CS 341: ALGORITHMS

Lecture 18: applications of max flow
Readings: CLRS 26.2
MAX BIPARTITE MATCHING
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

BIPARTITE MATCHING

- Input: a biparite graph $G=(X, Y, E)$
- Output: a maximum cardinality set of edges that are vertex disjoint
- Set S of edges is called a matching if no two edges in S share a vertex
- A matching is a perfect matching IFF every vertex is matched

CORRECTNESS OF THE REDUCTION

- Claim: there is a matching of size k in G IFF
there is an s-t flow of value k in G^{\prime}
- Proof: (\rightarrow) clearly if there is a matching of size k, there is a flow of size k

G

REDUCTION TO MAX FLOW

- Given bipartite $G=(X, Y, E)$ construct $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows
- $V^{\prime}=\{s\} \cup X \cup Y \cup\{t\}$ where s and t are new vertices
- All $e \in E$ appear in E^{\prime}, pointing from X to Y, with $c(e)=1$
- Add edges e from s to every $v \in X$, and from every $v \in Y$ to t, with $c(e)=1$

G

CORRECTNESS OF THE REDUCTION

- Claim: there is a matching of size k in G IFF
there is an s-t flow of value k in G^{\prime}
- Proof: (\hookleftarrow) let's show if there is a flow of size k, then there is a matching of size k

PROOF: FLOW OF SIZE $k \Rightarrow$ MATCHING OF SIZE k

- Decompose flow into k capacity disjoint s-t paths, each with flow 1
- Each path is 3 edges: s to X, X to Y, Y to t
- Each edge from s to X or from Y to t has capacity 1
- So each vertex except for s, t can be used on at most one path
- Removing edges s to X and Y to t gives k vertex-disjoint edges. \square

COMPLEXITY

- Given bipartite $G=(X, Y, E)$ construct $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows

G

- $O(n+m)$ to build G^{\prime} (simplifies to $O(m)$ if G is connected)
- max flow is $O(n)$, so $O(n m)$ to run Ford-Fulkerson \rightarrow total $O(n m)$

MODIFIED REDUCTION (FOR THE NEXT PROOF)

- For edges from X to Y set capacity to ∞ instead of 1

G^{\prime}

- Does not affect the correctness of the reduction!
(Each vertex can still only be used once)

RECALL: MAX-FLOW MIN-CUT THEOREM

- Theorem 3: every max s-t flow has value equal to the capacity of a min s-t cut
- Consequence: if the max $s-t$ flow is k, then there is an $s-t$ cut with capacity k
- I.e., the only reason the max flow is limited to k is that there is a cut with capacity k that limits the flow

MINIMUM VERTEX COVER PROBLEM

- Vertex cover: given a graph $G=(V, E)$
a set S of vertices is called a vertex cover IFF for every $(u, v) \in E$, either $u \in S$ or $v \in S$
- Minimum vertex cover: what is the smallest k such that there exists a vertex cover S with $|S|=k$?

Every edge must touch a node in $S \quad$ The k nodes in S must
Some more examples of vertex covers
some mo
年

KÖNIG'S THEOREM

\mid MAX MATCHING $|=|$ MIN VERTEX COVER \mid

- Since the max s-t flow in G^{\prime} is k,
- By max-flow min-cut, there is an
$s-t$ cut S in G^{\prime} with capacity k
- This flow must cross the cut to reach t, and it must consume k units of capacity
 crossing the cut
- There are three cases in which capacity can possibly cross the cut
- (1) it can cross the cut going from s to X
or
(2) it can cross the cut going from X to Y
or
(3) it can cross the cut going from Y to t There cannot be an edge satisfying case 2,
or cut capo or cut capacity would be ∞, not k ! only cases 183
are possible

KÖNIG'S THEOREM

\mid MAX MATCHING| $=\mid$ MIN VERTEX COVER \mid

- Let $k=\mid$ max matching \mid in G. Show \exists vertex cover of size k.
- Recall our reduction from max matching to max flow
- The max $s-t$ flow in G^{\prime} is k

KÖNIG'S THEOREM

|MAX MATCHING | = |MIN VERTEX COVER|

- So capacity can only cross the cut in 2 cases: s to X, Y to t

- k = capacity crossing cut = \# of such edges
- = total \# verrices in $(X-S) \cup(Y \cap S)$

SOLVING VERTEX COVER

- So |max matching $|=|$ min vertex cover \mid in bipartite graphs
- And we also reduced max bipartite matching to max flow, obtaining an $O(n \mathrm{~m})$ algorithm for max bipartite matching
- So we can use the same algorithm
to solve min (bipartite) vertex cover in O(nm) time
- Construct graph G' for max matching,
then run max flow
- Given the resulting flow,
extract | min vertex cover| by summing flows out of s
- Exercise: how can we identify the vertices in the vertex cover?

BONUS SLIDES

VERTEX DISJOINT PATHS

- We already saw max flow can be used to find edge-disjoint paths - (and capacity-disjoint paths)
- What if we want $s-t$ paths that are vertex disjoint?
- Two s-t paths P_{1} and P_{2} are called (internally) vertex-disjoint

VERTEX DISJOINT PATHS

- Can be reduced to maximum edge-disjoint $s-t$ paths
- Meaning an algorithm for edge-disjoint paths can solve this
- Goal: transform the input graph G into a new graph G^{\prime} so that for any two paths P_{1} and P_{2} in G,
P_{1} and P_{2} are vertex-disjoint
IFF there are two corresponding edge-disjoint paths in G^{\prime}

- Then we can run MaxEdgeDisjointPaths (G^{\prime}) to identify the vertex-disjoint paths in G if they only share the vertices s and t, and no other vertices

EXAMPLE NEW GRAPH CONSTRUCTION

REDUCTION TO EDGE-DISJOINT PATHS

- Let G, s, t be an input to the vertex-disjoint s - t paths problem

EXAMPLE 2 OF NEW GRAPH CONSTRUCTION

CORRECTNESS

- Claim: $\quad G$ contains k vertex-disjoint $s-t$ paths IFF G^{\prime} contains k edge-disjoint $s-t$ paths
Case ($\boldsymbol{\epsilon}):$ if $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ are
edge-disjoint s-t paths in G^{\prime}

CORRECTNESS

- Claim: $\quad G$ contains k vertex-disjoint $s-t$ paths IFF

Case ($(\mathbf{*}):$ if $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ are
edge--disjoint s s-t paths in G^{\prime}

Path P_{1} in G
Paih P_{2} in G

Consider the corresponding
vertices and edges in G^{\prime}
If y is in both P_{1} and P_{2}, then by construction, edge $\left(y_{i} y_{o}\right)$

But this contradicts the edge-disjointness of paths $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$.
Sut no such y can appear in any two paths in P_{1}, \ldots, P_{k}.
So

ALGORITHM

- Algorithm given graph G and s, t
- Transform G into G^{\prime} as described
- Run MaxEdgeDisjointPaths $\left(G^{\prime}, s, t\right)$
- Return the result
- This reduces
the problem of solving max vertex-disjoint paths to
the problem of solving max edge-disjoint paths
- Such a result is typically written

MaxVertexDisjointPaths \leq MaxEdgeDisjointPaths

IMPLEMENTATION

- Transforming the graph is easy
- But how do we solve MaxEdgeDisjointPaths $\left(G^{\prime}, s, t\right)$?
- Can reduce disjoint paths to max flow (we mentioned this last time)
- Max edge disjoint s-t paths in a graph is just a special case of max $s-t$ flow where the capacity of each edge is 1
- So MaxVertexDisjointPaths \leq MaxEdgeDisjointPaths \leq MaxFlow
- So we let capacity function c be $c(e)=1$ for all edges e in G^{\prime}, then run and return $\operatorname{MaxFlow}\left(\mathrm{G}^{\prime}, \mathrm{c}, \mathrm{s}, \mathrm{t}\right)$

RUNTIME

- Transforming the graph can be done in $O(n+m)=O(m)$ time for a connected graph
- Then we call MaxEdgeDisjointPaths $\left(G^{\prime}, s, t\right)$,
which simply calls MaxFlow (G^{\prime}, c, s, t)
- Fork-Fulkerson runs in time $O(\mathrm{~km})$
where k is the value of the max flow... can we bound k ?
- Recall that in our reduction, the max flow is ultimately going to compute the number of vertex-disjoint s-t paths
- Each vertex can be used by at most one of those paths, so there can be at most n such paths
- So flow is at most n, which means $k \leq n$, so runtime is $O(n m)$

