

MAX BIPARTITE MATCHING

BIPARTITE MATCHING

- Input: a bipartite graph G = (X, Y, E)
- Output: a maximum cardinality set of edges that are vertex disjoint
- Set S of edges is called a **matching** if no two edges in S share a vertex
- A matching is a **perfect matching** IFF every vertex is matched

	Both maximal and perfect	
7		
5		
	Y	

REDUCTION TO MAX FLOW

- Given bipartite G = (X, Y, E) construct G' = (V', E') as follows
- $V' = \{s\} \cup X \cup Y \cup \{t\}$ where s and t are new vertices
- All $e \in E$ appear in E', pointing from X to Y, with c(e) = 1

PROOF: FLOW OF SIZE $k \Rightarrow$ MATCHING OF SIZE k

• Decompose flow into k capacity disjoint s-t paths, each with flow 1

- Each path is 3 edges: s to X, X to Y, Y to
- Each edge from s to X or from Y to t has capacity 1
- So each vertex except for s, t can be used on at most one path
- Removing edges s to X and Y to t gives k vertex-disjoint edges. \square

COMPLEXITY • Given bipartite G = (X, Y, E) construct G' = (V', E') as follows $G \xrightarrow{7} \\ 6 \\ \hline 7 \\ \hline 7$

max flow is O(n), so O(nm) to run Ford-Fulkerson → total O(nm)

RECALL: MAX-FLOW MIN-CUT THEOREM

- Theorem 3: every max *s*-*t* flow has value equal to the capacity of a min *s*-*t* cut
- Consequence: if the max s-t flow is k, then there is an s-t cut with capacity k
 - I.e., the only reason the max flow is limited to *k* is that there is a cut with capacity *k* that limits the flow

Vertex cover: given a graph G = (V, E) a set S of vertices is called a vertex cover IFF for every (u, v) ∈ E, either u ∈ S or v ∈ S Minimum vertex cover: what is the smallest k such that there exists a vertex cover S with |S| = k? ^{3-vertex} cover ^{3-vertex} cover</li

L

XX

MINIMUM VERTEX COVER PROBLEM

ne more examples of vertex covers

M

CONNECTING MATCHING AND VERTEX COVER

• In bipartite graphs, These problems are related via "duality"

- linear programming problems see linear optimization courses
- We study their connection in a more ad-hoc way • Observe: If there is a matching with k edges,
 - · Why?
- then there is any vertex cover S must have $|S| \ge k$ The k edges in the matching are vertex disjoint,
- so k distinct vertices are needed to cover them

In fact we can prove | vertex cover | = | max matching | , o can solve with max matching, which we reduced to **max flow**

KÖNIG'S THEOREM |MAX MATCHING| = |MIN VERTEX COVER|

- Let $k = |\max \text{ max matching}|$ in G. Show \exists vertex cover of size k. • Recall our reduction from max matching to max flow
 - The max s-t flow in G' is k

KÖNIG'S THEOREM |MAX MATCHING| = |MIN VERTEX COVER|

- Since the max s-t flow in G' is k.
- s-t cut S in G' with capacity k
- This flow must cross the cut to reach t, and it must consume k units of capacity crossing the cut
- There are three cases in which capacity can possibly cross the cut
 - (1) it can cross the cut going from s to X,
 - (2) it can cross the cut going from X to Y, (3) it can cross the cut going from Y to t
 - or

KÖNIG'S THEOREM |MAX MATCHING| = |MIN VERTEX COVER|

• So capacity can only cross the cut in 2 cases: s to X, Y to t

KÖNIG'S THEOREM |MAX MATCHING| = |MIN VERTEX COVER|

- Showing $(X S) \cup (Y \cap S)$ is a vertex cover for G
- Show every edge in **G** must touch some node in $(X S) \cup (Y \cap S)$ • I.e., every edge from X to Y touches a node in $(X - S) \cup (Y \cap S)$
- Suppose not for contra
- Then there is an edge from X to Y that does not touch $(X S) \cup (Y \cap S)$
- Such an edge must be directed from $X \cap S$ to Y S
- But such an edge has capacity ∞, and would cross the cut, contradicting $C^{out}(S) = k$

 $Y \cap S$

Y - S

X - S

 $\sum X \cap S$

SOLVING VERTEX COVER

- So | max matching | = | min vertex cover | in bipartite graphs
- And we also reduced max bipartite matching to max flow, obtaining an O(nm) algorithm for max bipartite matching

- Construct graph G' for max matching, then run max flow
- · Given the resulting flow, extract | min vertex cover | by summing flows out of s
- Exercise: how can we identify the vertices in the vertex cover?

VERTEX DISJOINT PATHS

VERTEX DISJOINT PATHS

- We already saw max flow can be used to find edge-disjoint paths
- (and capacity-disjoint paths)
- What if we want *s*-*t* paths that are **vertex disjoint**?
- Two s-t paths P_1 and P_2 are called (internally) vertex-disjoint if they only share the vertices s and t, and **no other vertices**

VERTEX DISJOINT PATHS

- Can be reduced to maximum edge-disjoint *s*-*t* paths
 - Meaning an algorithm for edge-disjoint paths can solve this
- Goal: **transform** the input graph *G* into a **new graph** *G'* so that for any two paths P_1 and P_2 in *G*, P_1 and P_2 are vertex-disjoint
- **IFF** there are two corresponding edge-disjoint paths in *G'* • Then we can run MayEdgeDisjointPaths(*G'*) to identify
- Then we can run MaxEdgeDisjointPaths(G') to identify the vertex-disjoint paths in G

REDUCTION TO EDGE-DISJOINT PATHS

- Let G, s, t be an input to the vertex-disjoint s-t paths problem
- Create a new graph G' as follows
- For each vertex v in G.
- add vertices v_{in} and v_{out} , and edge (v_{in}, v_{out})
- For each edge e = (u, v) in *G*, add edge (u, v_{in})
- For each edge e = (v, u) in G, add edge (v_{out}, u)

ALGORITHM

- Algorithm given graph G and s, t
 - Transform G into G' as described
 - Run MaxEdgeDisjointPaths(G', s, t)
 - Return the result
- This **reduces**
- the problem of solving **max vertex-disjoint paths** to the problem of solving **max edge-disjoint paths**
- Such a result is typically written MaxVertexDisjointPaths ≤ MaxEdgeDisjointPaths

.

IMPLEMENTATION

- Transforming the graph is easy
- But how do we solve MaxEdgeDisjointPaths(G', s, t)?
 - Can reduce disjoint paths to max flow (we mentioned this last time)
 - Max edge disjoint s-t paths in a graph is just a special case of max s-t flow where the capacity of each edge is 1
 - So MaxVertexDisjointPaths ≤ MaxEdgeDisjointPaths ≤ MaxFlow
- So we let capacity function c be c(e) = 1 for all edges e in G', then run and return MaxFlow(G', c, s, t)

32

RUNTIME

- Transforming the graph can be done in $\mathcal{O}(n+m)=\mathcal{O}(m)$ time for a connected graph
- Then we call MaxEdgeDisjointPaths(G', s, t), which simply calls MaxFlow(G', c, s, t)
- Fork-Fulkerson runs in time O(km)where k is the value of the max flow... can we bound k?
- Recall that in our reduction, the max flow is ultimately going to compute the number of vertex-disjoint s-t paths
 - Each vertex can be used by at most one of those paths, so there can be at most \boldsymbol{n} such paths
 - So flow is at most n, which means $k \leq n$, so runtime is O(nm)

33