
CS 341: ALGORITHMS
Lecture 19: intractability I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

THIS TIME

• Intractability (hardness of problems)

• Decision problems

• Complexity class P

• Polynomial-time Turing reductions

• Introductory reductions

• Three flavours of the traveling salesman problem

2

INTRACTABILITY
Studying the hardness of problems

3

4

5

6

Relative problem hardness?

Relative

hardness?

7

Example: all-pairs-shortest-paths easily

reduces to single-source-shortest-path

A reduction typically:

1. transforms the larger

problem’s input so it can be

fed to the oracle, and

2. transforms the oracle’s

output into a solution to the

larger problem.

8

Return type

“a path/cycle H”

Return type

“a positive integer T”

Return type

“yes/no”

Is TSP-Dec ≤𝑷
𝑻 TSP-Optimal Value?

Is TSP-Dec ≤𝑷
𝑻 TSP-Optimization?

Positive edge

weights

9

• We already know

• TSP-Dec ≤𝑃
𝑇 TSP-Optimal Value

• TSP-Dec ≤𝑃
𝑇 TSP-Optimization

• We show

• TSP-Optimal Value ≤𝑃
𝑇 TSP-Dec

• TSP-Optimization ≤𝑃
𝑇 TSP-Dec

10

4
1

1

3 3

2

15

TSP-Optimal Value input: G, w

TSP-Dec() also needs a target T

What if we try TSP-Dec(G, w, 100)?

It returns true. But we don’t learn

optimal value… just that it’s ≤100

How can we learn the exact optimal

value by making such calls?

11

Is this a “poly-time reduction?”

I.e., if we assume TSP-Dec-Solver runs in O(1) time,

is the runtime a polynomial in the input size?

0 is smallest possible weight for any cycle

Largest possible cycle could include every edge

Use binary search! How to define the

starting range (lo, hi) to search?

Maybe there is no

Hamiltonian cycle, at all

Questions: (1) What’s the input size?

(2) What’s the runtime?

12

𝑆𝑖𝑧𝑒 𝐼 = 𝑆𝑖𝑧𝑒 𝐺 + 𝑆𝑖𝑧𝑒 𝑤

What’s the size of the input 𝐼 = 𝐺, 𝑤 ?

But wait… G and w could be represented in many different ways.

Could the choice of representation affect our complexity result?

Only for very inefficient representations

(that are exponentially larger than optimal).

We rule out such inefficient representations for the

purpose of proving polynomial runtime

For example if we store

weights in unary

Polynomial differences in size do not matter.

Exercise: 𝐢𝐟 𝑇 ∈ 𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼 40 𝐭𝐡𝐞𝐧 𝑇 ∈ 𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼

13

𝑆𝑖𝑧𝑒 𝐼 = 𝑆𝑖𝑧𝑒 𝐺 + 𝑆𝑖𝑧𝑒 𝑤

What’s the size of the input 𝐼 = (𝐺, 𝑤)?

Let’s relate this to runtime… what’s the runtime?

𝑆𝑖𝑧𝑒 𝐼 = |𝑉| +

𝑒∈𝐸

log 𝑤 𝑒 + 1 + log 𝑉 + 1

So, suppose 𝐺 is represented as an array of adjacency lists (one list for each vertex),

with each list containing edges to neighbouring vertices,

and an edge is represented by a weight and the name of the target vertex

Array of empty lists for all vertices 𝑣

Bits to store weight of the edge

(storing 𝑤(𝑒) takes log 𝑤 𝑒 + 1 bits)

Bits to store the

name of the target

vertex (in 1..|V|)

14

For all edges

𝑂(𝐸)

𝑂(1) 𝑂(1) for the oracle

iterations: O log ℎ𝑖 − 𝑙𝑜

= log σ𝑒∈𝐸 𝑤 𝑒

𝑂(1)

Runtime 𝑇 𝐼 ∈ 𝑂 𝐸 + log σ𝑒∈𝐸 𝑤(𝑒)

Let’s assume 𝑂(1) time for

operations on weights

Later we’ll see this isn’t

needed to show polytime

15

COMPARING 𝑇(𝐼) AND 𝑆𝑖𝑧𝑒(𝐼)

• 𝑇 𝐼 ∈ 𝑂 𝐸 + log σ𝑒∈𝐸 𝑤(𝑒)

• 𝑆𝑖𝑧𝑒 𝐼 = |𝑉| + σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + log 𝑉 + 1

 = 𝑉 + Σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + 𝜮𝒆∈𝑬 log 𝑉 + 1

 = 𝑉 + Σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + Σ𝑒∈𝐸 log 𝑉 + |𝑬|

• Want to show 𝑇 𝐼 ∈ 𝑂 𝑆𝑖𝑧𝑒 𝐼 𝑐 for some constant 𝑐 (we show c=1)

𝑂 𝑬 + log σ𝑒∈𝐸 𝑤 𝑒 ⊆? 𝑂 𝑉 + Σ𝑒∈𝐸(log 𝑤 𝑒 + 1) + Σ𝑒∈𝐸 log 𝑉 + 𝑬

 ⇔ 𝑂 log σ𝑒∈𝐸 𝑤 𝑒 ⊆? 𝑂 𝑉 + Σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + Σ𝑒∈𝐸 log 𝑉

How to compare 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆) and 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 ?

16

COMPARING 𝑇(𝐼) AND 𝑆𝑖𝑧𝑒(𝐼)
• How to compare 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆) and 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 ?

• 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 = log 𝑤 𝑒1 + 1 + log 𝑤 𝑒2 + 1 + ⋯ + log 𝑤 𝑒 𝐸 + 1

• Can we combine these terms into one log using log 𝑥 + log 𝑦 = log 𝑥𝑦?

• 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 = log 𝑤 𝑒1 + log 2 + + ⋯ + log 𝑤 𝑒 𝐸 + log 2

• 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 = log 2𝑤 𝑒1 2𝑤 𝑒2 … 2𝑤 𝑒 𝐸 = 𝐥𝐨𝐠 ς𝒆∈𝑬 𝟐𝒘 𝒆

• So how to compare 𝐥𝐨𝐠 ς𝒆∈𝑬 𝟐𝒘 𝒆 and 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆)?

• All 𝒘 𝒆 are positive integers, so ς𝒆∈𝑬 𝟐𝒘 𝒆 ≥ σ𝒆∈𝑬 𝒘(𝒆)

• Since log is increasing on ℤ+, 𝐥𝐨𝐠 ς𝒆∈𝑬 𝟐𝒘 𝒆 ≥ 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆)

17

COMPARING 𝑇(𝐼) AND 𝑆𝑖𝑧𝑒(𝐼)

• We in fact show 𝑻 𝑰 ∈ 𝑂(𝑆𝑖𝑧𝑒 𝐼)

𝑂 log σ𝑒∈𝐸 𝑤 𝑒 ⊆? 𝑂 𝑉 + Σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + Σ𝑒∈𝐸 log 𝑉

How to compare 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆) and 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 ?

We just saw 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 = 𝐥𝐨𝐠 ς𝒆∈𝑬 𝟐𝒘 𝒆 ≥ 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆)

18

So 𝑻 𝑰 ∈ 𝑶 𝑺𝒊𝒛𝒆 𝑰 𝒄 where 𝒄 = 𝟏
So this reduction has runtime that is

polynomial in the input size!

Exercise: show the variant of this reduction

where linear search is used instead of

binary search is not 𝒑𝒐𝒍𝒚(𝑺𝒊𝒛𝒆(𝑰))

19

REACHED THIS POINT
(but will recap the comparison of T(I) and Size(I) next time)

20

So TSP-OptimalValue-Solver is polytime… But is it a

correct reduction from TSP-Optimal Value to TSP-Dec?

Need to prove:
TSP-OptimalValue-Solver(G,w)

returns the weight 𝑾
of the shortest Hamiltonian Cycle (HC) in G

Sketch: We return ∞ iff there is no HC.
Loop invariant: 𝑊 ∈ [𝑙𝑜, ℎ𝑖].

So, at termination when ℎ𝑖 = 𝑙𝑜,

we return exactly ℎ𝑖 = 𝑊.

21

We have therefore shown:

TSP-Optimal Value is polytime

reducible to TSP-Dec

So, if an 𝑶 𝟏 implementation of TSP-Dec-Solver

exists, then we have a polytime implementation of

TSP-Optimal-Value-Solver!

So, TSP-OptimalValue-Solver is polytime,

and is a correct reduction.

In fact, TSP-OptimalValue-Solver remains polytime

even if the implementation of the

oracle runs in polytime instead of O(1)!

22

The key idea is: Consider polynomials 𝑃𝑅(𝑠) and

𝑃𝑂 𝑠 representing the runtime of a reduction and its

oracle, respectively, on an input of size 𝑠.

Worst possible runtime happens if every step in the

reduction is a call to the oracle.

This is 𝑷𝑹 𝒔 𝑷𝑶(𝒔) --- multiplication of polynomials.

TSP-OptimalValue-Solver remains polytime even if

the oracle runs in polytime instead of O(1)!

But multiplying polynomials of degrees 𝑑1, 𝑑2 results in a
polynomial of degree ≤ 𝑑1 + 𝑑2. Example:

𝑃1 𝑥 = 5𝑥2 + 10𝑥 + 100
𝑃2 𝑥 = 20𝑥3 + 20

𝑃1 𝑥 𝑃2(𝑥) = (5𝑥2 + 10𝑥 + 100)(20𝑥3 + 20)
= 100𝑥5 + 200𝑥4 + 2000𝑥3 + 100𝑥2 + 200𝑥 + 2000

23

PROVING REDUCTIONS CORRECT

• In more complex reductions where we transform the input

before calling the oracle, we will need a more complex proof:

• (A) If there is a(n optimal) solution in the input, our

transformation will preserve that solution so the oracle can find

it, and

• (B) Our transformation doesn’t introduce new solutions that are

not present in the original input

• (i.e., if we find a solution in the transformed input, there was

a corresponding solution in the original input)

24

More on this later…

Input 𝐼 Examples of BAD
choices of 𝑆𝑖𝑧𝑒(𝐼)

int 𝑥 𝑥

Graph 𝑉, 𝐸 2|𝑉| or

𝑉 |𝐸| or
σ𝑒∈𝐸 𝑤(𝑒)

𝐴[1. . 𝑛] of int 2𝑛 or
σ𝑖 𝐴[𝑖]

INPUT SIZE CHEAT SHEET

Input 𝐼 Perfectly fine

choices of 𝑆𝑖𝑧𝑒(𝐼)

int 𝑥 1 or

⌊log 𝑥 ⌋ + 1
(can simplify to

𝐥𝐨𝐠 𝒙 + 𝟏 or 𝐥𝐨𝐠 𝒙)

Graph 𝑉, 𝐸

with weights 𝑊:

|𝑉| or

|𝐸| or

𝑉 2 or

𝑉 + |𝐸| or

σ𝑒∈𝐸(log 𝑤 𝑒 + 1) or

σ𝑢,𝑣∈𝑉 (log 𝑤 𝑢, 𝑣 + 1) or

any sum of terms above

𝐴[1. . 𝑛] of int 𝑛 or
σ𝑖(log 𝐴 𝑖 + 1)

𝑛 x 𝑛 matrix 𝑚 𝑛2 or

σ𝑖,𝑗 (log 𝑚𝑖𝑗 + 1)

Pick any expression that

makes your analysis easy

Technically any pseudo-polynomial

combination of these terms is fine.

 For example, the following is fine:

𝐸 100 + 𝑉 2 ⋅ σ𝑒∈𝐸(log 𝑤 𝑒 + 1)

Exponentially larger than

optimal representation!

Pseudo-polynomial ~= no exponentiation

of non-constant terms

To write down x=1,

need log(1)+1=1 bit.

For x=2 this is 2 bits.

For x=4, 3 bits.

25

BONUS SLIDES
efficient vs inefficient input representations

26

𝑆𝑖𝑧𝑒 𝐼 = 𝑆𝑖𝑧𝑒 𝐺 + 𝑆𝑖𝑧𝑒 𝑤

What’s the size of the input 𝐼?

𝑆𝑖𝑧𝑒 𝑅1 =

𝑢∈𝑉

𝑣∈𝑉

log 𝑤𝑢𝑣 + 1

Consider weight 𝑤𝑢𝑣. It takes 𝚯(𝐥𝐨𝐠 𝒘𝒖𝒗) bits (log 𝑤𝑢𝑣 + 1) to store this weight.

But wait… G and w could be represented in many different ways.

Could the choice of representation affect our complexity result?

We would then have:

Representation 1: What if the entire graph is simply represented as a weight matrix

𝑾 which contains a weight 𝑤𝑢𝑣 for each 𝑢, 𝑣 ∈ 𝑉 (∞ if an edge does not exist)

What would it mean to have a runtime 𝑻 that is polynomial in 𝑺𝒊𝒛𝒆 𝑹𝟏 ?

∃ constant 𝑐 s.t. for all 𝑰, we have 𝑇 ∈ O 𝑆𝑖𝑧𝑒 𝑅1
𝑐

We say 𝑻 is polynomial in 𝑺𝒊𝒛𝒆 𝑹𝟏 (denoted 𝑻 ∈ 𝒑𝒐𝒍𝒚 𝑺𝒊𝒛𝒆 𝑹𝟏) iff:

27

𝑆𝑖𝑧𝑒 𝑅2 = 𝑉 +

(𝑢,𝑣)∈𝐸

(log 𝑤𝑢𝑣 + 1 + log |𝑉| + 1)We would then have:

Representation 2: What if the graph were represented as an array of adjacency lists

(one list for each vertex), with each list containing edges to neighbouring vertices,

where an edge is represented by a weight and the name of the target vertex?

Array with one list per vertex 𝑣
Weight of

the edge

Name of the

target vertex

𝑆𝑖𝑧𝑒 𝑅1 =

𝑢∈𝑉

𝑣∈𝑉

log 𝑤𝑢𝑣 + 1Compare with

representation 1:

28

Representation 3: What if we were to represent the graph as a weight matrix 𝑊 but

write all weights in unary, instead of binary (so it takes 𝒘𝒖𝒗 bits to store weight 𝒘𝒖𝒗).

𝑆𝑖𝑧𝑒 𝑅3 =

𝑢∈𝑉

𝑣∈𝑉

(𝑤𝑢𝑣)

𝑆𝑖𝑧𝑒 𝑅1 =

𝑢∈𝑉

𝑣∈𝑉

log 𝑤𝑢𝑣 + 1

For this (very stupid)

representation, we

would then have:

Compare with

representation 1:

This can be

exponentially larger

than 𝑆𝑖𝑧𝑒(𝑅1)!

For example, in a graph where there are

𝑂(1) nodes and all edges have weight 𝑤:

𝑆𝑖𝑧𝑒 𝑅1 = Θ log2 𝑤 and 𝑆𝑖𝑧𝑒 𝑅3 = Θ(𝑤).
So, some algorithms could be

polynomial in 𝑆𝑖𝑧𝑒 𝑅3

but exponential in 𝑆𝑖𝑧𝑒(𝑅1) In this case, 𝑺𝒊𝒛𝒆 𝑹𝟑 ∈ 𝚯 𝟐𝑺𝒊𝒛𝒆 𝑹𝟏

We should rule out this highly inefficient representation

for the purpose of proving polynomial runtime

Idea: determine whether runtime is polynomial in the

size of the optimal representation of the input

Problem: it’s not clear what the

optimal representation is…

What if we can argue the runtime is

polynomial in some lower bound on

the size of the input?
29

LOWER BOUNDING 𝑺𝒊𝒛𝒆(𝑰)

• To prove that a reduction’s runtime 𝑻(𝑰) on input 𝑰
is polynomial in the size of 𝑰:

• Define a lower bound 𝑳(𝑰) on the size of 𝐼

• For every possible representation 𝑰𝑹 of 𝑰,

𝑳 𝑰 ≤ 𝑺𝒊𝒛𝒆(𝑰𝑹) should hold

• Can be proved with information theory, or

ad-hoc; outside the scope of the course

• In this course, we can be a bit sloppy, and

just use the table of valid choices here to

obtain a term for each variable in 𝑰

• Then, if we can show 𝑻 𝑰 ≤ 𝒑𝒐𝒍𝒚 𝑳 𝑰 ,

we have actually shown 𝑻 𝑰 ≤ 𝒑𝒐𝒍𝒚 𝒔𝒊𝒛𝒆 𝑰

Input 𝐼 𝑳(𝑰)

int 𝑥 1 or

log 𝑥 + 1

Graph 𝑉, 𝐸
possibly with

weights 𝑊

1 or

|𝑉| or |𝐸| or

𝑉 + |𝐸| or

σ𝑒∈𝐸(log 𝑤 𝑒 + 1)

𝐴[1. . 𝑛] of int 𝑛 or
σ𝑖 (log 𝐴 𝑖 + 1)

𝑛 x 𝑛 matrix 𝑚 𝑛2 or

σ𝑖,𝑗 (log 𝑚𝑖𝑗 + 1)

The following are valid choices

of 𝐿 𝐼 for various input types:

Polynomial differences in

choices of 𝐿(𝐼), such as |𝑉| vs

𝑉 2 vs (E + 𝑉)40 don’t matter.

Such differences cannot

change whether a runtime 𝑇 𝐼

is in 𝑝𝑜𝑙𝑦 𝐿 𝐼 or not

Justifying sloppy analysis:

Exercise: 𝑇 𝐼 ∈ 𝑝𝑜𝑙𝑦 𝐿 𝐼 40 𝐢𝐟𝐟 𝑇 𝐼 ∈ 𝑝𝑜𝑙𝑦 𝐿 𝐼
30

So what’s a valid 𝑳(𝑰) for an input 𝐼 to

TSP-OptimalValue-Solver?

Input is a graph G with weight matrix w.

From the table of valid 𝐿 𝐼 choices,

we let 𝑳 𝑰 = 𝑬 + σ𝒆∈𝑬(𝐥𝐨𝐠 𝒘 𝒆 + 𝟏).

What’s the relationship between the

reduction’s runtime 𝑻(𝑰) and 𝑳(𝑰)?

𝑂(𝐸)

𝑂(1) 𝑂(1) for the oracle

iterations: O log ℎ𝑖 − 𝑙𝑜

= log σ𝑒∈𝐸 𝑤 𝑒

Loop body:

𝑂(1)

𝑇 𝐼 = 𝑂 𝐸 + log σ𝑒∈𝐸 𝑤 𝑒

and 𝑳 𝑰 = 𝑶 𝑬 + σ𝒆∈𝑬(𝐥𝐨𝐠 𝒘 𝒆 + 𝟏)

As we argued earlier,

𝑇 𝐼 ∈ 𝑝𝑜𝑙𝑦(𝑳 𝑰)

So this reduction has runtime that is

polynomial in the input size!

And thus 𝑇 𝐼 ∈ 𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼

31

