CS 341: ALGORITHMS

Lecture 17: max flow

Readings: CLRS 26.2

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

QUICK REVIEW OF LAST TIME

RECALL: MAX-FLOW MIN-CUT THEOREM

• **Theorem 3:** every max s-t flow has value equal to the capacity of a min s-t cut

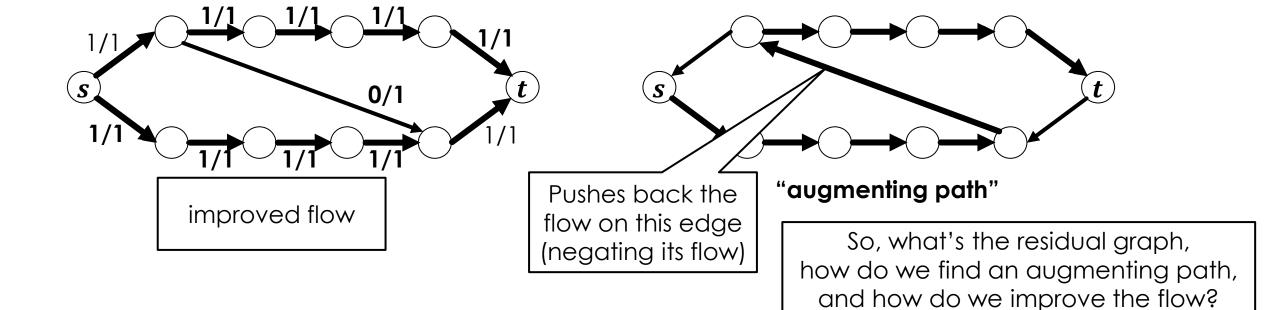
- We give an algorithmic proof of this theorem.
 - (showing that one algorithm solves both max-flow and min-cut at the same time)

Algorithm development

(mixed together with proof of max-flow min-cut theorem)

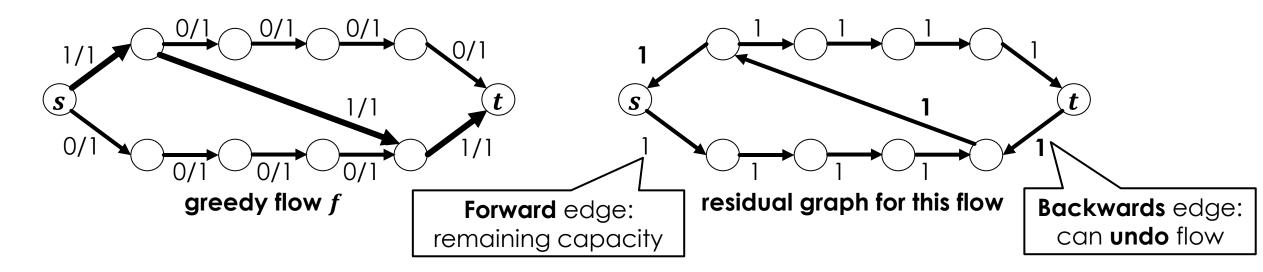
Same Ford as in Bellman-Ford :)

- Can undo previous decisions to improve the flow
 - Can effectively "push back" some flow using an augmenting path through a residual graph



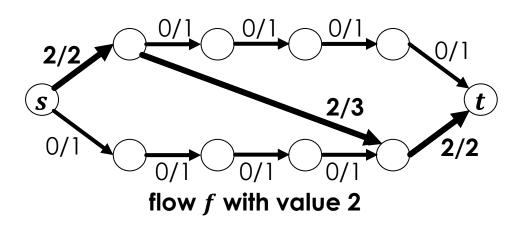
RESIDUAL GRAPH

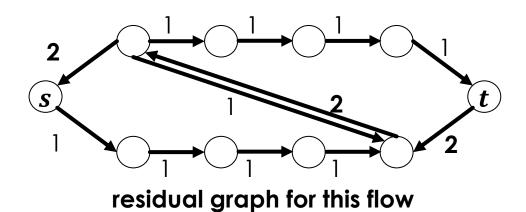
- \circ A **residual graph** R_f is defined for a **given flow** f and **graph** G
- \circ R_f has the same vertices as G
- For each edge e = uv in G,
 - If f(e) < c(e), then R_f contains a **forward** edge (u, v) with the **remaining capacity** c(e) f(e)
 - If f(e) > 0, then R_f contains a **backwards** edge (v, u) with **capacity** f(e) representing flow that could be "pushed back"



ANOTHER EXAMPLE RESIDUAL GRAPH

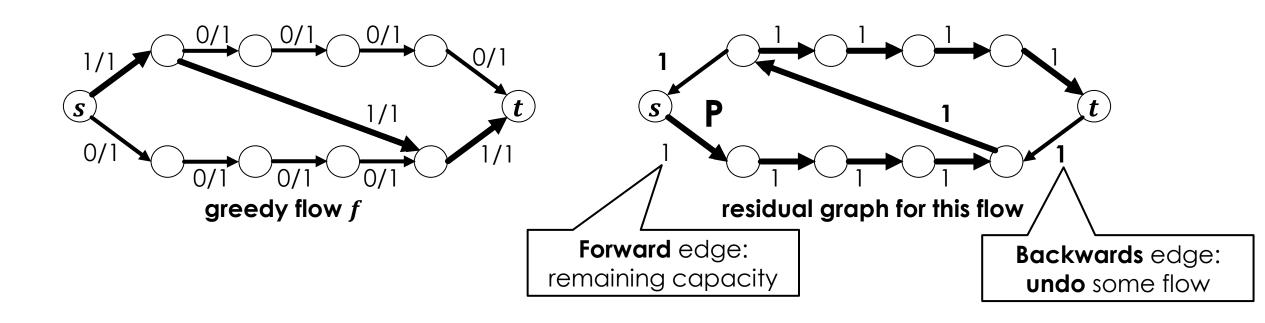
- Recall: for each edge e = uv in G,
 - If f(e) < c(e), then R_f contains a **forward** edge (u, v) with the **remaining capacity** c(e) f(e)
 - olf f(e) > 0, then R_f contains a **backwards** edge (v, u) with **capacity** f(e) representing flow that could be "pushed back"



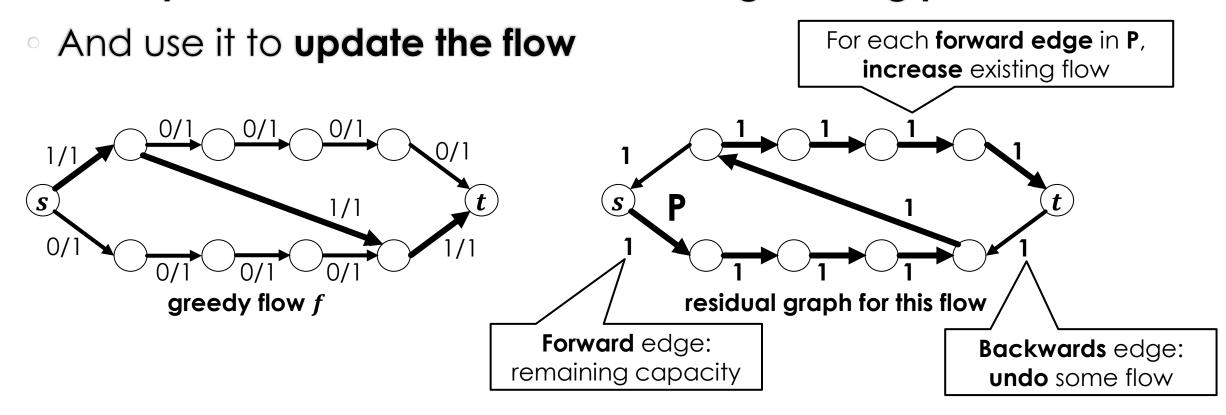


CONTINUING WITH NEW MATERIAL

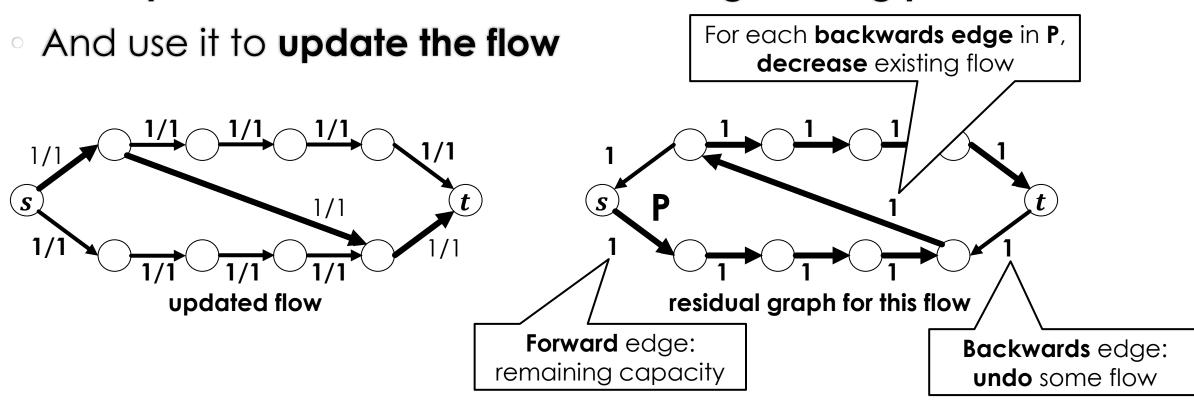
- \circ Find a shortest path **P** from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow



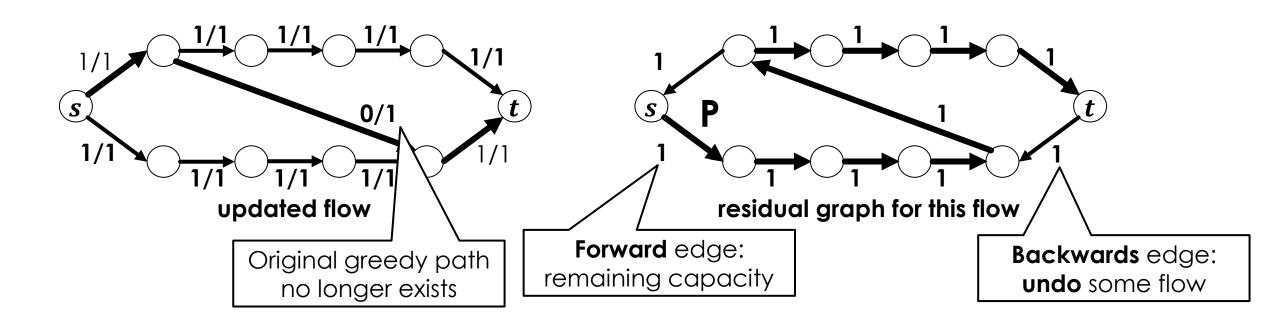
- \circ Find a shortest path **P** from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path



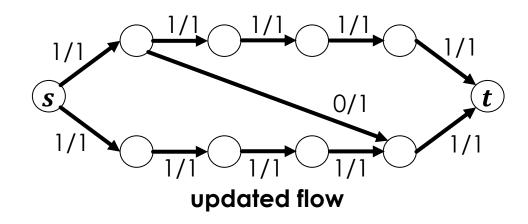
- \circ Find a shortest path P from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path

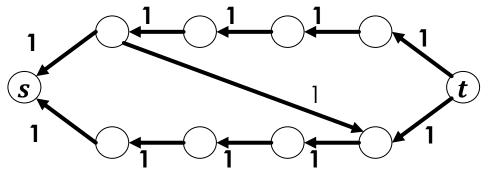


- \circ Find a shortest path **P** from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow



- \circ Find a shortest path **P** from s to t in the residual graph
 - If it improves the flow, we call it an augmenting path
 - And use it to update the flow





new residual graph for this flow

No path from s to t in residual graph. Done!

IMPROVING A FLOW *f* GIVEN AN AUGMENTING PATH *P*

- no cycles!
- An augmenting path w.r.t a flow f is a **simple** s-t path in R_f
- Let P be an augmenting path w.r.t f
- Let bottleneck(f, P) be the minimum capacity of an edge in P
- We show this subroutine
 augment(f, P) always
 improves the value of flow f

```
1 augment(f, P)
2  let b = bottleneck(f, P)
3  for each edge e = (u,v) in P
4  if e is a forward edge
5  f(e) = f(e) + b
6  else if e is a backwards edge
7  let e' = (v,u)
8  f(e') = f(e') - b
```

LEMMA 4: AUGMENT() IMPROVES FLOW f

- Let f be a flow in G with $f^{in}(s) = 0$, and P be an augmenting path w.r.t f
- Let f' be the resulting flow after running augment(f, P)
- Then f' is a flow with value(f') = value(f) + bottleneck(f, P)

• That is, augment(f, P) increases the flow by bottleneck(f, P)

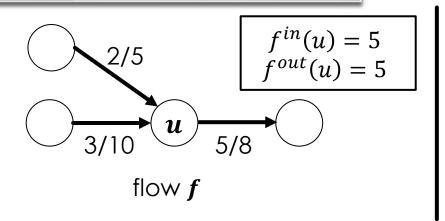
PROOF

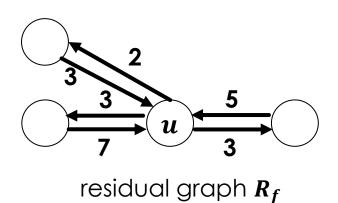
- \circ Claim: augment(f, P) increases the flow by bottleneck(f, P)
- First check f' is a flow
 - Prove capacity and conservation constraints, and $f'^{in}(s) = 0$
- Are capacity constraints satisfied?
 - We add/subtract bottleneck(f, P) to/from each edge
 - And bottleneck(f, P) is the minimum of the smallest remaining capacity, and the current flow
 - So capacity constraints are satisfied

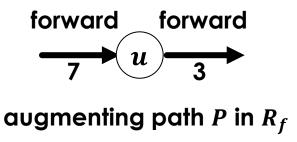
PROOF

- Claim: augment(f, P) increases the flow by bottleneck(f, P)
- How about conservation of flow?
 - Consider how the flow into and out of each vertex $u \notin \{s,t\}$ changes as a result of running augment(f,P)
 - We show the change in $f^{in}(u)$ is the same as the change in $f^{out}(u)$
 - There are 4 cases, depending on whether the edges entering/leaving u are **forward** or **backward** edges

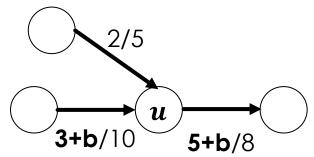
Case 1: forward / forward







Let bottleneck(f, P) = b



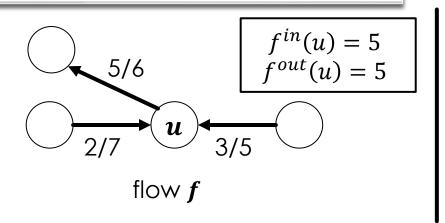
(after augmenting)

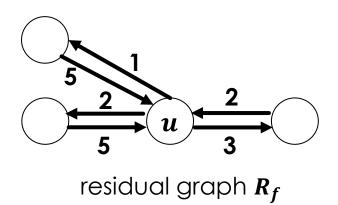
$$f'^{in}(u) = 5 + b$$
$$f'^{out}(u) = 5 + b$$

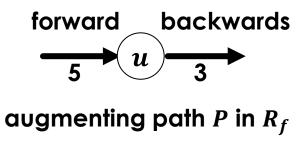
Both $f^{in}(u)$ and $f^{out}(u)$ are increased by bottleneck(f, P)

hb/10 $f_{5+b/8}$ Case 2: backwards / backwards is similar. Both $f^{in}(u)$ and $f^{out}(u)$ are decreased by $f_{5}^{in}(u)$ and $f_{5}^{in}(u)$ are decreased by $f_{5}^{in}(u)$

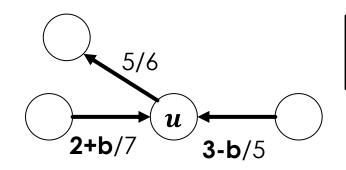
Case 3: forward / backwards







Let bottleneck(f, P) = b



$$f'^{in}(u) = 5$$
$$f'^{out}(u) = 5$$

Case 4: backwards / forwards is similar.

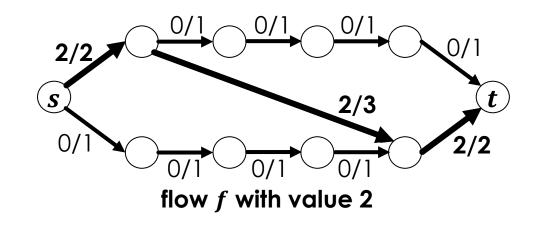
Added and subtracted

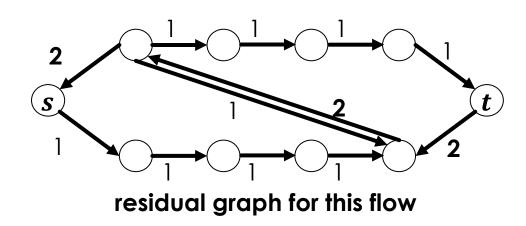
b terms cancel out

new flow **f**' (after augmenting)

SHOWING $f'^{in}(s) = 0$

- Last step in showing f' is a flow
 - Prove: s still has no flow into it
- Since f is a flow, $f^{in}(s) = 0$
- To get $f'^{in}(s) > 0$, an augmenting path must include an edge **into** s
- But then an augmenting path starts at s, then returns to s, forming a cycle -- contradiction!





FINISHING LEMMA 4: AUGMENT() IMPROVES FLOW

- Finally we argue value(f') = value(f) + bottleneck(f,P)
- f and f' are flows, so value $(f') = f'^{out}(s)$ and $value(f) = f^{out}(s)$
- We thus show $f'^{out}(s) = f^{out}(s) + bottleneck(f, P)$
- The augmenting path P is a **simple** path (leaving s exactly once)
- And there is no flow into s,
 so the edge e ∈ P leaving s is a forward edge
- This means augment(f, P) adds bottleneck(f, P) to f(e)
- So $f'^{out}(s) = f^{out}(s) + \text{bottleneck}(f, P)$

- By Lemma 4, starting from any flow f, if we can **find an augmenting path** P w.r.t f in R_f , then we can use augment(f,P) to **improve our flow**
- Ford-Fulkerson does this repeatedly starting from an empty flow

```
1 FordFulkerson(G=(V,E))
2   for e in E
3     f(e) = 0
4
5   while there is a simple s-t path P in Rf do
6     augment(f, P)
7   and update the residual graph Rf
```

What we have proved so far: augmenting improves flow.

We don't know yet if

we can actually obtain the max flow, or
 whether max-flow = min-cut.

MAX-FLOW MIN-CUT THEOREM PROOF

PROOF STRATEGY

- Claim: when there is no augmenting path, there is a cut with capacity equal to the value of the current flow.
- Proving this will simultaneously
 - prove the max-flow min-cut theorem,
 - prove correctness of the Ford-Fulkerson method,
 - solve the max flow problem, and
 - solve the min cut problem

PROVING MAX FLOW = MIN CUT

Two directions:

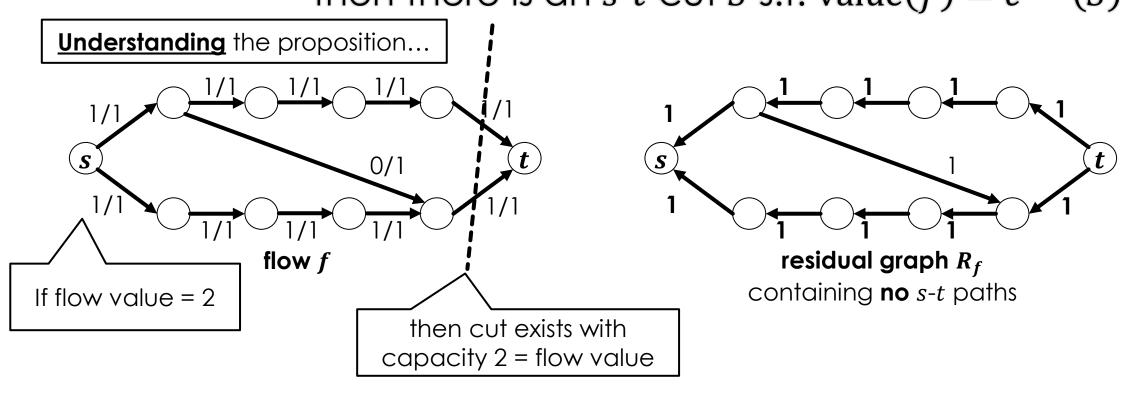
max flow ≤ min cut and max flow ≥ min cut

We actually proved the ≤ direction already (**Lemma 2 last time**) when discussing upper bounds for max flow

It remains to prove the \geq direction.

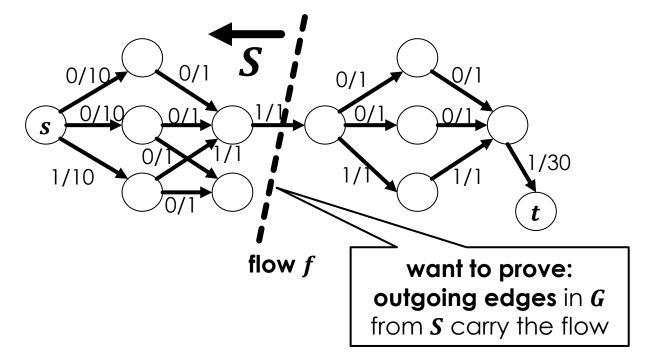
PROVING MAX FLOW ≥ MIN CUT

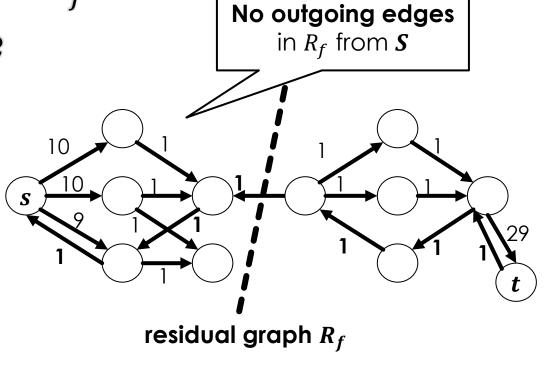
• Proposition: if f is an s-t flow such that there is no s-t path in the residual graph R_f , then there is an s-t cut S s.t. value(f) = $c^{out}(S)$



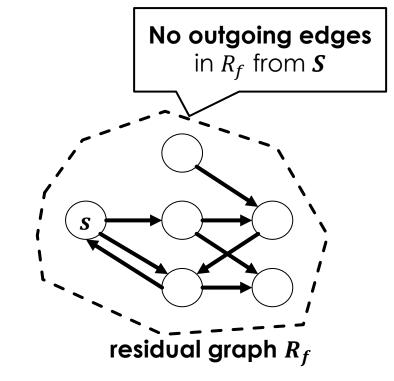
Since there is no s-t path in R_f , there is a subset S of vertices with $s \in S$, $t \notin S$ such that S has **no outgoing edges** in R_f

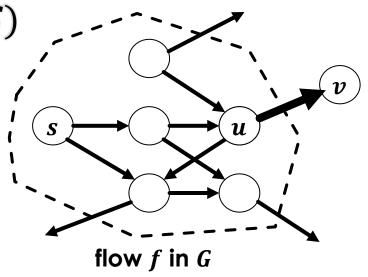
• What does this statement look like?



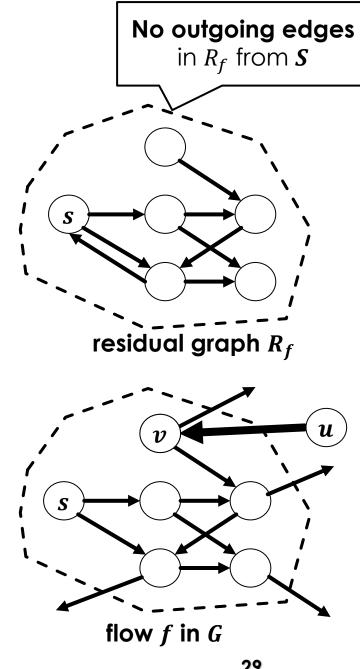


- Since there is no s-t path in R_f , there is a subset S of vertices with $s \in S$, $t \notin S$ such that S has **no outgoing edges** in R_f
- Claim: $c^{out}(S) = value(f)$
- Consider two types of edges. Type 1:
 - uv exiting S in G ($uv \in \delta^{out}(S)$ in G, $u \in S$, $v \notin S$)
 - Since S has no outgoing edge in R_f , we know $uv \notin R_f$
 - This implies f(uv) = c(uv), as otherwise uv would be a forward edge in R_f

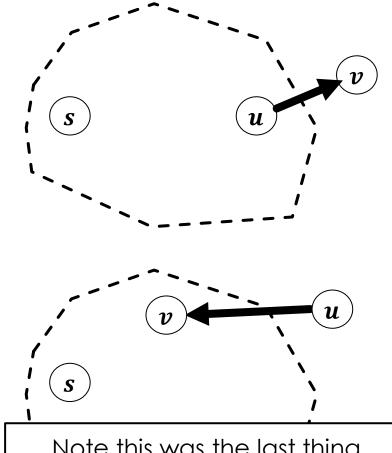




- Claim: $c^{out}(S) = value(f)$
- Consider two types of edges. Type 2:
 - uv entering S in G $(uv \in \delta^{in}(S) \text{ in } G, u \notin S, v \in S)$
 - Since S has no outgoing edge in R_f , we know there is no edge $vu \notin R_f$ (note vu would be directed out of S)
 - This implies f(uv) = 0, as otherwise vu would be a backwards edge in R_f



- We just showed
 - For edge uv directed out of S, f(uv) = c(uv)
 - For edge uv directed into S, f(uv) = 0
- So $f^{out}(S) f^{in}(S) = c^{out}(S) 0 = c^{out}(S)$
- This proves the proposition. I.e., given flow f, if there are no s-t paths in R_f , then there is a cut matching the flow



Note this was the last thing remaining to prove the min-cut max-flow theorem, and the correctness of Ford-Fulkerson

TIME COMPLEXITY

of the Ford-Fulkerson method

RUNTIME OF FORD-FULKERSON

Depends on the implementation

- How do we find an augmenting path?
- How many times do we need to augment before we terminate?

RUNTIME OF FORD-FULKERSON

- Assume we find any arbitrary augmenting path P, using any technique, in O(n+m) time
- Then every time augment(f, P) is run, we know only that the flow **increases**

If capacities are reals (and in particular some are irrational), this may **never** terminate!

- If capacities are integers, the increase is at least 1
- In this case, if max flow is k then runtime is O(k(n+m))
 - For max flow we assume a connected graph, so this is O(km)
 - \circ Very bad if k is large

WORST CASE FOR THIS APPROACH

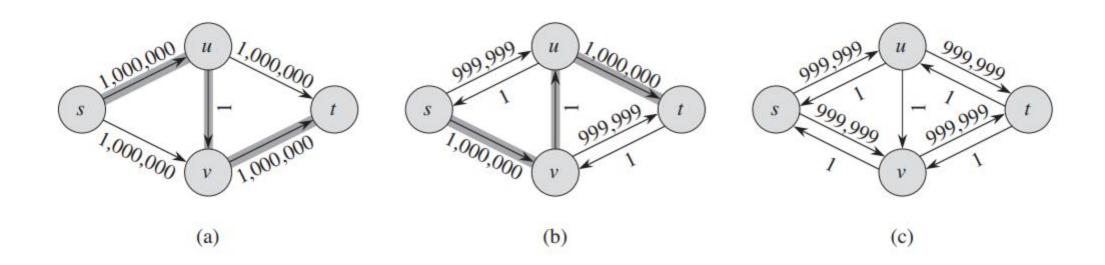


Figure 26.7 (a) A flow network for which FORD-FULKERSON can take $\Theta(E \mid f^* \mid)$ time, where f^* is a maximum flow, shown here with $|f^*| = 2,000,000$. The shaded path is an augmenting path with residual capacity 1. (b) The resulting residual network, with another augmenting path whose residual capacity is 1. (c) The resulting residual network.

EDMONDS-KARP APPROACH

- Use BFS to find a shortest path (in terms of number of edges) and use that as an augmenting path
- It turns out this always terminates after O(nm) augmenting paths
 - (even with real capacities)
- BFS takes O(n+m) time; O(m) since the graph is connected
- \circ So total runtime is $O(nm^2)$

There are more sophisticated algorithms with $O(V^2E)$ and even $O(V^3)$ runtimes (**optional**: CLRS 26.4, 26.5)

In 2022, researchers found <u>an almost</u> <u>linear time algorithm</u>, which leverages techniques from convex optimization and sophisticated data structures