
 - There are 4 cases, depending on whether the edges entering/leaving *u* are **forward** or **backward** edges

SHOWING $f'^{in}(s) = 0$

- Last step in showing f' is a flow
 Prove: s still has no flow into it
- Since f is a flow, $f^{in}(s) = 0$
- To get $f'^{in}(s) > 0$, an augmenting path must include an edge **into** *s*
- But then an augmenting path starts at *s*, then returns to *s*, forming a cycle -- contradiction!

FINISHING LEMMA 4: AUGMENT() IMPROVES FLOW

- Finally we argue value(f') = value(f) + bottleneck(f, P)
- f and f' are flows, so value(f') = $f'^{out}(s)$ and $value(f) = f^{out}(s)$
- We thus show $f'^{out}(s) = f^{out}(s) + bottleneck(f, P)$
- The augmenting path *P* is a simple path (leaving *s* exactly once)
 And there is no flow into *s*,
- so the edge $e \in P$ leaving s is a **forward edge**
- This means $\operatorname{augment}(f, P)$ adds $\operatorname{bottleneck}(f, P)$ to f(e)
- So $f'^{out}(s) = f^{out}(s) + \text{bottleneck}(f, P)$

FORD-FULKERSON METHOD

- By Lemma 4, starting from any flow f, if we can find an augmenting path P w.r.t f in R_f, then we can use augment(f, P) to improve our flow
- Ford-Fulkerson does this repeatedly starting from an empty flow

it we have proved so far: **augmenting improves flow.** We **don't know yet** if

1. we can actually obtain the max flow, or 2. whether max-flow = min-cut.

MAX-FLOW MIN-CUT THEOREM PROOF

PROOF STRATEGY

 Claim: when there is no augmenting path, there is a cut with capacity equal to the value of the current flow.

• Proving this will simultaneously

- prove the max-flow min-cut theorem,
- prove correctness of the Ford-Fulkerson method,
- solve the max flow problem, and
- solve the min cut problem

PROVING MAX FLOW = MIN CUT

Two directions: max flow \leq min cut and max flow \geq min cut

We actually proved the \leq direction already (Lemma 2 last time) when discussing upper bounds for max flow

It remains to prove the \geq direction.

PROVING THE PROPOSITION

- Since there is no s-t path in R_f , there is a subset S of vertices with $s \in S$, $t \notin S$ such that S has **no outgoing edges** in R_f
- Claim: $c^{out}(S) = value(f)$
- Consider two types of edges. Type 1:
 - $uv \text{ exiting } S \text{ in } G (uv \in \delta^{out}(S) \text{ in } G, u \in S, v \notin S)$
 - Since S has no outgoing edge in R_f , we know $uv \notin R_f$
 - This implies f(uv) = c(uv), as otherwise uv would be a forward edge in R_f

PROVING THE PROPOSITION

- Claim: c^{out}(S) = value(f
- Consider two types of edges. Type 2:
 - uv entering S in G $(uv \in \delta^{in}(S)$ in $G, u \notin S, v \in S)$
 - Since *S* has no outgoing edge in R_f , we know there is no edge $vu \notin R_f$ (note vu would be directed out of *S*)
 - This implies f(uv) = 0, as otherwise vu would be a backwards edge in R_f

PROVING THE PROPOSITION

- We just showed
- For edge uv directed out of S, f(uv) = c(uv)
- For edge uv directed into S, f(uv) = 0
- So $f^{out}(S) f^{in}(S) = c^{out}(S) 0 = c^{out}(S)$
- This proves the proposition. I.e., given flow f, if there are no s-t paths in R_f, then **there is a cut matching the flow**

RUNTIME OF FORD-FULKERSON • Depends on the implementation 1 FordFulkerson(G=(V,E)) 2 for e in E 3 f(e) = 0 4 5 while there is a simple s-t path P in Rf do augment(f, P) 7 and update the residual graph Rf

- How do we find an augmenting path?
- How many times do we need to augment before we terminate?

RUNTIME OF FORD-FULKERSON

- Assume we find any arbitrary augmenting path P, using any technique, in O(n + m) time
- Then every fime augment(f, P) is run, we know only that the flow increases
- If capacities are integers, the increase is at least 1
- In this case, if max flow is k then runtime is O(k(n+m))
 - + For max flow we assume a connected graph, so this is O(km)
 - Very bad if k is large

EDMONDS-KARP APPROACH

- Use BFS to find a shortest path (in terms of number of edges) and use that as an augmenting path
- It turns out this always terminates after O(nm) augmenting paths
 - (even with real capacities)
- BFS takes O(n + m) time; O(m) since the graph is connected
- So total runtime is $O(nm^2)$

There are more sophisticated algorithms with (l(2²)) and even (l(2²)) untimes (**pptiont**: CLR5 26.4, 26.5) In 2022, researchers found automost from time algorithm, which leverages techniques from convex optimization