CS 341: ALGORITHMS

Lecture 18: applications of max flow

Readings: CLRS 26.2

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

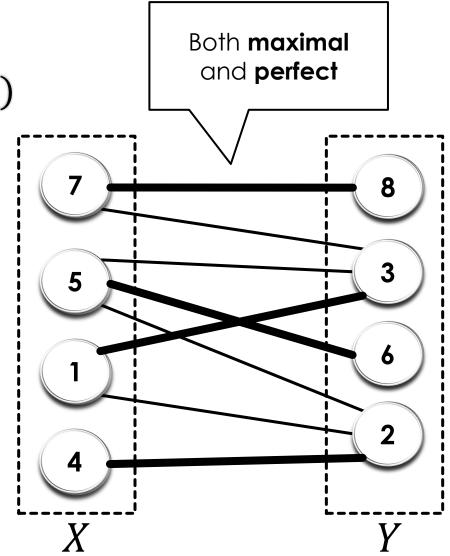
1

MAX BIPARTITE MATCHING

BIPARTITE MATCHING

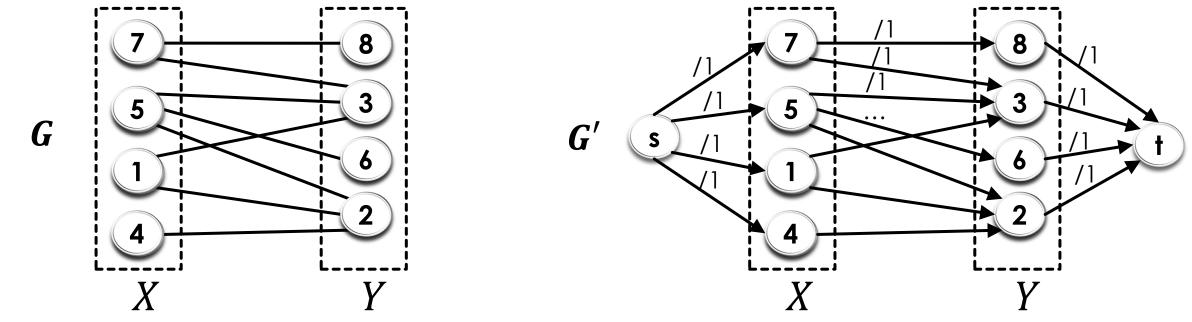
- Input: a bipartite graph G = (X, Y, E)
- Output: a maximum cardinality set of edges that are vertex disjoint

- Set S of edges is called a matching if no two edges in S share a vertex
- A matching is a perfect matching
 IFF every vertex is matched



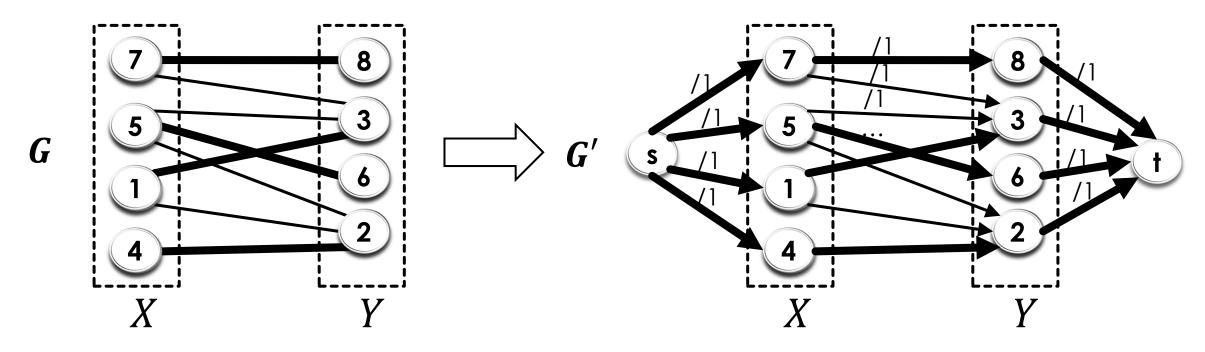
REDUCTION TO MAX FLOW

- Given bipartite G = (X, Y, E) construct G' = (V', E') as follows
- $V' = \{s\} \cup X \cup Y \cup \{t\}$ where s and t are new vertices
 - All $e \in E$ appear in E', pointing from X to Y, with c(e) = 1
 - Add edges e from s to every $v \in X$, and from every $v \in Y$ to t, with c(e) = 1



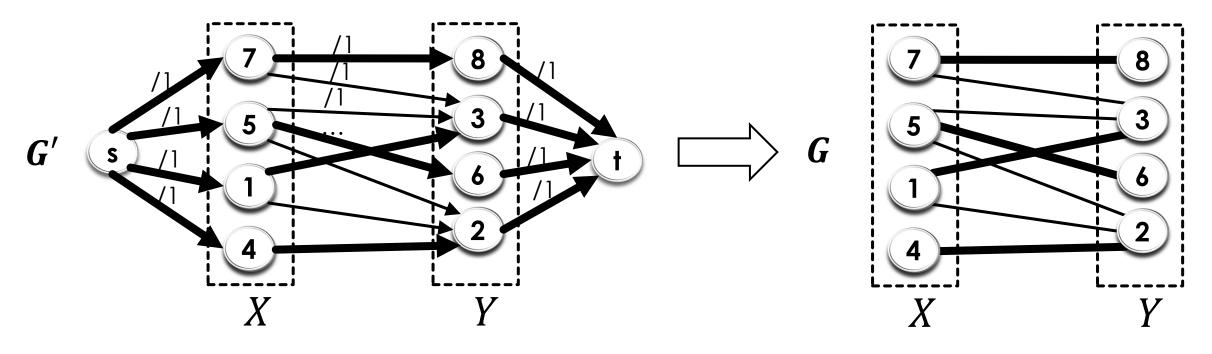
CORRECTNESS OF THE REDUCTION

- Claim: there is a matching of size k in G IFF there is an s-t flow of value k in G'
- Proof: (\rightarrow) clearly if there is a matching of size k, there is a flow of size k



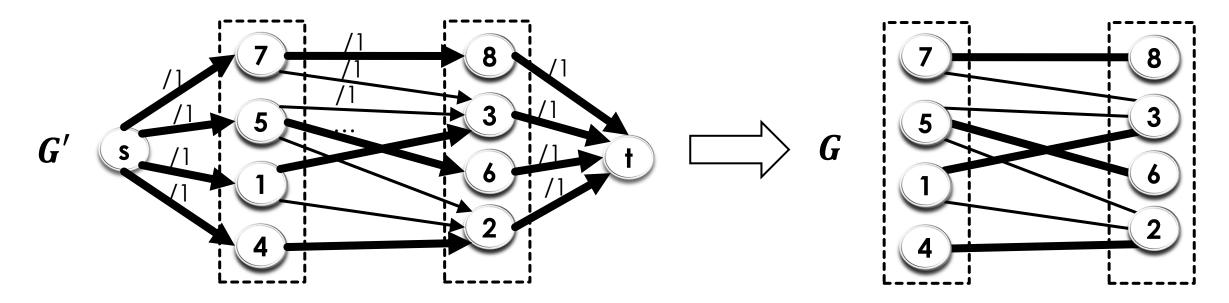
CORRECTNESS OF THE REDUCTION

- Claim: there is a matching of size k in G IFF
 there is an s-t flow of value k in G'
- Proof: (\bigstar) let's show if there is a flow of size k, then there is a matching of size k



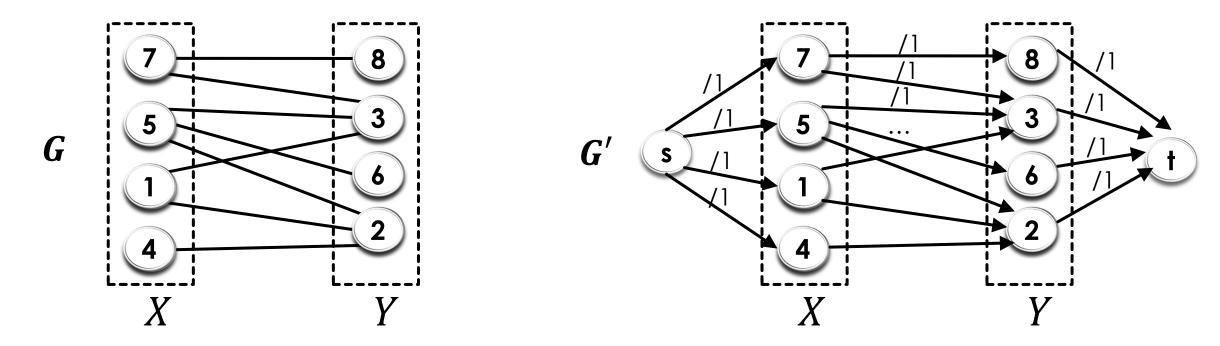
PROOF: FLOW OF SIZE $k \Rightarrow$ MATCHING OF SIZE k

- Decompose flow into k capacity disjoint s-t paths, each with flow 1
- Each path is 3 edges: s to X, X to Y, Y to t
- Each edge from s to X or from Y to t has capacity 1
- So each vertex except for s, t can be used on at most one path
- Removing edges s to X and Y to t gives k vertex-disjoint edges. \square



COMPLEXITY

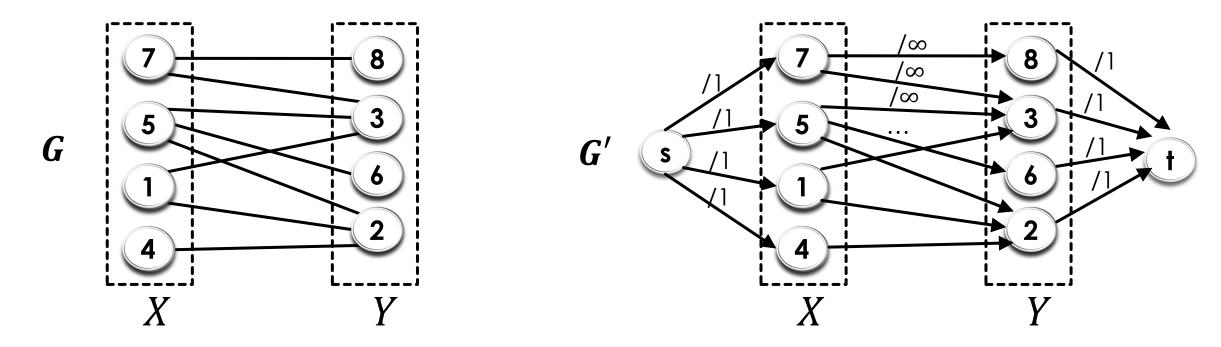
• Given bipartite G = (X, Y, E) construct G' = (V', E') as follows



- O(n+m) to build G' (simplifies to O(m) if G is connected)
- max flow is O(n), so O(nm) to run Ford-Fulkerson \rightarrow total O(nm)

MODIFIED REDUCTION (FOR THE NEXT PROOF)

• For edges from X to Y set capacity to ∞ instead of 1



Does not affect the correctness of the reduction!
 (Each vertex can still only be used once)

MINIMUM VERTEX COVER (FOR A BIPARTITE GRAPH)

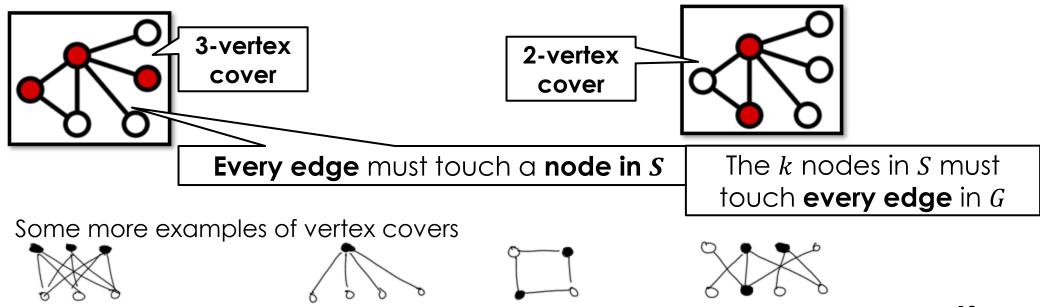
RECALL: MAX-FLOW MIN-CUT THEOREM

 Theorem 3: every max s-t flow has value equal to the capacity of a min s-t cut

- Consequence: if the max s-t flow is k,
 then there is an s-t cut with capacity k
 - I.e., the only reason the max flow is limited to k is that there is a cut with capacity k that limits the flow

MINIMUM VERTEX COVER PROBLEM

- Vertex cover: given a graph G = (V, E)a set S of vertices is called a vertex cover IFF for every $(u, v) \in E$, either $u \in S$ or $v \in S$
- Minimum vertex cover: what is the smallest k such that there exists a vertex cover S with |S| = k?

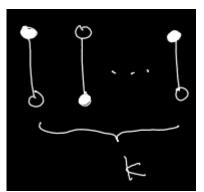


CONNECTING MATCHING AND VERTEX COVER

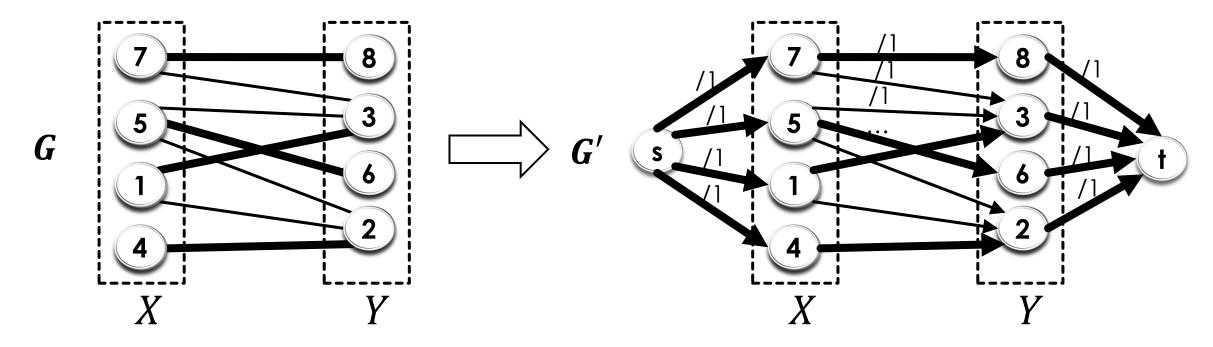
- In bipartite graphs, These problems are related via "duality"
- Explaining their duality involves formulating both problems as linear programming problems – see linear optimization courses
- We study their connection in a more ad-hoc way
 - Observe: If there is a matching with k edges, then there is any vertex cover S must have $|S| \ge k$
 - Why?
 The k edges in the matching are vertex disjoint,
 so k distinct vertices are needed to cover them

So $|vertex cover| \ge |max matching|$

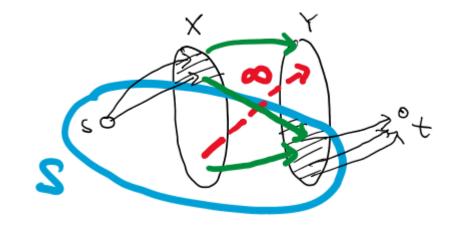
In fact we can prove |vertex cover| = |max matching|, so can solve with max matching, which we reduced to **max flow**



- Let $k = |\max \text{ max matching}|$ in G. Show $\exists \text{ vertex cover of size } k$.
- Recall our reduction from max matching to max flow
 - The max s-t flow in G' is k



- Since the max s-t flow in G' is k,
- By max-flow min-cut, there is an s-t cut S in G' with capacity k
- This flow must cross the cut to reach t, and it must consume k units of capacity crossing the cut

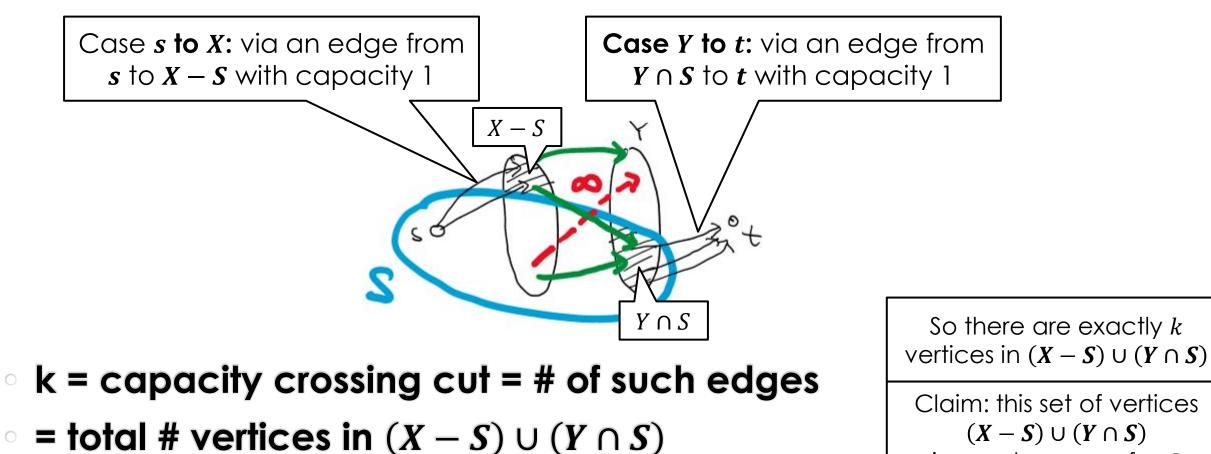


- There are three cases in which capacity can possibly cross the cut
 - (1) it can cross the cut going from s to X, or (2) it can cross the cut going from X to Y,
 - or (3) it can cross the cut going from Y to t

There cannot be an edge satisfying case 2, or cut capacity would be ∞ , not k!

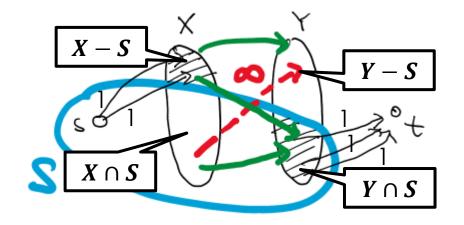
So only cases 1&3 are possible

So capacity can only cross the cut in 2 cases: s to X, Y to t



is a vertex cover for \boldsymbol{G}

- Showing $(X S) \cup (Y \cap S)$ is a vertex cover for G
- Show every edge in **G** must touch some node in $(X S) \cup (Y \cap S)$
 - I.e., every edge from X to Y touches a node in $(X S) \cup (Y \cap S)$
- Suppose not for contra
- Then there is an edge from X to Y that does not touch $(X S) \cup (Y \cap S)$
- Such an edge must be directed from $X \cap S$ to Y S
- But such an edge has capacity ∞ , and would cross the cut, contradicting $C^{out}(S) = k$



SOLVING VERTEX COVER

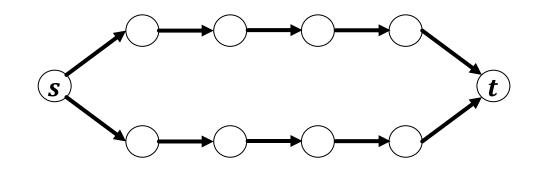
- So |max matching| = |min vertex cover| in bipartite graphs
- And we also reduced max bipartite matching to max flow, obtaining an O(nm) algorithm for max bipartite matching
- So we can use the same algorithm to solve min (bipartite) vertex cover in O(nm) time
 - Construct graph G' for max matching, then run max flow
 - Given the resulting flow,
 extract | min vertex cover | by summing flows out of s
- Exercise: how can we identify the vertices in the vertex cover?

BONUS SLIDES

VERTEX DISJOINT PATHS

VERTEX DISJOINT PATHS

- We already saw max flow can be used to find edge-disjoint paths
 - (and capacity-disjoint paths)
- What if we want *s*-*t* paths that are **vertex disjoint**?
- Two s-t paths P_1 and P_2 are called (internally) vertex-disjoint if they only share the vertices s and t, and **no other vertices**

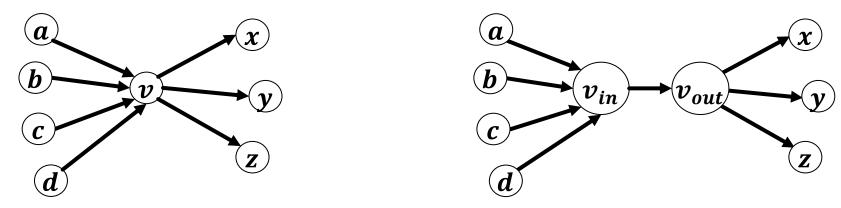


VERTEX DISJOINT PATHS

- Can be reduced to maximum edge-disjoint s-t paths
 - Meaning an algorithm for edge-disjoint paths can solve this
- Goal: transform the input graph G into a new graph G' so that for any two paths P₁ and P₂ in G,
 P₁ and P₂ are vertex-disjoint
 IFF there are two corresponding edge-disjoint paths in G'
- Then we can run MaxEdgeDisjointPaths(G') to identify the vertex-disjoint paths in G

REDUCTION TO EDGE-DISJOINT PATHS

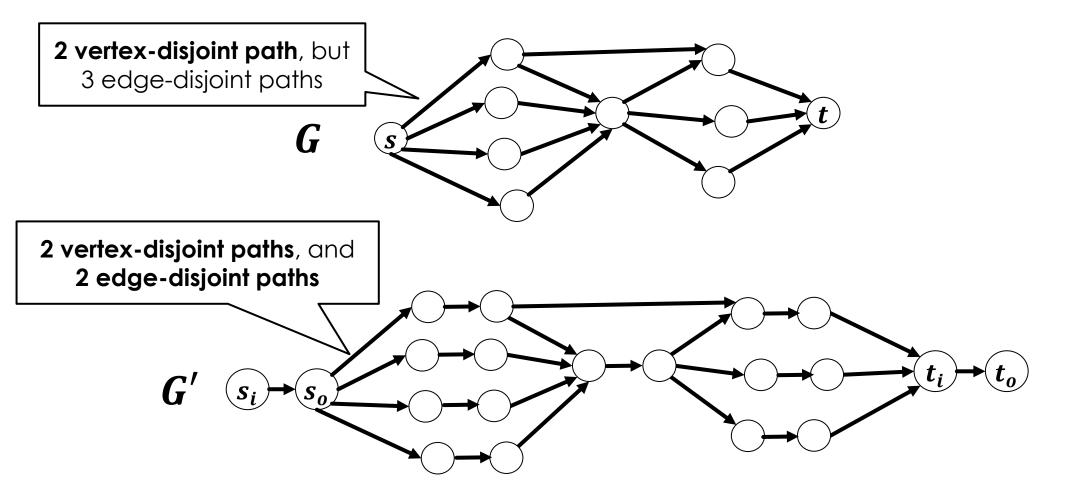
- Let *G*, *s*, *t* be an input to the vertex-disjoint *s*-*t* paths problem
- Create a new graph G' as follows
 - For each vertex v in G, add vertices v_{in} and v_{out} , and edge (v_{in}, v_{out})
 - For each edge e = (u, v) in G, add edge (u, v_{in})
 - For each edge e = (v, u) in G, add edge (v_{out}, u)

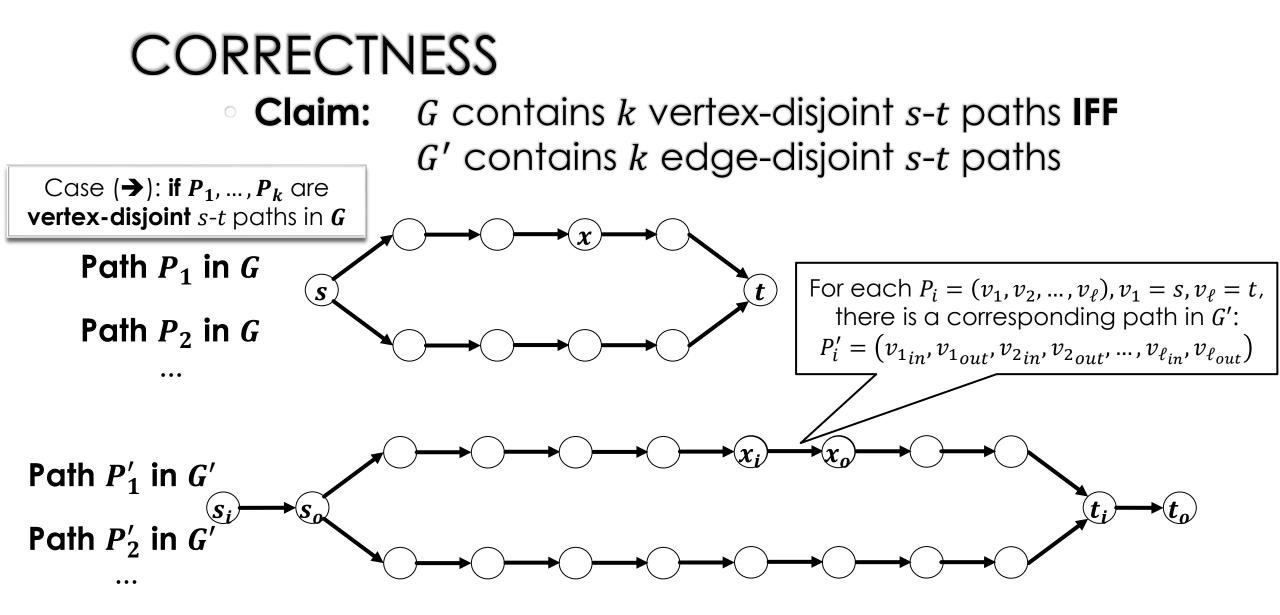


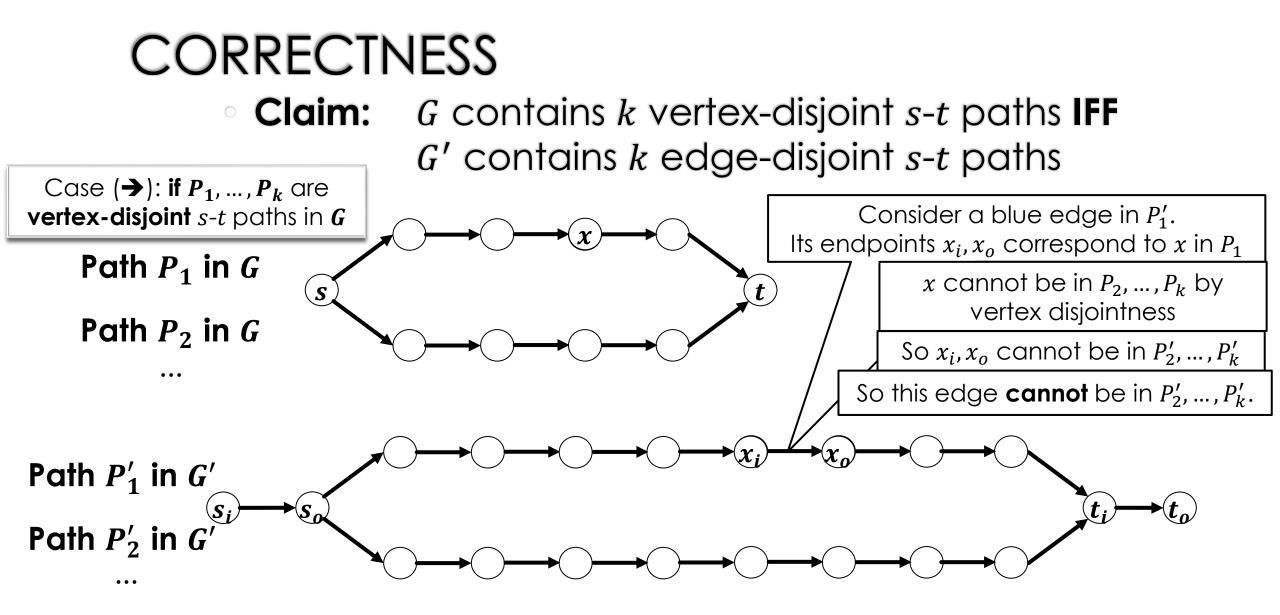
EXAMPLE NEW GRAPH CONSTRUCTION

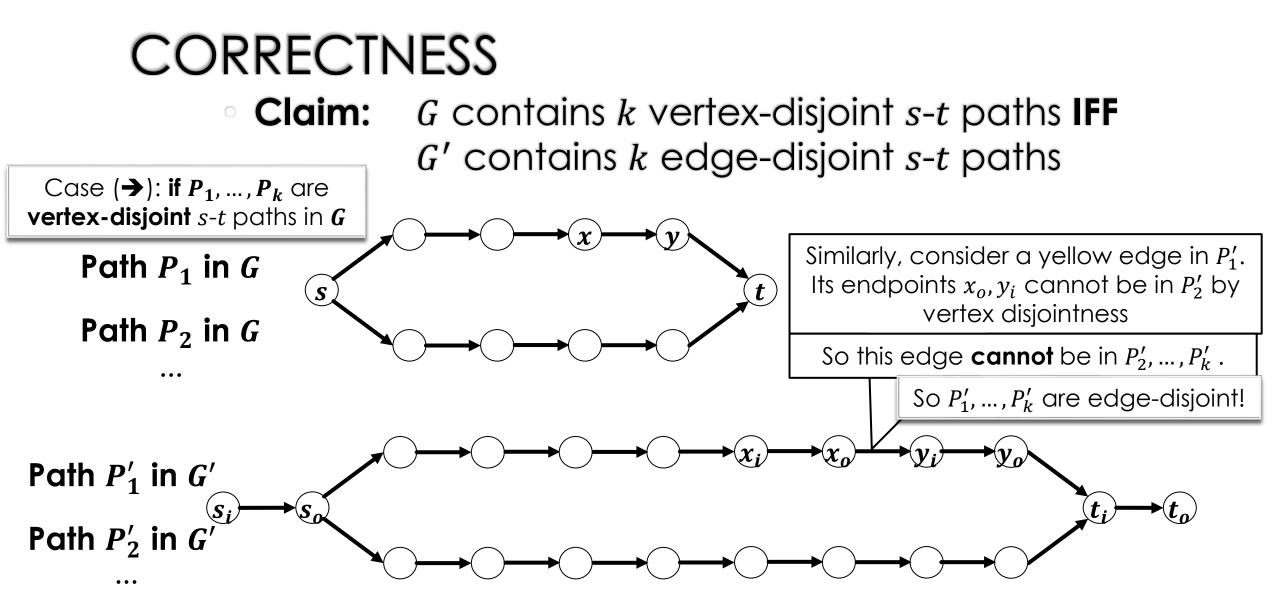


EXAMPLE 2 OF NEW GRAPH CONSTRUCTION









CORRECTNESS Claim: G contains k vertex-disjoint s-t paths IFF G' contains k edge-disjoint s-t paths Case (\leftarrow): if P'_1, \dots, P'_k are edge-disjoint s-t paths in G' Path P'_1 in G'Path P'_2 in G'_2 ... By construction of G' every s-t path visits s_i , s_o , then a sequence of alternating in and out vertices, and finally t_i and t_o (because the vertices of G are each split into in and out vertices, and an **in** vertex only points to its corresponding **out** vertex, while **out** vertices only point to **<u>other</u> in** vertices) So, if G' contains $P'_i = (s_{in}, s_{out}, \dots, t_{in}, t_{out})$

then G contains $P_i = (s, ..., t)$.

CORRECTNESS Claim: G contains k vertex-disjoint s-t paths IFF G' contains k edge-disjoint s-t paths Case (\leftarrow): if P'_1, \dots, P'_k are edge-disjoint s-t paths in G' Path P'_1 in G'Path P'_2 in G'_2 Suppose some vertex y is in both P_1 and P_2 for contra Consider the corresponding vertices and edges in G'Path P_1 in G t **S** .

Path P_2 in G

. .

If y is in both P_1 and P_2 , then by construction, edge (y_i, y_o) appears in P'_1 and P'_2

But this **contradicts** the edge-disjointness of paths P'_1, \ldots, P'_k . So, no such y can appear in any two paths in P_1, \ldots, P_k .

ALGORITHM

- Algorithm given graph G and s, t
 - \circ Transform G into G' as described
 - Run MaxEdgeDisjointPaths(G', s, t)
 - Return the result
- This reduces

the problem of solving **max vertex-disjoint paths** to the problem of solving **max edge-disjoint paths**

Such a result is typically written
 MaxVertexDisjointPaths ≤ MaxEdgeDisjointPaths

IMPLEMENTATION

- Transforming the graph is easy
- But how do we solve MaxEdgeDisjointPaths(G', s, t)?
 - Can reduce disjoint paths to max flow (we mentioned this last time)
 - Max edge disjoint s-t paths in a graph is just a special case of max s-t flow where the capacity of each edge is 1
 - \circ So MaxVertexDisjointPaths \leq MaxEdgeDisjointPaths \leq MaxFlow
- So we let capacity function c be c(e) = 1 for all edges e in G', then run and return MaxFlow(G', c, s, t)

RUNTIME

- Transforming the graph can be done in O(n + m) = O(m) time for a connected graph
- Then we call MaxEdgeDisjointPaths(G', s, t), which simply calls MaxFlow(G', c, s, t)
- Fork-Fulkerson runs in time O(km)
 where k is the value of the max flow... can we bound k?
- Recall that in our reduction, the max flow is ultimately going to compute the number of vertex-disjoint s-t paths
 - Each vertex can be used by at most one of those paths, so there can be at most n such paths
 - So flow is at most n, which means $k \leq n$, so runtime is O(nm)