
CS 341: ALGORITHMS
Lecture 18: applications of max flow

Readings: CLRS 26.2

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

MAX BIPARTITE MATCHING

2

BIPARTITE MATCHING

• Input: a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸)

• Output: a maximum cardinality

 set of edges that are

 vertex disjoint

• Set S of edges is called a matching

if no two edges in S share a vertex

• A matching is a perfect matching

IFF every vertex is matched

3

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1
6

8

3

2

Both maximal

and perfect

REDUCTION TO MAX FLOW

• Given bipartite 𝐺 = (𝑋, 𝑌, 𝐸) construct 𝐺′ = (𝑉′, 𝐸′) as follows

• 𝑉′ = 𝑠 ∪ 𝑋 ∪ 𝑌 ∪ {𝑡} where 𝑠 and 𝑡 are new vertices

• All 𝑒 ∈ 𝐸 appear in 𝐸′, pointing from 𝑋 to 𝑌, with 𝑐 𝑒 = 1

• Add edges 𝑒 from 𝑠 to every 𝑣 ∈ 𝑋, and from every 𝑣 ∈ 𝑌 to 𝑡, with 𝑐 𝑒 = 1

4

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

s t

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

𝑮 𝑮′

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1
/1

…

CORRECTNESS OF THE REDUCTION

• Claim: there is a matching of size 𝑘 in 𝐺 IFF

 there is an 𝑠-𝑡 flow of value 𝑘 in 𝐺′

• Proof: (➔) clearly if there is a matching of size 𝑘,

 there is a flow of size 𝑘

5

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

s t

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

𝑮 𝑮′

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1
/1

…

CORRECTNESS OF THE REDUCTION

• Claim: there is a matching of size 𝑘 in 𝐺 IFF

 there is an 𝑠-𝑡 flow of value 𝑘 in 𝐺′

• Proof: () let’s show if there is a flow of size 𝒌,

 then there is a matching of size 𝒌

6

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

𝑮

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

s t𝑮′

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1
/1

…

PROOF: FLOW OF SIZE 𝑘 ⇒ MATCHING OF SIZE 𝑘

• Decompose flow into 𝑘 capacity disjoint 𝑠-𝑡 paths, each with flow 1

• Each path is 3 edges: 𝑠 to 𝑋, 𝑋 to 𝑌, 𝑌 to 𝑡

• Each edge from 𝑠 to 𝑋 or from 𝑌 to 𝑡 has capacity 1

• So each vertex except for 𝑠, 𝑡 can be used on at most one path

• Removing edges 𝑠 to 𝑋 and 𝑌 to 𝑡 gives 𝑘 vertex-disjoint edges. □

4

5

6

7 8

3

1

2
4

5

7

1 6

8

3

2

𝑮

4

5

6

7 8

3

1

2
4

5

7

1 6

8

3

2

s t𝑮′

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1
/1

…

7

COMPLEXITY

• Given bipartite 𝐺 = (𝑋, 𝑌, 𝐸) construct 𝐺′ = (𝑉′, 𝐸′) as follows

• O(n+m) to build G’ (simplifies to O(m) if G is connected)

• max flow is O(n), so O(nm) to run Ford-Fulkerson ➔ total O(nm)

8

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

s t

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

𝑮 𝑮′

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1
/1

…

MODIFIED REDUCTION (FOR THE NEXT PROOF)

• For edges from 𝑋 to 𝑌 set capacity to ∞ instead of 1

• Does not affect the correctness of the reduction!

(Each vertex can still only be used once)

9

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

s t

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

𝑮 𝑮′

/1

/1

/1

/1

/1

/1

/1

/1

/∞
/∞
/∞
…

MINIMUM VERTEX COVER

(FOR A BIPARTITE GRAPH)

10

RECALL: MAX-FLOW MIN-CUT THEOREM

• Theorem 3: every max 𝑠-𝑡 flow has value

equal to the capacity of a min 𝑠-𝑡 cut

• Consequence: if the max 𝑠-𝑡 flow is 𝑘,

then there is an 𝑠-𝑡 cut with capacity 𝒌

• I.e., the only reason the max flow is limited to 𝑘
is that there is a cut with capacity 𝑘 that limits the flow

11

MINIMUM VERTEX COVER PROBLEM

• Vertex cover: given a graph 𝐺 = 𝑉, 𝐸
a set 𝑆 of vertices is called a vertex cover

IFF for every (𝑢, 𝑣) ∈ 𝐸, either 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆

• Minimum vertex cover: what is the smallest 𝑘
such that there exists a vertex cover 𝑆 with 𝑆 = 𝑘?

12

Every edge must touch a node in 𝑺

3-vertex

cover
2-vertex

cover

The 𝑘 nodes in 𝑆 must

touch every edge in 𝐺
Some more examples of vertex covers

CONNECTING MATCHING AND VERTEX COVER

• In bipartite graphs, These problems are related via “duality”

• Explaining their duality involves formulating both problems as

linear programming problems – see linear optimization courses

• We study their connection in a more ad-hoc way

• Observe: If there is a matching with 𝑘 edges,

 then there is any vertex cover 𝑆 must have |S| ≥ 𝑘

• Why? The 𝑘 edges in the matching are vertex disjoint,

 so 𝑘 distinct vertices are needed to cover them

13

So |vertex cover| ≥ |max matching|

In fact we can prove |vertex cover| = |max matching|,

so can solve with max matching, which we reduced to max flow

KÖNIG’S THEOREM
|MAX MATCHING| = |MIN VERTEX COVER|

• Let 𝑘 = |max matching| in 𝐺. Show ∃ vertex cover of size 𝑘.

• Recall our reduction from max matching to max flow

• The max 𝑠-𝑡 flow in 𝑮′ is 𝒌

14

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

s t

4

5

6

7 8

3

1

2

𝑋 𝑌

4

5

7

1 6

8

3

2

𝑮 𝑮′

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1
/1

…

KÖNIG’S THEOREM
|MAX MATCHING| = |MIN VERTEX COVER|

• Since the max 𝑠-𝑡 flow in 𝑮′ is 𝒌,

• By max-flow min-cut, there is an

𝑠-𝑡 cut 𝑺 in 𝐺′ with capacity 𝒌

• This flow must cross the cut to reach 𝑡,

and it must consume 𝒌 units of capacity

crossing the cut

• There are three cases in which capacity can possibly cross the cut

• (1) it can cross the cut going from 𝑠 to 𝑋,

or (2) it can cross the cut going from 𝑋 to 𝑌,

or (3) it can cross the cut going from 𝑌 to 𝑡

15

There cannot be an

edge satisfying case 2,

or cut capacity would

be ∞, not 𝑘!

So only cases 1&3

are possible

KÖNIG’S THEOREM
|MAX MATCHING| = |MIN VERTEX COVER|

• So capacity can only cross the cut in 2 cases: 𝒔 to 𝑿, 𝒀 to 𝒕

• k = capacity crossing cut = # of such edges

• = total # vertices in 𝑿 − 𝑺 ∪ 𝒀 ∩ 𝑺

16

Case 𝒔 to 𝑿: via an edge from

𝒔 to 𝑿 − 𝑺 with capacity 1

Case 𝒀 to 𝒕: via an edge from

𝒀 ∩ 𝑺 to 𝒕 with capacity 1

𝑋 − 𝑆

𝑌 ∩ 𝑆 So there are exactly 𝑘

vertices in 𝑿 − 𝑺 ∪ 𝒀 ∩ 𝑺

Claim: this set of vertices

𝑿 − 𝑺 ∪ 𝒀 ∩ 𝑺
is a vertex cover for 𝑮

• Showing 𝑿 − 𝑺 ∪ 𝒀 ∩ 𝑺 is a vertex cover for G

• Show every edge in G must touch some node in 𝑋 − 𝑆 ∪ (𝑌 ∩ 𝑆)

• I.e., every edge from 𝑋 to 𝑌 touches a node in 𝑋 − 𝑆 ∪ (𝑌 ∩ 𝑆)

• Suppose not for contra

• Then there is an edge from 𝑋 to 𝑌
that does not touch 𝑋 − 𝑆 ∪ (𝑌 ∩ 𝑆)

• Such an edge must be directed from
𝑋 ∩ 𝑆 to 𝑌 − 𝑆

• But such an edge has capacity ∞,
and would cross the cut, contradicting 𝐶𝑜𝑢𝑡 𝑆 = 𝑘

17

𝑿 − 𝑺

𝒀 ∩ 𝑺

KÖNIG’S THEOREM
|MAX MATCHING| = |MIN VERTEX COVER|

1
1

1
1

1
𝑿 ∩ 𝑺

𝒀 − 𝑺

SOLVING VERTEX COVER

• So |max matching| = |min vertex cover| in bipartite graphs

• And we also reduced max bipartite matching to max flow,

obtaining an O(nm) algorithm for max bipartite matching

• So we can use the same algorithm

to solve min (bipartite) vertex cover in O(nm) time

• Construct graph G’ for max matching,

then run max flow

• Given the resulting flow,

extract |min vertex cover| by summing flows out of 𝑠

• Exercise: how can we identify the vertices in the vertex cover?
18

BONUS SLIDES

19

VERTEX DISJOINT PATHS

20

VERTEX DISJOINT PATHS

• We already saw max flow can be used to find edge-disjoint paths

• (and capacity-disjoint paths)

• What if we want 𝑠-𝑡 paths that are vertex disjoint?

• Two 𝑠-𝑡 paths 𝑃1 and 𝑃2 are called (internally) vertex-disjoint

if they only share the vertices 𝑠 and 𝑡, and no other vertices

21

𝒔 𝒕

VERTEX DISJOINT PATHS

• Can be reduced to maximum edge-disjoint 𝑠-𝑡 paths

• Meaning an algorithm for edge-disjoint paths can solve this

• Goal: transform the input graph 𝐺 into a new graph 𝑮′

so that for any two paths 𝑃1 and 𝑃2 in 𝐺,

𝑃1 and 𝑃2 are vertex-disjoint

IFF there are two corresponding edge-disjoint paths in 𝐺′

• Then we can run MaxEdgeDisjointPaths(𝐺′) to identify

the vertex-disjoint paths in 𝐺

22

REDUCTION TO EDGE-DISJOINT PATHS
• Let 𝑮, 𝒔, 𝒕 be an input to the vertex-disjoint 𝑠-𝑡 paths problem

• Create a new graph 𝐺′ as follows

• For each vertex 𝑣 in 𝐺,

add vertices 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡, and edge 𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕

• For each edge 𝑒 = 𝑢, 𝑣 in 𝐺, add edge 𝑢, 𝑣𝑖𝑛

• For each edge 𝑒 = (𝑣, 𝑢) in 𝐺, add edge 𝑣𝑜𝑢𝑡 , 𝑢

23

𝒂

𝒃 𝒗

𝒄

𝒅

𝒙

𝒚

𝒛

𝒗𝒊𝒏 𝒗𝒐𝒖𝒕

𝒂

𝒃

𝒄

𝒅

𝒙

𝒚

𝒛

EXAMPLE NEW GRAPH CONSTRUCTION

24

𝒔
𝒕

𝒔𝒐
𝒕𝒊𝒔𝒊

𝒕𝒐

One vertex-disjoint path,

but 3 edge-disjoint paths

One vertex-disjoint path, and

one edge-disjoint path

𝑮

𝑮′

EXAMPLE 2 OF NEW GRAPH CONSTRUCTION

25

𝒔
𝒕

𝒔𝒐
𝒕𝒊𝒔𝒊

𝒕𝒐

2 vertex-disjoint path, but

3 edge-disjoint paths

2 vertex-disjoint paths, and

2 edge-disjoint paths

𝑮

𝑮′

CORRECTNESS
• Claim: 𝐺 contains 𝑘 vertex-disjoint 𝑠-𝑡 paths IFF

 𝐺′ contains 𝑘 edge-disjoint 𝑠-𝑡 paths

26

Path 𝑷𝟏 in 𝑮

Path 𝑷𝟐 in 𝑮

𝒙

𝒔 𝒕

𝒔𝒐 𝒕𝒊𝒔𝒊 𝒕𝒐

Path 𝑷𝟏
′ in 𝑮′

Path 𝑷𝟐
′ in 𝑮′

For each 𝑃𝑖 = 𝑣1, 𝑣2, … , 𝑣ℓ , 𝑣1 = 𝑠, 𝑣ℓ = 𝑡,

there is a corresponding path in 𝐺′:

𝑃𝑖
′ = 𝑣1𝑖𝑛, 𝑣1𝑜𝑢𝑡, 𝑣2𝑖𝑛, 𝑣2𝑜𝑢𝑡, … , 𝑣ℓ𝑖𝑛

, 𝑣ℓ𝑜𝑢𝑡

Case (➔): if 𝑷𝟏, … , 𝑷𝒌 are

vertex-disjoint 𝑠-𝑡 paths in 𝑮

𝒙𝒊 𝒙𝒐

…

…

CORRECTNESS

27

Path 𝑷𝟏 in 𝑮

Path 𝑷𝟐 in 𝑮

𝒔 𝒕

𝒔𝒐 𝒕𝒊𝒔𝒊 𝒕𝒐

Path 𝑷𝟏
′ in 𝑮′

Path 𝑷𝟐
′ in 𝑮′

𝒙

𝒙𝒊 𝒙𝒐

Consider a blue edge in 𝑃1
′.

Its endpoints 𝑥𝑖 , 𝑥𝑜 correspond to 𝑥 in 𝑃1

𝑥 cannot be in 𝑃2, … , 𝑃𝑘 by

vertex disjointness

So 𝑥𝑖 , 𝑥𝑜 cannot be in 𝑃2
′ , … , 𝑃𝑘

′

So this edge cannot be in 𝑃2
′ , … , 𝑃𝑘

′ .
…

…

• Claim: 𝐺 contains 𝑘 vertex-disjoint 𝑠-𝑡 paths IFF

 𝐺′ contains 𝑘 edge-disjoint 𝑠-𝑡 paths
Case (➔): if 𝑷𝟏, … , 𝑷𝒌 are

vertex-disjoint 𝑠-𝑡 paths in 𝑮

CORRECTNESS

28

Path 𝑷𝟏 in 𝑮

Path 𝑷𝟐 in 𝑮

𝒙 𝒚

𝒔 𝒕

𝒔𝒐 𝒕𝒊

𝒙𝒊 𝒙𝒐 𝒚𝒊 𝒚𝒐

𝒔𝒊 𝒕𝒐

Path 𝑷𝟏
′ in 𝑮′

Path 𝑷𝟐
′ in 𝑮′

Similarly, consider a yellow edge in 𝑃1
′.

Its endpoints 𝑥𝑜, 𝑦𝑖 cannot be in 𝑃2
′ by

vertex disjointness

So this edge cannot be in 𝑃2
′ , … , 𝑃𝑘

′ .

So 𝑃1
′, … , 𝑃𝑘

′ are edge-disjoint!

…

…

• Claim: 𝐺 contains 𝑘 vertex-disjoint 𝑠-𝑡 paths IFF

 𝐺′ contains 𝑘 edge-disjoint 𝑠-𝑡 paths
Case (➔): if 𝑷𝟏, … , 𝑷𝒌 are

vertex-disjoint 𝑠-𝑡 paths in 𝑮

CORRECTNESS

29

𝒔𝒐 𝒕𝒊𝒔𝒊 𝒕𝒐

Path 𝑷𝟏
′ in 𝑮′

Path 𝑷𝟐
′ in 𝑮′

By construction of 𝐺′ every 𝒔-𝒕 path visits 𝑠𝑖, 𝑠𝑜,

then a sequence of alternating in and out vertices, and finally 𝑡𝑖 and 𝑡𝑜

Case (): if 𝑷𝟏
′ , … , 𝑷𝒌

′ are

edge-disjoint 𝑠-𝑡 paths in 𝑮′
𝒙𝒊 𝒙𝒐

…

• Claim: 𝐺 contains 𝑘 vertex-disjoint 𝑠-𝑡 paths IFF

 𝐺′ contains 𝑘 edge-disjoint 𝑠-𝑡 paths

𝒚𝒊 𝒚𝒐 𝒛𝒊 𝒛𝒐

(because the vertices of 𝐺 are each split into in and out vertices,

and an in vertex only points to its corresponding out vertex,

while out vertices only point to other in vertices)

So, if 𝐺′ contains 𝑃𝑖
′ = 𝑠𝑖𝑛, 𝑠𝑜𝑢𝑡, … , 𝑡𝑖𝑛, 𝑡𝑜𝑢𝑡

then 𝐺 contains 𝑃𝑖 = (𝑠, … , 𝑡).

CORRECTNESS

30

Path 𝑷𝟏 in 𝑮

Path 𝑷𝟐 in 𝑮

𝒔 𝒕

𝒔𝒐 𝒕𝒊𝒔𝒊 𝒕𝒐

Path 𝑷𝟏
′ in 𝑮′

Path 𝑷𝟐
′ in 𝑮′

Suppose some vertex 𝑦 is in both 𝑃1 and 𝑃2 for contra

𝒚𝒙 𝒛

𝒚

Consider the corresponding

vertices and edges in 𝐺′

𝒚𝒊 𝒚𝒐

If 𝑦 is in both 𝑃1 and 𝑃2, then by

construction, edge (𝑦𝑖 , 𝑦𝑜)

appears in 𝑃1
′ and 𝑃2

′

…

…

• Claim: 𝐺 contains 𝑘 vertex-disjoint 𝑠-𝑡 paths IFF

 𝐺′ contains 𝑘 edge-disjoint 𝑠-𝑡 paths
Case (): if 𝑷𝟏

′ , … , 𝑷𝒌
′ are

edge-disjoint 𝑠-𝑡 paths in 𝑮′
𝒙𝒊 𝒙𝒐 𝒚𝒊 𝒚𝒐 𝒛𝒊 𝒛𝒐

But this contradicts the edge-disjointness of paths 𝑃1
′, … , 𝑃𝑘

′ .

So, no such 𝑦 can appear in any two paths in 𝑃1, … , 𝑃𝑘.

ALGORITHM

• Algorithm given graph 𝐺 and 𝑠, 𝑡

• Transform 𝐺 into 𝐺′ as described

• Run MaxEdgeDisjointPaths(𝐺′, 𝑠, 𝑡)

• Return the result

• This reduces

the problem of solving max vertex-disjoint paths to

the problem of solving max edge-disjoint paths

• Such a result is typically written

MaxVertexDisjointPaths ≤ MaxEdgeDisjointPaths

31

IMPLEMENTATION

• Transforming the graph is easy

• But how do we solve MaxEdgeDisjointPaths(𝐺′, 𝑠, 𝑡)?

• Can reduce disjoint paths to max flow

(we mentioned this last time)

• Max edge disjoint s-t paths in a graph is just a special case of

max s-t flow where the capacity of each edge is 1

• So MaxVertexDisjointPaths ≤ MaxEdgeDisjointPaths ≤ MaxFlow

• So we let capacity function 𝑐 be 𝑐 𝑒 = 1 for all edges 𝑒 in 𝐺′,

then run and return MaxFlow(G′, c, s, t)

32

RUNTIME
• Transforming the graph can be done in 𝑂 𝑛 + 𝑚 = 𝑂(𝑚) time

for a connected graph

• Then we call MaxEdgeDisjointPaths(𝐺′, 𝑠, 𝑡),
which simply calls MaxFlow(𝐺′, 𝑐, 𝑠, 𝑡)

• Fork-Fulkerson runs in time 𝑂 𝑘𝑚
where 𝑘 is the value of the max flow… can we bound k?

• Recall that in our reduction, the max flow is ultimately going to
compute the number of vertex-disjoint s-t paths

• Each vertex can be used by at most one of those paths, so
there can be at most 𝑛 such paths

• So flow is at most 𝑛, which means 𝑘 ≤ 𝑛, so runtime is 𝑂(𝑛𝑚)

33

