CS 341: ALGORITHMS

Lecture 18: applications of max flow

Readings: CLRS 26.2

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

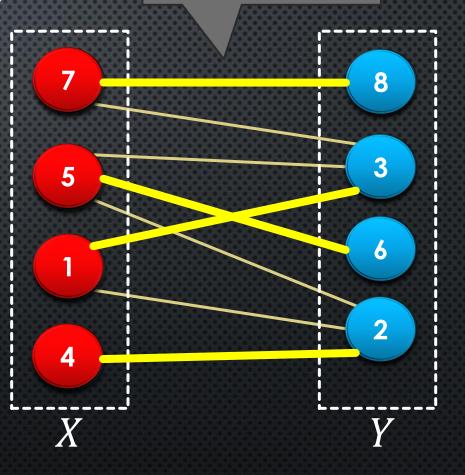
MAX BIPARTITE MATCHING

BIPARTITE MATCHING

 Input: a bipartite graph G = (X,Y,E)
 Output: a maximum cardinality set of edges that are vertex disjoint

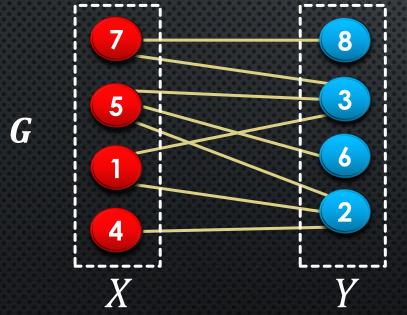
- Set S of edges is called a matching if no two edges in S share a vertex
- A matching is a perfect matching IFF every vertex is matched

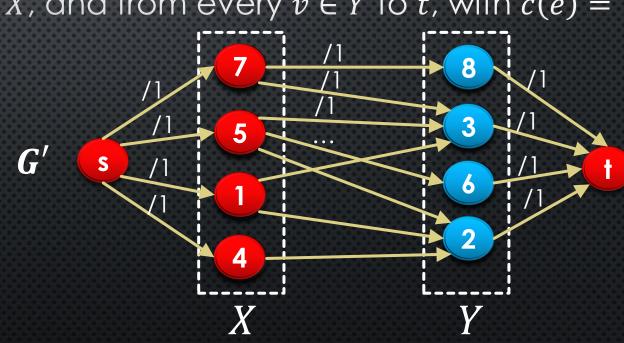
Both **maximal** and **perfect**



REDUCTION TO MAX FLOW

- Given bipartite G = (X, Y, E) construct G' = (V', E') as follows
- $V' = \{s\} \cup X \cup Y \cup \{t\}$ where s and t are new vertices
 - All $e \in E$ appear in E', pointing from X to Y, with c(e) = 1
 - Add edges e from s to every $v \in X$, and from every $v \in Y$ to t, with c(e) = 1

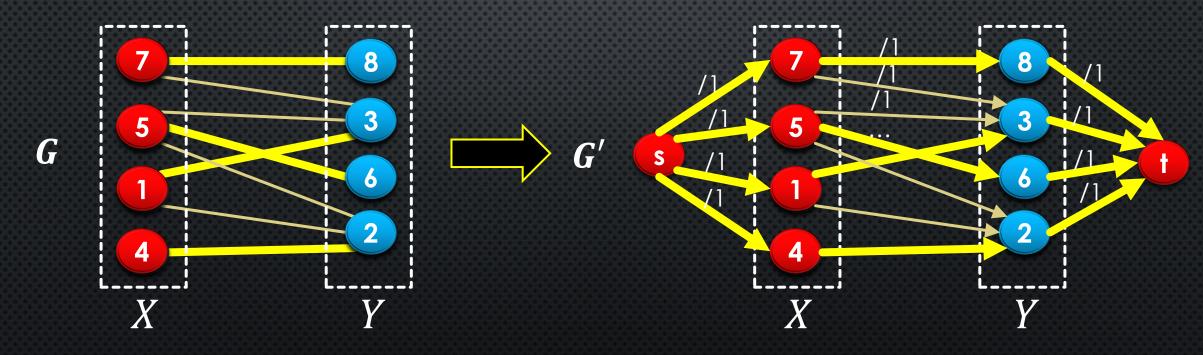




CORRECTNESS OF THE REDUCTION

 Claim: there is a matching of size k in G IFF there is an s-t flow of value k in G'

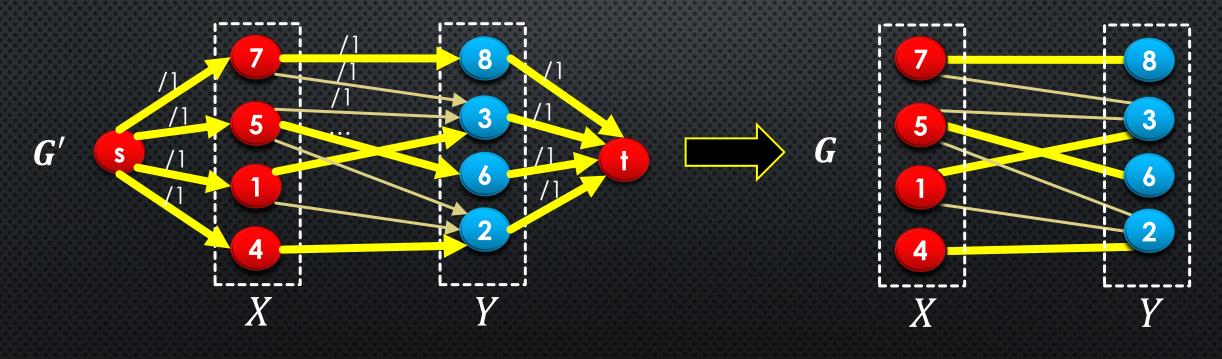
• Proof: (\rightarrow) clearly if there is a matching of size k, there is a flow of size k



CORRECTNESS OF THE REDUCTION

• Claim: there is a matching of size k in G IFF there is an s-t flow of value k in G'

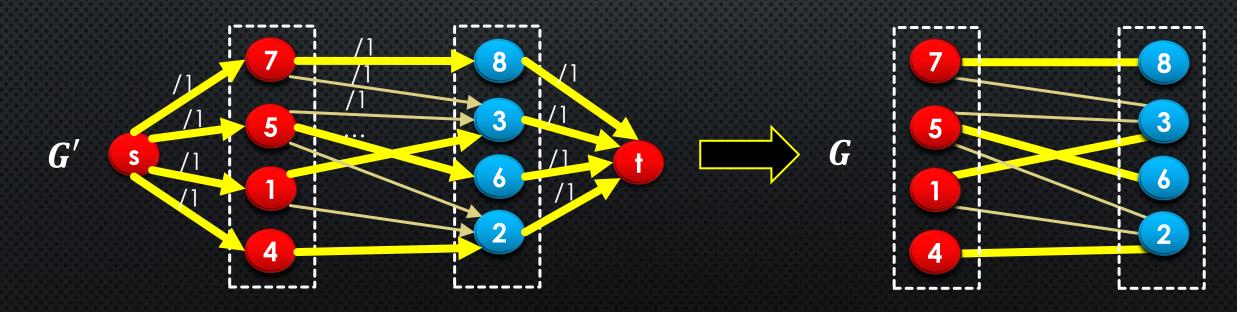
 Proof: (<) let's show if there is a flow of size k, then there is a matching of size k



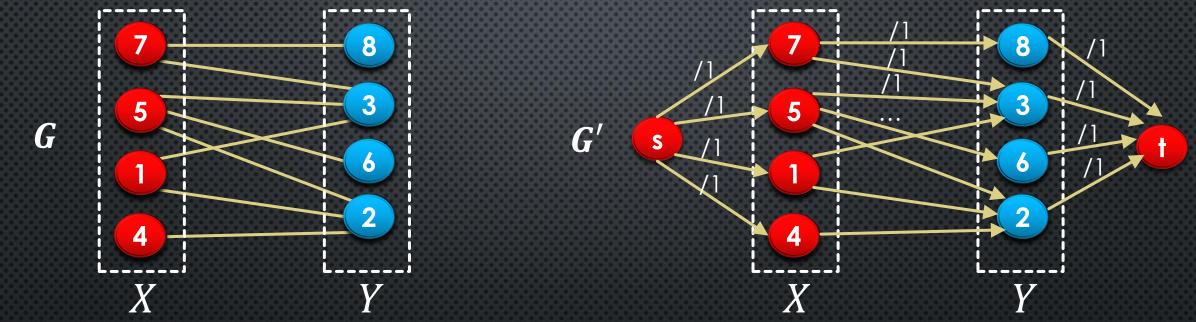
6

PROOF: FLOW OF SIZE $k \Rightarrow$ MATCHING OF SIZE k

- Decompose flow into k capacity disjoint s-t paths, each with flow 1
- Each path is 3 edges: s to X, X to Y, Y to t
- Each edge from s to X or from Y to t has capacity 1
- So each vertex except for *s*, *t* can be used on at most one path
- Removing edges s to X and Y to t gives k vertex-disjoint edges. \Box

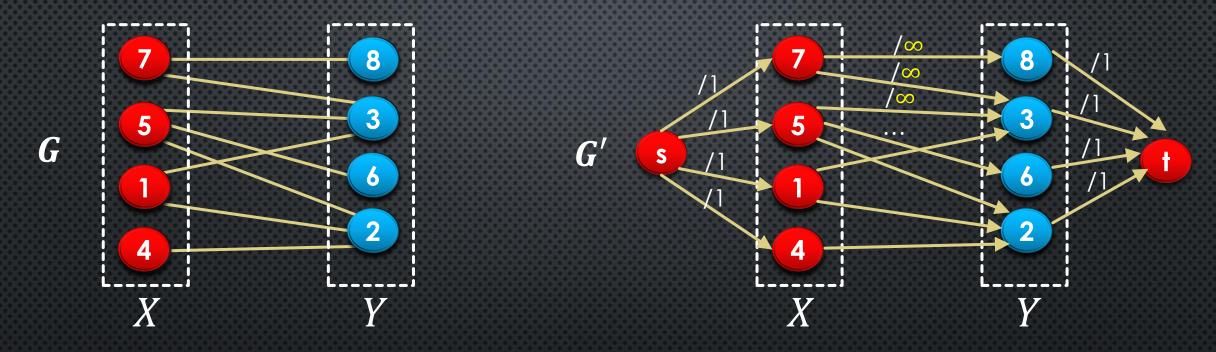


• Given bipartite G = (X, Y, E) construct G' = (V', E') as follows



O(n+m) to build G' (simplifies to O(m) if G is connected)
max flow is O(n), so O(nm) to run Ford-Fulkerson → total O(nm)

• For edges from X to Y set capacity to ∞ instead of 1



 Does not affect the correctness of the reduction! (Each vertex can still only be used once)

MINIMUM VERTEX COVER (FOR A BIPARTITE GRAPH)

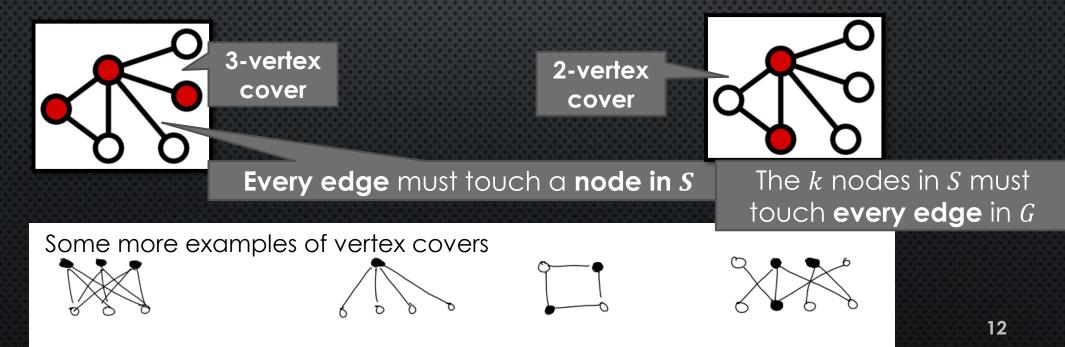
RECALL: MAX-FLOW MIN-CUT THEOREM

 Theorem 3: every max s-t flow has value equal to the capacity of a min s-t cut

- Consequence: if the max s-t flow is k, then there is an s-t cut with capacity k
 - I.e., the only reason the max flow is limited to k is that there is a cut with capacity k that limits the flow

MINIMUM VERTEX COVER PROBLEM

- Vertex cover: given a graph G = (V, E)a set S of vertices is called a vertex cover IFF for every $(u, v) \in E$, either $u \in S$ or $v \in S$
- Minimum vertex cover: what is the smallest k such that there exists a vertex cover S with |S| = k?



CONNECTING MATCHING AND VERTEX COVER

- In bipartite graphs, These problems are related via "duality"
- Explaining their duality involves formulating both problems as linear programming problems – see linear optimization courses
- We study their connection in a more ad-hoc way
 - Observe: If there is a matching with k edges, then there is any vertex cover S must have $|S| \ge k$
 - Why?

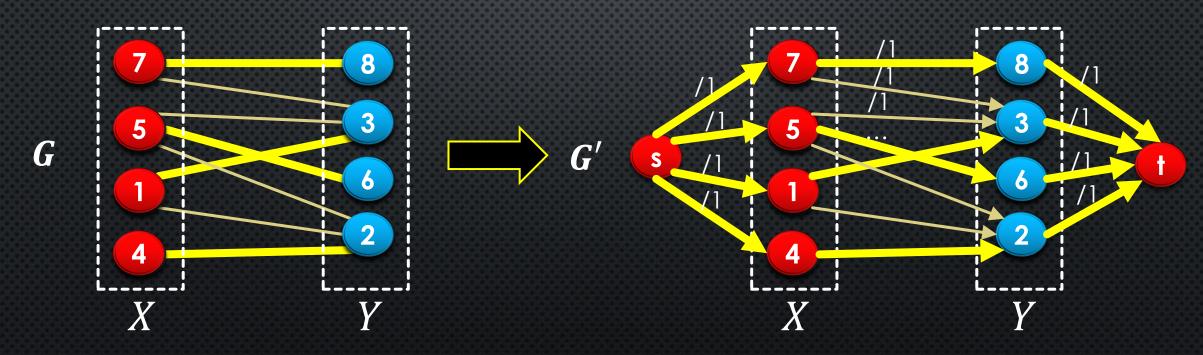


The *k* edges in the matching are vertex disjoint, so *k* distinct vertices are needed to cover them

So $|vertex cover| \ge |max matching|$

In fact we can prove |vertex cover| = |max matching|, so can solve with max matching, which we reduced to **max flow**

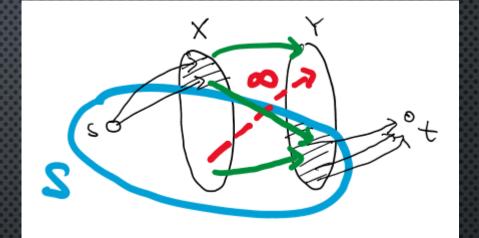
- Let $k = |\max \text{ max matching}|$ in G. Show $\exists \text{ vertex cover of size } k$.
- Recall our reduction from max matching to max flow
 - The max s-t flow in G' is k



- Since the max s-t flow in G' is k,
- By max-flow min-cut, there is an s-t cut S in G' with capacity k

lacksquare

 This flow must cross the cut to reach t, and it must consume k units of capacity crossing the cut



- There are three cases in which capacity can possibly cross the cut
 - (1) it can cross the cut going from s to X,
 or (2) it can cross the cut going from X to Y,
 or (3) it can cross the cut going from Y to t

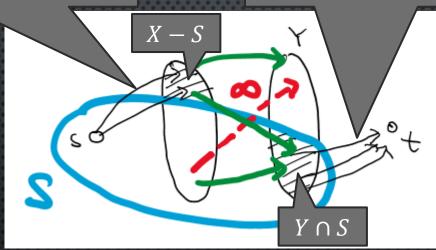
There cannot be an edge satisfying case 2, or cut capacity would be ∞ , not k!

So only cases 1&3 are possible

• So capacity can only cross the cut in 2 cases: s to X, Y to t

Case s to X: via an edge from s to X - S with capacity 1

Case Y to t: via an edge from $Y \cap S$ to t with capacity 1

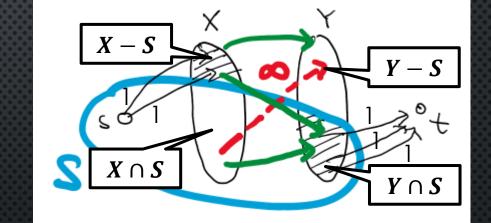


k = capacity crossing cut = # of such edges
= total # vertices in (X - S) ∪ (Y ∩ S)

So there are exactly kvertices in $(X - S) \cup (Y \cap S)$

Claim: this set of vertices $(X - S) \cup (Y \cap S)$ is a vertex cover for **G**

- Showing $(X S) \cup (Y \cap S)$ is a vertex cover for G
- Show every edge in **G** must touch some node in $(X S) \cup (Y \cap S)$
 - I.e., every edge from X to Y touches a node in $(X S) \cup (Y \cap S)$
- Suppose not for contra
- Then there is an edge from X to Y that does not touch $(X S) \cup (Y \cap S)$
- Such an edge must be directed from $X \cap S$ to Y S



• But such an edge has capacity ∞ , and would cross the cut, contradicting $C^{out}(S) = k$

SOLVING VERTEX COVER

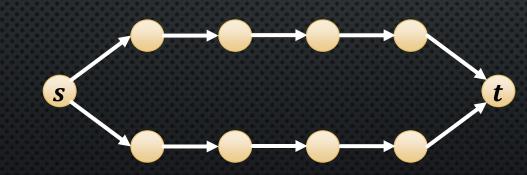
- So | max matching | = | min vertex cover | in bipartite graphs
- And we also reduced max bipartite matching to max flow, obtaining an O(nm) algorithm for max bipartite matching
- So we can use the same algorithm to solve min (bipartite) vertex cover in O(nm) time
 - Construct graph G' for max matching, then run max flow
 - Given the resulting flow, extract | min vertex cover | by summing flows out of s
- Exercise: how can we identify the vertices in the vertex cover?

BONUS SLIDES

VERTEX DISJOINT PATHS

VERTEX DISJOINT PATHS

- We already saw max flow can be used to find edge-disjoint paths
 - (and capacity-disjoint paths)
- What if we want *s*-*t* paths that are **vertex disjoint**?
- Two *s*-*t* paths *P*₁ and *P*₂ are called (internally) vertex-disjoint if they only share the vertices *s* and *t*, and **no other vertices**



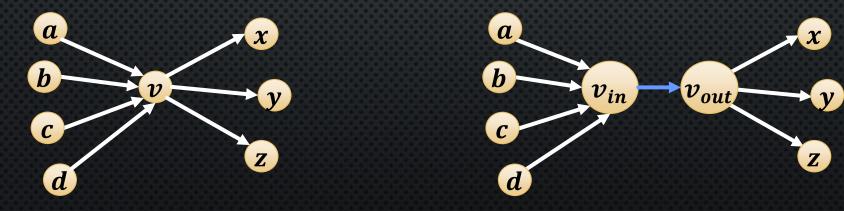
VERTEX DISJOINT PATHS

Can be reduced to maximum edge-disjoint s-t paths

- Meaning an algorithm for edge-disjoint paths can solve this
- Goal: transform the input graph G into a new graph G' so that for any two paths P₁ and P₂ in G,
 P₁ and P₂ are vertex-disjoint
 IFF there are two corresponding edge-disjoint paths in G'
- Then we can run MaxEdgeDisjointPaths(G') to identify the vertex-disjoint paths in G

REDUCTION TO EDGE-DISJOINT PATHS

- Let G, s, t be an input to the vertex-disjoint s-t paths problem
- Create a new graph G' as follows
 - For each vertex v in G, add vertices v_{in} and v_{out} , and edge (v_{in}, v_{out})
 - For each edge e = (u, v) in G, add edge (u, v_{in})
 - For each edge e = (v, u) in G, add edge (v_{out}, u)



EXAMPLE NEW GRAPH CONSTRUCTION

One vertex-disjoint path, but 3 edge-disjoint paths

G

S

One vertex-disjoint path, and **one edge-disjoint path**

G

24

 t_o

EXAMPLE 2 OF NEW GRAPH CONSTRUCTION

2 vertex-disjoint path, but 3 edge-disjoint paths

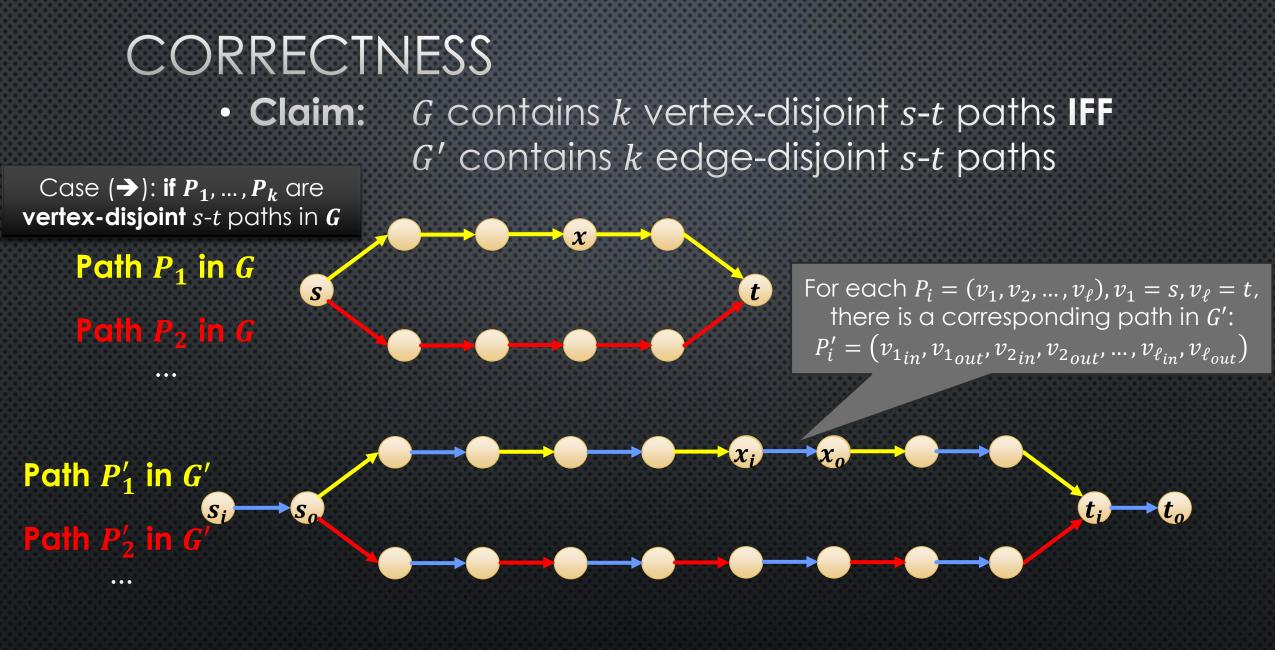
G

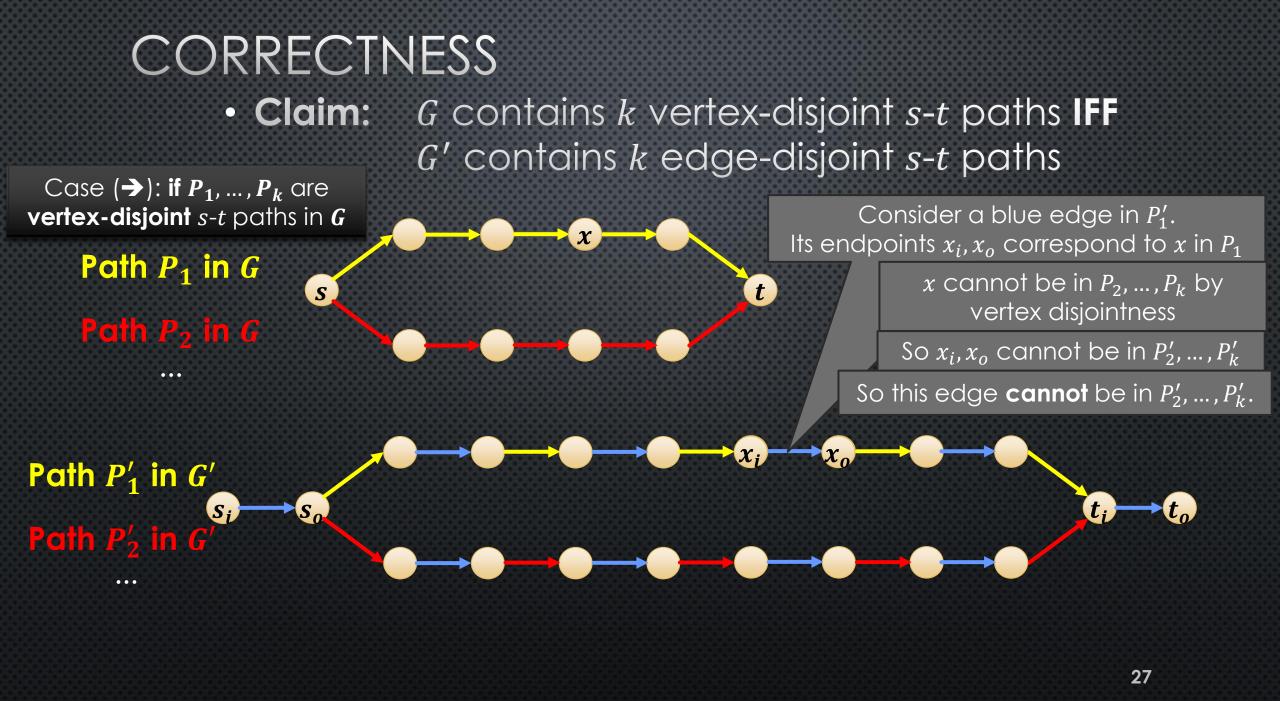
S

2 vertex-disjoint paths, and 2 edge-disjoint paths

G

 t_o





CORRECTNESS Claim: G contains k vertex-disjoint s-t paths IFF G' contains k edge-disjoint s-t paths

Case (\rightarrow) : if P_1, \dots, P_k are vertex-disjoint *s*-*t* paths in *G*

Path P_1 in GPath P_2 in G

S

Similarly, consider a yellow edge in P'_1 . Its endpoints x_o, y_i cannot be in P'_2 by vertex disjointness

So this edge **cannot** be in $P'_2, ..., P'_k$.

So P'_1, \ldots, P'_k are edge-disjoint!

ti

Path P'_1 in G'Path P'_2 in G'

...

28

CORRECTNESS • Claim: G contains k vertex-disjoint s-t paths IFF G' contains k edge-disjoint s-t paths Case (←): if P'_1,...,P'_k are

edge-disjoint s-t paths in G'

Si

So

Path P'_1 in G'

...

Path

By construction of G' every s-t path visits s_i , s_o , then a sequence of alternating in and out vertices, and finally t_i and t_o

 \boldsymbol{v}_{a}

(because the vertices of *G* are each split into **in** and **out** vertices, and an **in** vertex only points to its corresponding **out** vertex, while **out** vertices only point to <u>other</u> **in** vertices)

> So, if G' contains $P'_i = (s_{in}, s_{out}, ..., t_{in}, t_{out})$ then G contains $P_i = (s, ..., t)$.

CORRECTNESS
 Claim: G contains k vertex-disjoint s-t paths IFF
 G' contains k edge-disjoint s-t paths

Va

Case (←): if P'₁, ..., P'_k are edge-disjoint *s*-*t* paths in G' <u>Path P'₁ in G'</u>

Path P

...

So

Path P_1 in GPath P_2 in G

...

Suppose some vertex y is in both P_1 and P_2 for contra

V;

t

Consider the corresponding vertices and edges in *G*'

If y is in both P_1 and P_2 , then by construction, edge (y_i, y_o) appears in P'_1 and P'_2

But this **contradicts** the edge-disjointness of paths $P'_1, ..., P'_k$. So, no such y can appear in any two paths in $P_1, ..., P_k$.

y_o

ALGORITHM

- Algorithm given graph G and s, t
 - Transform G into G' as described
 - Run MaxEdgeDisjointPaths(G', s, t)
 - Return the result
- This reduces

the problem of solving **max vertex-disjoint paths** to the problem of solving **max edge-disjoint paths**

 Such a result is typically written MaxVertexDisjointPaths ≤ MaxEdgeDisjointPaths

IMPLEMENTATION

- Transforming the graph is easy
- But how do we solve MaxEdgeDisjointPaths(G', s, t)?
 - Can reduce disjoint paths to max flow (we mentioned this last time)
 - Max edge disjoint s-t paths in a graph is just a special case of max s-t flow where the capacity of each edge is 1
 - So MaxVertexDisjointPaths ≤ MaxEdgeDisjointPaths ≤ MaxFlow
- So we let capacity function c be c(e) = 1 for all edges e in G', then run and return MaxFlow(G', c, s, t)

RUNTIME

- Transforming the graph can be done in O(n + m) = O(m) time for a connected graph
- Then we call MaxEdgeDisjointPaths(G', s, t), which simply calls MaxFlow(G', c, s, t)
- Fork-Fulkerson runs in time O(km) where k is the value of the max flow... can we bound k?
- Recall that in our reduction, the max flow is ultimately going to compute the number of vertex-disjoint s-t paths
 - Each vertex can be used by at most one of those paths, so there can be at most *n* such paths
 - So flow is at most n, which means $k \leq n$, so runtime is O(nm)