

THIS TIME

- Intractability (hardness of problems)
 - Decision problems
 - Complexity class P
 - Polynomial-time **<u>Turing</u>** reductions
 - Introductory reductions
 - Three flavours of the traveling salesman problem

Decision Problems

Decision Problem: Given a problem instance I, answer a certain question "yes" or "no".

Problem Instance: Input for the specified problem.

Problem Solution: Correct answer ("yes" or "no") for the specified problem instance. I is a **yes-instance** if the correct answer for the instance I is "yes". I is a **no-instance** if the correct answer for the instance I is "no".

Size of a problem instance: Size(I) is the number of bits required to specify (or encode) the instance I.

The Complexity Class P

Algorithm Solving a Decision Problem: An algorithm A is said to solve a decision problem Π provided that A finds the correct answer ("yes" or "no") for every instance I of Π in finite time.

Polynomial-time Algorithm: An algorithm A for a decision problem Π is said to be a **polynomial-time algorithm** provided that the complexity of A is $O(n^k)$, where k is a positive integer and n = Size(I).

The Complexity Class P denotes the set of all decision problems that have polynomial-time algorithms solving them. We write $\Pi \in \mathbf{P}$ if the decision problem Π is in the complexity class P.

Knapsack Problems

Problem 7.3

0-1 Knapsack-Dec Instance: a list of profits, $P = [p_1, \ldots, p_n]$; a list of weights, $W = [u_1, \ldots, w_n]$; a capacity, M; and a target profit, T. Question: Is there an n-tuple $[x_1, x_2, \ldots, x_n] \in \{0, 1\}^n$ such that $\sum w_i x_i \le M$ and $\sum p_i x_i \ge T$?

Problem 7.4

Rational Knapsack-Dec Instance: a list of profits, $P = [p_1, \ldots, p_n]$; a list of weights, $W = [w_1, \ldots, w_n]$; a capacity, M; and a target profit, T. Question: Is there an *n*-tuple $[x_1, x_2, \ldots, x_n] \in [0, 1]^n$ such that $\sum w_i x_i \leq M$ and $\sum p_i x_i \geq T$?

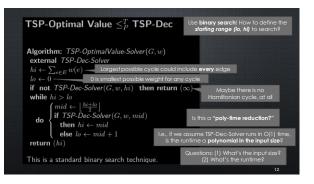
Cycles in Graphs	Relative hardness?
Problem 7.1	
Cycle Instance: An undirected graph C Question: Does G contain a cyc	
Problem 7.2	
Hamiltonian Cycle Instance: An undirected graph C Question: Does G contain a har	
A hamiltonian cycle is a cycle tha exactly once.	at passes through every vertex in V

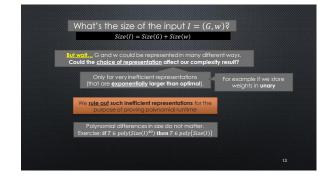
ms). A
A reduction typically: A reduction typi
write Is that if Mornial

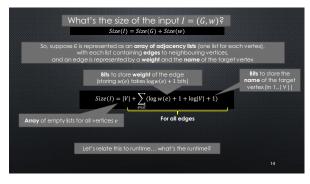
Travelling Salesperson Problems	Positive edge	
Problem 7.5	weights	
TSP-Optimization Instance: A graph G and edge weights $w : E \rightarrow \mathbb{Z}^+$.		Return type "a path/cycle H"
Find: A hamiltonian cycle H in G such that $w(H) = \sum_{e} minimized$.	$w \in H$ $w(e)$ is	
Problem 7.6	Is TSP-Dec	\leq_{P}^{T} TSP-Optimal Value?
TSP-Optimal Value Instance: A graph G and edge weights $w : E \rightarrow \mathbb{Z}^+$.		Return type "a positive integer T"
Find: The minimum T such that there exists a hamiltonia with $w(H) = T$.	an cycle H in G	
	Is TSP-De	$c \leq_{P}^{T} \text{TSP-Optimization?}$
Problem 7.7		
TSP-Decision		Distant and
Instance: A graph G, edge weights $w : E \to \mathbb{Z}^+$, and a to Question: Does there exist a hamiltonian cycle H in G w		Return type "yes/no"
question. Does there exist a namiltonian cycle H in G w	$mn w(n) \leq 1?$	

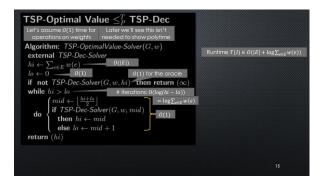
We will use polynomial-time Turing reductions to show that different versions of the **TSP** are polynomially equivalent: if one of them can be solved in polynomial time, then all of them can be solved in polynomial time. (However, it is believed that none of them can be solved in polynomial time.)

- We already know
- TSP-Dec \leq_P^T TSP-Optimal Value
- TSP-Dec \leq_P^T TSP-Optimization
- We show
 - TSP-Optimal Value \leq_P^T TSP-Dec
 - TSP-Optimization \leq_P^T TSP-Dec









COMPARING T(I) AND Size(I)

- $T(I) \in O(|E| + \log \sum_{e \in E} w(e))$
- $Size(I) = |V| + \sum_{e \in E} (\log w(e) + 1 + \log|V| + 1)$
 - $= |V| + \Sigma_{e \in E} (\log w(e) + 1) + \Sigma_{e \in E} (\log |V| + 1)$
 - $= |V| + \Sigma_{e \in E} (\log w(e) + 1) + \Sigma_{e \in E} (\log |V|) + |E|$
- Want to show $T(I) \in O(Size(I)^c)$ for some constant c (we show c=1)
- $$\begin{split} \mathcal{O}(|\boldsymbol{E}| + \log \sum_{e \in E} w(e)) &\subseteq^{?} \mathcal{O}(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log|V| + |\boldsymbol{E}|) \\ \Leftrightarrow \mathcal{O}(\log \sum_{e \in E} w(e)) &\subseteq^{?} \mathcal{O}(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log|V|) \end{split}$$

How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?

16

COMPARING T(I) AND Size(I)

• How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?

- $\Sigma_{e \in E}(\log w(e) + 1) = (\log w(e_1) + 1) + (\log w(e_2) + 1) + \dots + (\log (w(e_{|E|})) + 1)$
- Can we combine these terms into one log using log x + log y = log xy?
- $\sum_{e \in E} (\log w(e) + 1) = (\log w(e_1) + \log 2) + \dots + (\log (w(e_{|E|})) + \log 2)$
- $\sum_{e \in E} (\log w(e) + 1) = \log 2w(e_1) 2w(e_2) \dots 2w(e_{|E|}) = \log \prod_{e \in E} 2w(e)$
- So how to compare $\log \prod_{e \in E} 2w(e)$ and $\log \sum_{e \in E} w(e)$?
- All w(e) are positive integers, so $\prod_{e \in E} 2w(e) \ge \sum_{e \in E} w(e)$
- Since log is increasing on $\mathbb{Z}^*, \log \prod_{e \in E} 2w(e) \geq \log \sum_{e \in E} w(e)$

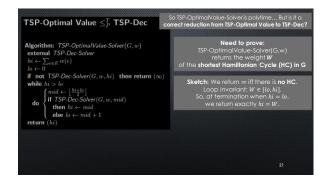
COMPARING T(I) AND Size(I)

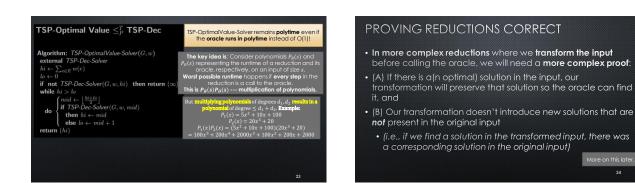
- We in fact show $T(I) \in O(Size(I))$
 - $$\begin{split} & \mathcal{O}(\log \sum_{e \in E} w(e)) \subseteq \mathcal{O}(|V| + \Sigma_{e \in E}(\log w(e) + 1) + \Sigma_{e \in E} \log |V|) \\ & \text{How to compare } \log \sum_{e \in E} w(e) \text{ and } \Sigma_{e \in E}(\log w(e) + 1) \mathcal{P} \end{split}$$

We just saw $\sum_{e \in E} (\log w(e) + 1) = \log \prod_{e \in E} 2w(e) \ge \log \sum_{e \in E} w(e)$

So $T(I) \in O(Size(I)^c)$ where c = 1

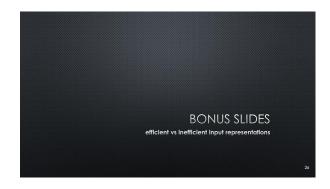
So this reduction has runtime that is polynomial in the input size!

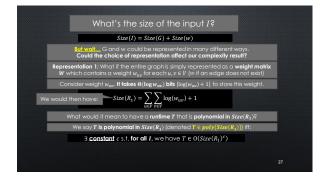


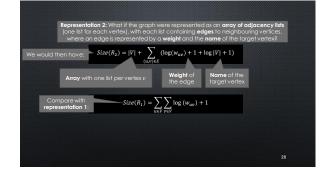


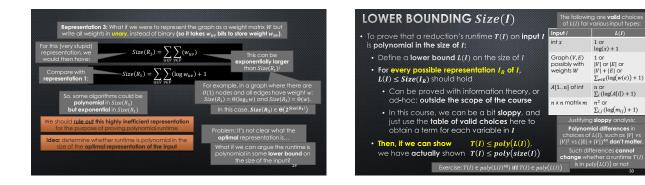
4

INPUT S		onentially larger ti timal representation		
Input I	Perfectly fine choices of Size(I) To write down x=1.	Input /	Examples of <u>BAD</u> choices of Size(I)	
int x	1 or need log(1)+1=1 bit.	int x	x	
	[log(x)] + 1 (can simplify to log(x) + 1 or log x) For x=2 this is 2 bits. For x=4, 3 bits.	Graph (V,E)	$2^{ V }$ or $ V ^{ E }$ or $\sum_{e \in E} w(e)$	
Graph (V, E)	IV or Pick any expression that IE or Pick any expression that IV 2 or makes your analysis easy	A[1n] of int	$\sum_{e \in E} w(e)$ 2^{n} or $\sum_{i} A[i]$	
with weights W:	$ \begin{array}{l} V + E \text{ or } \\ \sum_{e \in E} (\log(w(e)) + 1) \text{ or } \\ \sum_{u, v \in V} (\log(w(u, v)) + 1) \text{ or } \\ \text{any sum of terms above} \end{array} $		al ~= no exponentiation onstant terms	
A[1n] of int	$\sum_{i} (\log(A[i]) + 1)$ combine	Technically any pseudo-polynomial combination of these terms is fine.		
n x n matrix m		For example, the following is fine: $(E ^{100} + V ^2) \cdot \sum_{e \in E} (\log(w(e)) + 1)$		









$TSP extsf{-}Optimal\;Value\leq^T_PTSP extsf{-}Dec$	So what's a valid <i>L(I)</i> for an input <i>I</i> to TSP-OptimalValue-Solver?	
Algorithm: TSP-OptimalValue-Solver(G, w) external TSP-Dec-Solver	Input is a graph G with weight matrix w. From the table of valid $L(l)$ choices, we let $L(l) = E + \sum_{e \in E} (\log(w(e)) + 1)$.	
$\begin{array}{c c} hi \leftarrow \sum_{e \in E} w(e) & & \textit{O(E)} \\ lo \leftarrow 0 & & \textit{O(1)} & \textit{O(1) for the oracle} \\ \textbf{if not } TSP-Dec-Solver(G, w, hi) & \textbf{then return} (\infty) \end{array}$	What's the relationship between the reduction's runtime <i>T</i> (<i>I</i>) and <i>L</i> (<i>I</i>)?	
while $hi > lo$ # iterations: $O(\log(hi - lo))$ $\begin{pmatrix} mid \leftarrow \lfloor \frac{hi+lo}{2} \rfloor \\ \text{if } TSP-Dec-Solver}(G, w, mid) \end{pmatrix} = \log \sum_{eve} w(a)$	and $L(I) = O(E + \sum_{e \in E} (\log(w(e)) + 1))$	
do then $hi \leftarrow mid$ else $lo \leftarrow mid + 1$	As we argued earlier, $T(I) \in poly(L(I))$	
return (hi) This is a standard binary search technique.	And thus $T(I) \in poly(Size(I))$ this reduction has runtime that is polynomial in the input size!	