CS 341: ALGORITHMS

Lecture 19: intractability |

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

THIS TIME

Intractabllity (hardness of problems)
Decision problems
Complexity class P
Polynomial-time Turing reductions

Infroductory reductions
Three flavours of the traveling salesman problem

How to insert USB

INTRACTABILITY

Studying the hardness of problems

Decision Problems

Decision Problem: Given a problem instance I, answer a certain question
“yeS” Or “nO” .

Problem Instance: Input for the specified problem.

Problem Solution: Correct answer (“yes” or “no") for the specified
problem instance. [is a yes-instance if the correct answer for the
instance I is “yes' . I is a no-instance if the correct answer for the
instance [is “no".

Size of a problem instance: Size(I) is the number of bits required to
specify (or encode) the instance 1.

The Complexity Class P

Algorithm Solving a Decision Problem: An algorithm A is said to solve
a decision problem II provided that A finds the correct answer (“yes” or
“no") for every instance I of II in finite time.

Polynomial-time Algorithm: An algorithm A for a decision problem II is
said to be a polynomial-time algorithm provided that the complexity of
Ais O(n*), where k is a positive integer and n = Size(I).

The Complexity Class P denotes the set of all decision problems that
have polynomial-time algorithms solving them. We write II € P if the
decision problem II is in the complexity class P.

Knapsack Problems

Relative problem hardness?

Problem 7.3

0-1 Knapsack-Dec

Instance: a list of profits, P = [p1,...,p,]; a list of weights,

W = [wy,...,wy,]; acapacity, M; and a target profit, T'.
Question: [s there an n-tuple [x1,z9,...,2z,| € {0,1}" such that
Y wix; < M and' Y pix; = T'7

Problem 7.4

Rational Knapsack-Dec

Instance: a list of profits, P = [p1,...,p,]; a list of weights,
W = [wy,...,w,|; acapacity, M; and a target profit, T'.
Question: s there an n-tuple [z, x5,...,z,] € [0,1]" such that
Y wix; < M and) pix; > T7?

Cycles in Graphs

Relative
hardnesse

A hamiltonian cycle is a cycle that passes through every vertex in V
exactly once.

Example: all-pairs-shortest-paths easily

Polynomial-time Turing Reductions reduces to single-source-shortest-path

Suppose II; and Il are problems (not necessarily decision problems). A
(hypothetical) algorithm B to solve II; is called an oracle for Il;.

Suppose that A is an algorithm that solves 11, assuming the existence of
an oracle B for Ils. (B is used as a subroutine within the algorithm A.)

Then we say that A is a Turing reduction from II; to Il,, denoted
I1; <T 11,.

A Turing reduction A is a polynomial-time Turing reduction if the
running time of A is polynomial, under the assumption that the oracle B
has unit cost running time.

If there is a polynomial-time Turing reduction from II; to Il, we write
[T, <} .
Informally: Existence of a polynomial-time Turing reduction means that if

we can solve Ils in polynomial time, then we can solve II; in polynomial
time.

A reduction typically:

1. transforms the larger
problem’s input so it can be
fed to the oracle, and
2. transforms the oracle’s
output into a solution to the
larger problem.

Travelling Salesperson Problems Positive edge

weights

Return type
“a path/cycle H”

Is TSP-Dec <[, TSP-Optimal Value?

Return type
“a positive integer T"

Is TSP-Dec <}, TSP-Optimization?

Return type
uyes/non

We will use polynomial-time Turing reductions to show that different
versions of the TSP are polynomially equivalent: if one of them can be
solved in polynomial time, then all of them can be solved in polynomial
time. (However, it is believed that none of them can be solved in
polynomial time.)

We already know
TSP-Dec <f TSP-Optimal Value
TSP-Dec <F TSP-Optimization
We show
TSP-Optimal Value <% TSP-Dec
TSP-Optimization <% TSP-Dec

10

TSP-Optimal Value <4 TSP-Dec

TSP-Optimal Value input: G, w

TSP-Dec() also needs a target T
What if we try TSP-Dec(G, w, 100)?

It returns true. But we don't learn How can we learn the exact optimal
optimal value... just that it's <100 value by making such callse

= T Use binary search! How to define the
TSP-Optimal Value <4, TSP-Dec

starting range (lo, hi) to search?

Algorithm: TSP-OptimalValue-Solver(G, w)

external 7SP-Dec-Solver

hi + ZEEE w(e) % Largest possible cycle could include every edge
lo 4+~ 0 —————— 0is smallest possible weight for any cycle
if !wt TSP—Dec—SoIver(G,w?hz) then return (oo) Maybe there is no
while h: > lo Hamiltonian cycle, at all

'rm?,d ¢ \-hi—Ql—EmJ

if TSP-Dec-Solver(G,w, mid)

do _ _ s this a “poly-time reduction?”
< then hi < mid
. else lo < mid +1 .e., if we assume TSP-Dec-Solver runs in O(1) time,
return (hz) is the runtime a polynomial in the input size?
. : : Questions: (1) What's the input size¢
This is a standard binary search technique. (2) What's the runtime?

12

What's the size of the input I = (G, w)?¢

Size(l) = Size(G) + Size(w)

But wait... G and w could be represented in many different ways.
Could the choice of representation affect our complexity result?

/\

Only for very inefficient representations
(that are exponentially larger than optimal).

<

|

weights in unary

\‘ For example if we store

We rule out such inefficient representations for the

purpose of proving polynomial runtime

Polynomial differences in size do not matter.

Exercise: if T € poly(Size(I)*°) then T € poly(Size(I))

13

What's the size of the input I = (G,w)?
Size(l) = Size(G) + Size(w)

S0, suppose G is represented as an array of adjacency lists (one list for each vertex),
with each list containing edges to neighbouring vertices,
and an edge is represented by a weight and the name of the target vertex

Bits to store weight of the edge Bits to store the
(storing w(e) takes logw(e) + 1 bits) name of the target

\/— vertex (in 1..|V])

Size(I) =|V|+) (logw(e) +1+log|V|+ 1)

I

Array of empty lists for all vertices v For all edges

Let's relate this to runtime... what's the runtime?

14

TSP-Optimal Value <%, TSP-Dec

Let’'s assume 0(1) time for

operations on weights needed to show polytime

Later we'll see this isn't

Algorithm: TSP-OptimalValue-Solver(G, w)

external TSP-Dec-Solver

hi <) .cpw(e) —

O(IE])

lo + 0 —— 0(1)

0(1) for the oracle

if not TSP-Dec-Solver(G,w, hi) <men return (co)

while h: > lo ‘—/——i # iterations: 0(log(hi — lo))

(Tflid ¢ [hi—Qi-loJ

G0 3 then hi «— mid

return (hz)

if TSP-Dec-Solver(G,w, mid)

| else lo + mid + 1

Runtime T(I) € O(|E| + logY..cgw(e))

—

— log ZeEE W(e)

— 0(1)

15

COMPARING T(I) AND Size(I)

T(I) € 0(

Size(I) =

vV
vV
vV

E| +log Xecg w(e))

+ Yecg(logw(e) +1 +log|V|+ 1)

+ Zeep(logw(e) + 1) + Zeep(log|V] + 1)
+ Zeep(logw(e) + 1) + Z.ep(log|V]) + |E]

Want to show T(I) € 0(Size(I)¢) for some constant ¢ (we show c=1)
O(|E] +logXecpw(e)) S O(|V] + Zeeg(logw(e) + 1) + Zeg log|V| + |E)
& 0(log Xecg w(e)) c’o(Jv] + Yecg(logw(e) + 1) + Z.eg log|V])
How to compare log)...rw(e) and X ..z(logw(e) + 1)?

16

COMPARING T(I) AND Size(I)

How to compare log ... w(e) and X_..(logw(e) + 1)?

Y.cg(logw(e)+1) = (logw(e) + 1) + (logw(ey) +1) + - + (log (W(e|E|)) + 1)

Can we combine these terms into one log using log x + logy = log xy¢

Xocp(logw(e) +1) = (logw(ey) +log2) + + -+ (log (W(e|E|)) + log 2)

Z.cr(logw(e) + 1) =log2w(e,) 2w(ey) ... 2w(ez|) = log[l.cg 2w(e)
So how to compare log[1.cg2w(e) and log). .c.pw(e)?

All w(e) are positive integers, SO [l.eg 2w(e) = Y. .cgw(e)

Since log is increasing on Z*, log [l.cg 2w(e) = log)..c.gw(e)

17

COMPARING T(I) AND Size(I)

We in fact show T(I) € 0(Size(I))
O(IOgZeEEW(e)) g? 0(|V| T+ 2:eEE(lOgW(e) T 1) + 2:eEE logIVI)
How to compare log)...pw(e) and X .z(logw(e) + 1)?

We just saw X.cg(logw(e) + 1) = log]].cx2w(e) = log). ..pw(e)

So this reduction has runtime that is

. C _
So T(I) € O(Size(I)") where ¢ = 1 polynomial in the input size!

18

TSP-Optimal Value <, TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G,w)
external TSP-Dec-Solver

hi < ZCEE u}(e)
lo + 0

if not TSP-Dec-Solver(G,w, hi) then return (oco)

while hz > lo

mid < I'hz;—loJ

if TSP-Dec-Solver(G,w, mid)
then hi < mid
else lo «+— mid + 1

return (hz)

Exercise: show the variant of this reduction
where linear search is used instead of
binary search is not poly(Size(I))

19

REACHED THIS POINT

(but will recap the comparison of T(l) and Size(l) next time)

20

So TSP-OptimalValue-Solver is polytime... But is it a

TSP-Optimal Value Sf) TSP-Dec correct reduction from TSP-Optimal Value to TSP-Dec?
o . | Need to prove:
. - r, W
A;f:;:gln TST S_%g_)gzj é:/a/ue-So/ver(C) TSP-O p’rimolVque-§oIver(G,w)
hi 3. w(e) refurns the weight W
lo < 0 B of the shortest Hamiltonian Cycle (HC) in G
if not TSP-Dec-Solver(G,w, hi) then return (oco)
while hi > lo Sketch: We return oo iff there is no HC.
(mid +— |2 | Loop invariant: W € [lo, hi].
ik 3 if TSP-Dec-Solver(G,w, mid) So, af termination whe.n hi = lo,
then hi < mid we retfurn exactly hi = W.
| else lo «+ mid + 1

return (hz)

21

TSP-Optimal Value <}, TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver

hi <=) .cpw(e)

lo + 0

if not TSP-Dec-Solver(G,w, hi) then return (oco)
while iz > lo

(mid L‘i""-‘;ﬂ”J
if TSP-Dec-Solver(G,w, mid)
then hi < mid

| else lo < mid + 1
return (hz)

do ¢

So, TSP-OptimalValue-Solver is polytime,
and is a correct reduction.

We have therefore shown:
TSP-Optimal Value is polytime
reducible to TSP-Dec

So, if an 0(1) implementation of TSP-Dec-Solver
exists, then we have a polytime implementation of
TSP-Optimal-Value-Solver!

In fact, TSP-OptimalValue-Solver remains polytime
even if the implementation of the
oracle runs in polytime instead of O(1)!

22

TSP-Optimal Value <}, TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver

hi <=) .cpw(e)

lo 0

if not TSP-Dec-Solver(G,w,hi) then return (oo)

while hz > lo

((‘mid L@J

if TSP-Dec-Solver (G, w, mid)
then hi +— mid

| else lo < mid + 1

return (hz)

do «{

TSP-OptimalValue-Solver remains polytime even if
the oracle runs in polytime instead of O(1)!

The key idea is: Consider polynomials Pi(s) and

P, (s) representing the runtime of a reduction and its

oracle, respectively, on an input of size s.
Worst possible runtime happens if every step in the
reduction is a call to the oracle.

This is Pr(s)Po(s) --- multiplication of polynomiails.

But multiplying polynomials of degrees d4, d, results in a
polynomial of degree < d; + d,. Example:
P;(x) = 5x? 4+ 10x + 100
P,(x) = 20x3 + 20
P (x)P,(x) = (5x% 4+ 10x + 100)(20x3 + 20)
= 100x°> + 200x* + 2000x3 + 100x2 + 200x + 2000

23

PROVING REDUCTIONS CORRECT

In more complex reductions where we transform the input
before calling the oracle, we will need a more complex proof:

(A) If there is a(n optimal) solution in the input, our
transformation will preserve that solufion so the oracle can find

1T, and

(B) Our transformation doesn’t infroduce new solutions that are
not present in the original input

(i.e., if we find a solution in the transformed input, there was
a corresponding solution in the original input)

More on this later...

24

l N P UT S lZ E C H EAT S H E ET Exponentially larger than

optimal representation!

Perfectly fine Examples of BAD
choices of Size(1) To wiite down x=1. choices of Size(I)

int x Lor need log(1)+1=1 bit. | int x X
[log(x)| + 1 ' For x=2 this is 2 bits. %
(can simplify to _ : Graph (V, E) 2"t or
For x=4, 3 bits. |E|
log(x) + 1 or log x) V"= or
Graph (V,E) V| or : - Zeer W(€)
IE| or Pick any expression that A[1..n] of int 2™ or
V|2 or makes your analysis easy i Al
with weights W: |V| + |E| or
Yecr(log(w(e)) + 1) or Pseudo-polynomial ~= no exponentiation
Yuver (log(w(u,v)) + 1) or of hon-constant terms
any sum of terms abov ___—
A[1..n] of int n or e\ Technically any pseudo-polynomial
Y;(log(A[i]) + 1) combination of these terms is fine.
n X 1 matrix m n2 or For example, the following is fine:
Ny, (log(mij) + 1) (E[M° +V]?) - Xeep(log(w(e)) + 1)
' 25

BONUS SLIDES

efficient vs inefficient input representations

26

What's the size of the input I

Size(l) = Size(G) + Size(w)

But wait...

G and w could be represented in many different ways.

Could the choice of representation affect our complexity result?

Representation 1: What if the entire graph is simply represented as a weight matrix
W which contains a weight w,,,, foreach u,v € V (o if an edge does not exist)

Consider weight w,,,. It takes @(log w,,,,) bits (log(w,,;,) + 1) to store this weight.

We would then have:

I>Size(Rl) = Z Z log(w,,) +1

uev vev

What would it mean to have a runtime T that is polynomial in Size(R,)?

We say T is polynomial in Size(R,) (denoted T € poly(Size(R,))) iff:

3 constant ¢ s.t. for all I, we have T € 0(Size(R,)¢)

27

Representation 2: What if the graph were represented as an array of adjacency lists
(one list for each vertex), with each list containing edges to neighbouring vertices,
where an edge is represented by a weight and the name of the target vertex?

We would then have: F Size(Ry) = |V] +

Array with one list per vertex v

(u,v)EE

representation 1:

(log(wy,) +1 +1log|V|+ 1)

AN

Weight of
the edge

Name of the
target vertex

Compare with I\Size(Rl) — z z log (W) + 1

uevVv vev

28

Representation 3: What if we were to represent the graph as a weight matrix W but
write all weights in unary, instead of binary (so it takes w,,,, bits to store weight w,,,,).

For this (very stupid)
representation, we
would then have:

— Size(Rs) =)) (W)

uev vev

Compare with
representation 1:

I\Size(Rl) = z Z(log wy,) + 1

This can be
exponentially larger
than Size(R,)!

| T~

uev vev

So, some algorithms could be
polynomial in Size(R3)
but exponential in Size(R;)

For example, in a graph where there are
0(1) nodes and all edges have weight w:
Size(R,) = 0(log, w) and Size(R3) = 0(w).

We should rule out this highly inefficient representation

for the purpose of proving polynomial runtime

In this case, Size(R3) € ©(251¢(R0)

Idea: determine whether runtime is polynomial in the

Problem: it's not clear what the
optimal representation is...

size of the optimal representation of the input

What if we can argue the runtime is
polynomial in some lower bound on
the size of the input?

29

LOWER BOUNDING Size(1) o oneng e v crices

To prove that a reduction’s runtime T(I) on input I

is polynomial in the size of I intx 110§(rx) 1
Define a lower bound L(I) on the size of I Graph (V,E) 1or
. . possibly with |V| or |E| or
For every possible representation I, of I, weights W V| + |E| or
L(I) < Size(Ig) should hold Yeer(log(w(e)) + 1)
L : A[1..n] of int

Can be proved with information theory, or et gi()(liog(A[i]) +1)
ad-hoc; outside the scope of the course R S [

In this course, we can be a bit sloppy, and _ 2ij (log(m"f)fl)
just use the table of valid choices here to Justitying sloppy analysis:

obtain a term for each variable in I Polynomial differences in
choices of L(I), such as |V| vs

Then, if we can show T(I) < poly(L(D)), VI® vs (IEl + V™" don't matter.
. Such differences cannot
we have actually shown T(I) < poly(size(l)) change whether & ronfime T(1)

Exercise: T(I) € poly(L(1)*°) iff T(I) € poly(L(I)) sin poly(L(®) or no’r3o

TS P-Optimal Value Sg TSP-Dec So what's a valid L(I) for an input I to
TSP-OptimalValue-Solver?

] _ Input is a graph G with weight matrix w.
Algorithm: TSP-OptimalValue-Solver(G, w) From the table of valid L(I) choices,

external TSP-Dec-Solver we let L(I) = |E| + Y cp(log(w(e)) + 1).

+ — ' 0(ED
hi < ZeEE w(e) 1 What's the relationship between the
lo+ 0 % 0(1) 0(1) for the oracle reduction’s runtime T(I) and L(I)?

if not TSP-Dec-Solver(G,w, hi) <nén return (co)

. Y /
while f:,?; > lo . | # |’rero’r|orls; 0(log(hi — lo)) T() = O(|E| + logYeer w(e))
mad $— [> J =logY ez w(e)
if TSP-Dec-Solver(G., w, mid) and L) = O(IE| + Zecp(log(w(e)) + 1)
do < hen hi ¥ . | Loop body:
then 1 < me 0(1) As we argued earlier,
| else lo < mid + 1 B T(I) € poly(L(I))
return (hi) And thus T(I) € poly(Size(I))
This is a standard binary search technique. So this reduction has runtime that is

polynomial in the input size!l

