CS 341: ALGORITHMS

Lecture 19: intractability |

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

THIS TIME

» Infractability (hardness of problems)
« Decision problems
« Complexity class P
» Polynomial-fime Turing reductions
 Infroductory reductions

» Three flavours of the traveling salesman problem

How to insert USB

£

INTRACTABILITY

Studying the hardness of problems

Decision Problems

Decision Problem: Given a problem instance I, answer a certain question
“yeS” Or “noﬂ .

Problem Instance: Input for the specified problem.

Problem Solution: Correct answer (“yes” or “no") for the specified
problem instance. I is a yes-instance if the correct answer for the

instance [is “yes'. I is a no-instance if the correct answer for the
instance [is “no".

Size of a problem instance: Size([I) is the number of bits required to
specify (or encode) the instance 1.

The Complexity Class P

Algorithm Solving a Decision Problem: An algorithm A is said to solve
a decision problem II provided that A finds the correct answer (“yes” or
“no") for every instance I of II in finite time.

Polynomial-time Algorithm: An algorithm A for a decision problem II is
said to be a polynomial-time algorithm provided that the complexity of
Ais O(n¥), where k is a positive integer and n = Size(I).

The Complexity Class P denotes the set of all decision problems that
have polynomial-time algorithms solving them. We write II € P if the
decision problem II is in the complexity class P.

Knapsack Problems
Relative problem hardness?

Problem 7.3

0-1 Knapsack-Dec

Instance: a list of profits, P = [p;,...,p,], a list of weights,

W = |wy,...,wy,|; a capacity, M, and a target profit, 7T
Question: s there an n-tuple [z, x5, ...,z,] € {0,1}" such that
Zwiazi S M and Zpia:i 2 e

Problem 7.4

Rational Knapsack-Dec

Instance: a list of profits, P = [py,...,py]; a list of weights,
W = |wy,...,wy,]; a capacity, M, and a target profit, 7T
Question: s there an n-tuple [z, x5, ...,z,] € [0,1]" such that
Z’U)Z‘:Ei S M and Zpia:i Z 7B

Cycles in Graphs

Relative
hardnesse

Problem 7.1

Cycle
Instance: An undirected graph G = (V, F).
Question: Does G contain a cycle?

Problem 7.2

Hamiltonian Cycle
Instance: An undirected graph G = (V, F).
Question: Does G contain a hamiltonian cycle?

A hamiltonian cycle is a cycle that passes through every vertex in V
exactly once.

Polynomial-time Turing Reductions _

Suppose II; and Il are problems (not necessarily decision problems). A

A reduction typically:

(hypothetical) algorithm B to solve Il is called an oracle for II,. 1. fransforms the larger
Suppose that A is an algorithm that solves II;, assuming the existence of problem’s input so it can be
an oracle B for Ily. (B is used as a subroutine within the algorithm A.) ted to the oracle, and

2. transforms the oracle’s
Then we say that A is a Turing reduction from II; to Il,, denoted output into a solution to the
II; <T 1I,. larger problem.

A Turing reduction A is a polynomial-time Turing reduction if the
running time of A is polynomial, under the assumption that the oracle B
has unit cost running time.

If there is a polynomial-time Turing reduction from II; to Ils, we write
I1; <L 1I,.

Informally: Existence of a polynomial-time Turing reduction means that if
we can solve Il5 in polynomial time, then we can solve II; in polynomial
time.

Travelling Salesperson Problems Positive edge

Problem 7.5 weights

TSP-Optimization Return type
Instance: A graph G and edge weights w : E — Z™. “a path/cycle H”
Find: A hamiltonian cycle H in G such that w(H) =) .y w(e) is

minimized.

Problem 7.6 Is TSP-Dec <], TSP-Optimal Value?

TSP-Optimal Value Return type

Instance: A graph G and edge weights w : E — 7. “a positive integer T
Find: The minimum T such that there exists a hamiltonian cycle H in G
with w(H) =T.

Is TSP-Dec <] TSP-Optimization?
Problem 7.7
TSP-Decision

Return type
uyes/non

Instance: A graph G, edge weights w : E — Z™", and a target T.
Question: Does there exist a hamiltonian cycle H in G with w(H) < T'?

We will use polynomial-time Turing reductions to show that different
versions of the TSP are polynomially equivalent: if one of them can be
solved in polynomial time, then all of them can be solved in polynomial

time. (However, it is believed that none of them can be solved in
polynomial time.)

« We already know
» TSP-Dec <% TSP-Optimal Value
» TSP-Dec <% TSP-Optimization

« We show
» TSP-Optimal Value <% TSP-Dec
» TSP-Optimization <% TSP-Dec

10

TSP-Optimal Value <%, TSP-Dec

Problem 7.6

TSP-Optimal Value
Instance: A graph G and edge weights w : E — 7.
Find: The minimum T such that there exists a hamiltonian cycle H in G

with w(H) =T.

Problem 7.7

TSP-Decision
Instance: A graph G, edge weights w : E — Z™, and a target T .
Question: Does there exist a hamiltonian cycle H in G with w(H) <T'7?

How can we learn the exact optimal
value by making such callse

11

,,,,,

TSP- Optlmal Vlue <7 TSP-Dec

.......

A L -
3

Algorithm: TSP-OptimalValue-Solver(G, w) BORRORRO0
external TSP-Dec-Solver

if not TSP-Dec-Solver(G,w, hi) then return (oo
while Az > lo

mad < Lhi‘QHOJ

if TSP-Dec-Solver(G,w, mid)
then hi < maud
else lo + mid + 1

return (hi)

do

This is a standard binary search technique.

We rule out such inefficient representations for the

purpose of proving polynomial runtime

13

Size(I) = |V| + z(log w(e) +1+loglV|+ 1)

1 eeE ' [
For all edges

14

""}({ OO OO OO OO U . :o:_o:. ‘
X,

TSP-Optimal Value <T TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver

e _-—
lo < 0

if not TSP-Dec-Solver(G,w, hz en return (

while hi > lo
mid hz—l—lo

if TSP—Dec—Solver G, w, mid)
do
then hi +— mid
else lo +— mid + 1 _
return (hi)

15

COMPARING T(I) AND Size(D)

* T(D) € O(|E| +log 2 epw(e))

e Size(I) =|V|+ X.ep(logw(e)+ 1+ log|V]|+ 1)
= V| + Zeeg(logw(e) + 1) + Zocp(loglV] + 1)
= V] + Xoeg(logw(e) + 1) + Z.ce(log|V]) + |E]

« Want to show T(I) € 0(Size(I)¢) for some constant ¢ (we show c=1)
O(|E| +logYecpw(e)) S O(IV] + Zeeg(logw(e) + 1) + Zecp log|V] + |EI)
© 0(logYeepw(e)) € O(|V| + Z.cp(logw(e) + 1) + Zeep log|V|)

How to compare log) .., w(e) and X, ;(logw(e) + 1)?

16

COMPARING T(I) AND Size(D)

 How to compare log)...pw(e) and > __, (logw(e) + 1)?

o Y. cp(logw(e) +1) = (logw(e;) + 1)+ Hogwle;) + 1)+ -+ (log (W(e|E|)) + 1)

« Can we combine these tferms into one log using logx + logy = log xy<¢

o Y.cp(logw(e) +1) = (logw(ey) +log2) + + -+ + (log (W(e|E|)) + log 2)

o« Z.cp(logw(e) +1) =log2w(e;) 2w(e,) ... 2w(ejg) = log[lecr 2w(e)
« So how to compare log[].cx2w(e) and log). ..pw(e)?

« All w(e) are positive integers, SO [l.cg2w(e) = Y. .cpw(e)

« Since log is increasing on Z*, log [1.cg 2w(e) = log) .cpw(e)

17

COMPARING T(I) AND Size(I)

 We in fact show T(I) € O(Size(1))
O(log ¥ eep w(e)) € O(IV] + 2. cp(logw(e) + 1) + Zcg log|V])

How to compare log)...pw(e) and Z, . (logw(e) + 1)?

We just saw Z . cp(logw(e) + 1) = log[l.cx2w(e) = log). .c.pw(e)

So T(I) € 0(Size(I)°) where ¢ = 1 So this reduction has runtime that is

polynomial in the input size!

18

RN,

TSP-Optimal Value <T TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver
hi < ZeEE w(e)
lo 0
if not TSP-Dec-Solver(G,w, hi) then return (oco)
while Az > lo
mid < Lhz’;—loJ
if TSP-Dec-Solver(G,w, mid)
then hi < maid
else lo + mid + 1

return (hi)

do

19

. -
L R O R R
R

LR -
LA R RN RN AR R RN R R R R EERE R R R R RN
L L L L L
LR L L L L L L L R L

Potete e e
AARIAS

5 AL S

N
/

ettty

(but will recap the comparison of T(l) and Size(l) next time)

20

JOOOOOOOOOOOOUOOOOO OO OO U U U U UOUDUODOUOUOUOUOU0
N Yo~ +i- . v . ‘; o %
o8008 00 -&é*.h,‘. 8000800 AP A e PSP I FL I I IC I I M IC ML ML I I I I I, MM Q.Q-é“_‘

IOOOOOOH U

SCICICOC S0 ..
S L y .‘ ,.-..............0....
"‘."“}' "'?‘..’........‘.‘..

TSP-Optimal Value <% TSP-Dec

-------------------- e AR
ooooooooooooooooooooooooooo * o’o‘o’o’o’o‘o’o’t’i’b‘»é OO
e ae e -'o...o’o.o.o.o.o.o‘o'o‘.'o‘o‘o’.‘.‘i‘.’»‘ 3L
.o.ococo.o.o..oo.o.o.d:.,.—,d:&:ﬁ_. X

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver
hi < ZeEE’ w(e)
lo+ 0
if not TSP-Dec-Solver(G,w, hi) then return (o)
while hi > lo
(mid « [k
if TSP-Dec-Solver(G,w, mid)
then hi < mad
| else lo < mid +1
return (hi)

do {

21

TSP-Optimal Value <%, TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G,w)
external TSP-Dec-Solver

hi < ZeEE’ w(e)

lo <+ 0

if not TSP-Dec-Solver(G,w, hi) then return (co)
while hi > lo

(mid « |Bigt

if TSP-Dec-Solver(G,w, mid)

then hi <+ mad
| else lo + mid + 1
return (A7)

do {

We have therefore shown:
TSP-Optimal Value is polytime
reducible to TSP-Dec

In fact, TSP-OptimalValue-Solver remains polytime
even if the implementation of the
oracle runs in polytime instead of O(1)!

22

T > o e e ae e a : E
TSP- Optlmal Value < TSP Dec TSP-OptimalValue-Solver remains polytime even if
the oracle runs in polytime instead of O(1)!

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver
hi < ZeEE w(e)
lo <+ 0
if not TSP-Dec-Solver(G,w, hi) then return (co)
while Az > lo
(mz'd 2 [hz’—%—loJ
if TSP-Dec-Solver(G,w, mid)
then hi <+ mad
| else lo + mid + 1
return (hi)

do {

23

PROVING REDUCTIONS CORRECT

* In more complex reductions where we transform the input
before calling the oracle, we will need a more complex proof:

« (A) If there is a(n optimal) solution in the Input, our
transformation will preserve that solution so the oracle can find

1T, and

« (B) Our transformation doesn’t intfroduce new solutions that are
not present in the original iInput

e (l.e., If we find a solufion in the transformed input, there was
a corresponding solution in the original inpuf)

More on this later...

24

| N P U T S |Z E C H EAT S H E ET Exponentially larger than

optimal representation!

Perfectly fine ‘ Input I Examples of BAD
choices of Size(I)

choices of Size(I)

To write down x=1,
111 O"(s need log(1)+1=1 bit. KL
08\ T & For x=2 this is 2 bits.
(can simplify to For x=4. 3 bits. Graph (V,E)
log(x) + 1 or log x)

Graph (V,E) V| or) :
|E| or Pick any expression that A[l..n] of int

V|2 or makes your analysis easy

with weights W: |V| + |E| or
Yecr(log(w(e)) + 1) or Pseudo-polynomial ~= no exponentiation
Yuvev log(w(u,v)) + 1) or of non-constant terms
any sum of terms above
A[1..n] of int n or Technically any pseudo-polynomial
Y;(log(A[i]) + 1) combination of these tferms is fine.
n X 1 matrix m n2 or For example, the following is fine:
Y (log(mi,-) +1) (IEI*° +V|?) 'ZeeE(lOg(W(e)) +1)

25

. -
L R O R R
R

LR -
LA R RN RN AR R RN R R R R EERE R R R R RN
L L L L L
LR L L L L L L L R L

Potete e e
AARIAS

5 AL S

N
/

ettty

efficient vs inefficient input representations

26

-Size(Rl) = z z log(wy,) +1

uev vev

3 constant ¢ s.t. for all I, we have T € 0(Size(R,)¢)

27

.-»------v-.v-vvv----<--«--67."?- v -

" e e e e e e e e e e e e e e e e s e e e e T e e e e e e e e e

Size(R,) = |V| + (log(wy,) + 1 +log|V|+ 1)

Size(Ry) = z log (wy,) +1

uevVv vev

28

Size(R,) = z Z(log wy,) + 1

uev vev

—— T e e

- We should rule out this highly inefficient representation

for the purpose of proving polynomial runtime

Idea: determine whether runtime is polynomial in the
size of the optimal representation of the input

LOWER BOUNDING Size(l) it ysichineativon

. To prove that a reduction’s runtime T(I) on input I et L)
is polynomial in the size of I intx 110§(rx) 1
« Define a lower bound L(I) on the size of I Graph (V,E) 1or
2 : possibly with |V| or |E| or
* For every possible representation I, of I, weights W V| + |E| or
L(I) < Size(Ig) should hold Yeer(log(w(e)) + 1)
R : ..n] of int
- Can be proved with informaftion theory, or Ao gio(;og(/l[i]) +1)

ad-hoc; outside the scope of the course - e | e

« In this course, we can be a bit sloppy, and - 2i) (log(m”)l)
just use the table of valid choices here to Sy g, 501 5 SIelyss:

obtain a term for each variable in I Polynomial differences in
choices of L(I), such as |V| vs

« Then, if we can show T(I) < poly(L(D)), VI* vs (IE| + [V])*® don't matter.
: Such differences cannot
we have actually shown T(I) < poly(size(l)) change whether @ runtime T()

Exercise: T(I) € poly(L(1)*°) iff T(I) € poly(L(I)) sin poly(L(D) or no’r3o

\.\.l,.{

TSP-Optimal Value <T TSP Dec So what's a valid L(I) for an input I to
TSP-OptimalValue-Solvere

S0 S0 0000000000 0000000000

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver

NS p—

o < 0 ——lNOCOM —
if not TSP-Dec-Solver(G,w, hi)

then return

while 1i > I -

mid < LhZ‘QHOJ

] =logTecpwle)
if TSP-Dec-Solver (G, w, mid) | ‘and L) = O(E| + Zecr(log(w(e)) + 1)
else lo «+— mid + 1 B

return (h)

What's the relationship between the
reduction’s runtime T(I) and L(I)¢

do

This is a standard binary search technique. So this reduction has runtime that is

polynomial in the input size!

