THIS TIME

CS 341: ALGORITHMS

Lecture 19: intractability I
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

Intractability (hardness of problems)
Decision problems
Complexity class P
Polynomial-time Turing reductions
Introductory reductions
Three flavours of the traveling salesman problem

Decision Problems

Decision Problem: Given a problem instance I, answer a certain question "yes" or "no"
Problem Instance: Input for the specified problem.
Problem Solution: Correct answer ("yes" or "no") for the specified problem instance. I is a yes-instance if the correct answer for the instance I is "yes". I is a no-instance if the correct answer for the instance I is "no".

Size of a problem instance: $\operatorname{Size}(I)$ is the number of bits required to specify (or encode) the instance I.

The Complexity Class \mathbf{P}

Algorithm Solving a Decision Problem: An algorithm A is said to solve a decision problem Π provided that A finds the correct answer ("yes" or "no") for every instance I of Π in finite time.

Polynomial-time Algorithm: An algorithm A for a decision problem II is said to be a polynomial-time algorithm provided that the complexity of A is $O\left(n^{k}\right)$, where k is a positive integer and $n=\operatorname{Size}(I)$.
The Complexity Class \mathbf{P} denotes the set of all decision problems that have polynomial-time algorithms solving them. We write $\Pi \in \mathbf{P}$ if the decision problem Π is in the complexity class \mathbf{P}.

TSP-Optimal Value \leq_{P}^{T} TSP-Dec

Polynomial-time Turing Reductions

Example: all-pairs-shortest-paths easily educes to single-source-shortest-path

Suppose Π_{1} and Π_{2} are problems (not necessarily decision problems). A hypothetical) algorithm B to solve Π_{2} is called an oracle for Π_{2} Suppose that A is an algorithm that solves Π_{1}, assuming the existence of an oracle B for Π_{2}. (B is used as a subroutine within the algorithm A.) Then we say that A is a Turing reduction from Π_{1} to Π_{2}, denoted Then we say
$\Pi_{1} \leq^{T} \Pi_{2}$.
A Turing reduction A is a polynomial-time Turing reduction if the unning time of A is polynomial, under the assumption that the oracle B has unit cost running time.
f there is a polynomial-time Turing reduction from Π_{1} to Π_{2}, we write
$\Pi_{1} \leq_{p}^{T} \Pi_{2}$.
informally: Existence of a polynomial-time Turing reduction means that if
we can solve Π_{2} in polynomial time, then we can solve Π_{1} in polynomial
time.

We will use polynomial-time Turing reductions to show that different versions of the TSP are polynomially equivalent: if one of them can be solved in polynomial time, then all of them can be solved in polynomial time. (However, it is believed that none of them can be solved in polynomial time.)

We already know
TSP-Dec \leq_{P}^{T} TSP-Optimal Value
TSP-Dec \leq_{P}^{T} TSP-Optimization
We show
TSP-Optimal Value \leq_{P}^{T} TSP-Dec
TSP-Optimization \leq_{P}^{T} TSP-Dec

TSP-Optimal Value \leq_{P}^{T} TSP-Dec Use binary search! How to define the

TSP-Optimal Value \leq_{P}^{T} TSP-Dec

COMPARING $T(I)$ AND Size (I)

$$
\begin{aligned}
T(I) & \in O\left(|E|+\log \sum_{e \in E} w(e)\right) \\
\operatorname{Size}(I) & =|V|+\sum_{e \in E}(\log w(e)+1+\log |V|+1) \\
& =|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E}(\log |V|+1) \\
& =|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E}(\log |V|)+|E|
\end{aligned}
$$

Want to show $T(I) \in O\left(\operatorname{Size}(I)^{c}\right)$ for some constant c (we show $c=1$) $O\left(|E|+\log \sum_{e \in E} w(e)\right) \subseteq^{?} O\left(|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E} \log |V|+|E|\right)$

$$
\Leftrightarrow O\left(\log \sum_{e \in E} w(e)\right) \subseteq \subseteq^{?} O\left(|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E} \log |V|\right)
$$

How to compare $\log \sum_{e \in E} w(e)$ and $\Sigma_{e \in E}(\log w(e)+1) ?$

COMPARING $T(I)$ AND Size(I)

How to compare $\log \sum_{e \in E} w(e)$ and $\Sigma_{e \in E}(\log w(e)+1)$?
$\boldsymbol{\Sigma}_{\boldsymbol{e} \in \boldsymbol{E}}(\log \boldsymbol{w}(\boldsymbol{e})+\mathbf{1})=\left(\log w\left(e_{1}\right)+1\right)+\left(\log w\left(e_{2}\right)+1\right)+\cdots+\left(\log \left(w\left(e_{|E|}\right)\right)+1\right)$
Can we combine these terms into one log using $\log x+\log y=\log x y$?
$\boldsymbol{\Sigma}_{\boldsymbol{e} \in \boldsymbol{E}}(\log w(\boldsymbol{e})+\mathbf{1})=\left(\log w\left(e_{1}\right)+\log 2\right)++\cdots+\left(\log \left(w\left(e_{|E|}\right)\right)+\log 2\right)$
$\boldsymbol{\Sigma}_{e \in E}(\log w(e)+\mathbf{1})=\log 2 w\left(e_{1}\right) 2 w\left(e_{2}\right) \ldots 2 w\left(e_{|E|}\right)=\log \prod_{e \in E} 2 w(e)$
So how to compare $\log \prod_{e \in E} 2 w(e)$ and $\log \sum_{e \in E} w(e)$?
All $w(e)$ are positive integers, so $\prod_{e \in E} \mathbf{2 w}(e) \geq \sum_{e \in E} w(e)$
Since log is increasing on $\mathbb{Z}^{+}, \log \prod_{e \in E} 2 w(e) \geq \log \sum_{e \in E} w(e)$

COMPARING $T(I)$ AND Size (I)

We in fact show $\boldsymbol{T}(\boldsymbol{I}) \in O($ Size $(I))$
$O\left(\log \sum_{e \in E} w(e)\right) \subseteq^{?} O\left(|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E} \log |V|\right)$
How to compare $\log \sum_{e \in E} w(e)$ and $\Sigma_{e \in E}(\log w(e)+1)$?

$$
\text { We just saw } \Sigma_{e \in E}(\log w(e)+1)=\log \prod_{e \in E} 2 w(e) \geq \log \sum_{e \in E} w(e)
$$

So $T(I) \in O\left(\right.$ Size $\left.(I)^{c}\right)$ where $c=1$

> So this reduction has runtime that is polynomial in the input size!

TSP-Optimal Value \leq_{P}^{T} TSP-Dec

```
Algorithm: TSP-OptimalValue-Solver \((G, w)\)
external TSP-Dec-Solver
\(h i \leftarrow \sum_{e \in E} w(e)\)
\(l o \leftarrow 0\)
if not TSP-Dec-Solver \((G, w, h i)\) then return ( \(\infty\) )
while \(h i>l o\)
    \(\left\{\right.\) mid \(\leftarrow\left\lfloor\frac{h i+l o}{2}\right\rfloor\)
    \(\left\{\begin{array}{l}\text { if } \operatorname{TSP}-\operatorname{Dec}-\operatorname{Solver}(G, w, \text { mid }) \quad \text { Exercise: show the variant of this reduction } \\ \hline\end{array}\right.\)
    then \(h i \leftarrow\) mid
        else \(l o \leftarrow\) mid +1
    here linear search is used instead of
    binary search is not poly(Size(I))
```

return (hi)

TSP-Optimal Value \leq_{P}^{T} TSP-Dec

So TSP-OptimalValue-Solver is polytime... But is it a correct reduction from TSP-Optimal Value to TSP-Dec?

Algorithm: TSP-OptimalValue-Solver (G, w)
external TSP-Dec-Solver
$h i \leftarrow \sum_{e \in E} w(c)$
not
f not TSP-Dec-Solver $(G, w, h i)$ then return (∞)
while $h i>l o$

do $\left\{\begin{array}{l}\text { if TSP-Dec-Solver (} C \\ \text { then } h i \leftarrow \text { mid }\end{array}\right.$
(else $l o \leftarrow \mathrm{mid}+1$
return (hi)

TSP-Optimal Value \leq_{P}^{T} TSP-Dec

Algorithm: TSP-OptimalValue-Solver (G, w)
external TSP-Dec-Solver
$h i \leftarrow \sum_{e \in E} w(e)$
if not TSP-Dec-Solver $(G, w, h i)$ then return (∞)
if not TSP-Dec-Solver $(G, w, h i)$ then return (∞ while $h i>l$

```
        { mid \leftarrow\leftarrow\lfloorhitlo
```

if TSP-Dec-Solver (G, w, mid then $h i \leftarrow$ mid
(els
return (hi)

TSP-Optimal Value \leq_{P}^{T} TSP-Dec
Algorithm: TSP-OptimalValue-Solver (G, w)
external TSP-Dec-Solver
$h i \leftarrow \sum_{e \in E} w(e)$
$o \leftarrow 0$
if not $\operatorname{TSP}-\operatorname{Dec}-\operatorname{Solver}(G, w, h i)$ then return (∞) while $h i>l o$
$\left\{\begin{array}{l}\text { mid } \leftarrow\left\lfloor\left\lfloor\frac{h i+i o}{2}\right.\right. \\ \text { if } \\ \hline\end{array}\right.$
. if TSP-Dec-Solver (G, w, mid
then $h i \leftarrow$ mid
else $l o \leftarrow$ mid +1
return (hi)

TSP-OptimalValue-Solver remains polytime even if the oracle runs in polytime instead of O (1)!

The key idea is: Consider polynomials $P_{R}(s)$ and $P_{o}(s)$ representing the runtime of a reduction and its oracle, respectively, on an input of size s. Worst possible runtime happens if every step in the reduction is a call to the oracle.
This is $P_{R}(s) P_{O}(s) \cdots$ multiplication of polynomials.
But multiplying polynomials of degrees d_{1}, d_{2} results in a
polynomial of degree $\leq d_{1}+d_{2}$. Example: $P_{1}(x)=5 x^{2}+10 x+10$ $P_{2}(x)=20 x^{3}+20$
$=\left(5 x^{2}+10 x+100\right.$
$P_{1}(x) P_{2}(x)=\left(5 x^{2}+10 x+100\right)\left(20 x^{3}+20\right)$ $P_{1}(x) P_{2}(x)=\left(5 x^{2}+10 x+100\right)\left(20 x^{3}+20\right)$
$=100 x^{5}+200 x^{4}+2000 x^{3}+100 x^{2}+200 x+2000$

PROVING REDUCTIONS CORRECT

In more complex reductions where we transform the input before calling the oracle, we will need a more complex proof: (A) If there is a (n optimal) solution in the input, our transformation will preserve that solution so the oracle can find it, and
(B) Our transformation doesn't introduce new solutions that are not present in the original input
(i.e., if we find a solution in the transformed input, there was a corresponding solution in the original input)

efficient vs inefficient input representations

	What's the size of the input I ?
Size (I) $=$ Size (G) + Size (w)	
But wait... G and w could be represented in many different ways. Could the choice of representation affect our complexity result?	
Representation 1 : What if the entire graph is simply represented as a weight matrix \boldsymbol{W} which contains a weight $w_{u v}$ for each $u, v \in V$ (o if an edge does not exist)	
Consider weight $w_{w v}$. It takes $\boldsymbol{\theta}\left(\log w_{w v}\right)$ bits $\left(\log \left(w_{w}\right)+1\right)$ to store this weight.	
$\text { We would then have: } \quad \operatorname{Size}\left(R_{1}\right)=\sum_{u \in V} \sum_{v \in V} \log \left(w_{u v}\right)+1$	
What would it mean to have a runtime T that is polynomial in $\operatorname{Size}\left(\boldsymbol{R}_{1}\right)$?	
We say \boldsymbol{T} is polynomial in $\operatorname{Size}\left(\boldsymbol{R}_{1}\right)\left(\right.$ denoted $\boldsymbol{T} \in \operatorname{poly}\left(\operatorname{Size}\left(\boldsymbol{R}_{1}\right)\right)$) iff:	
	${ }^{\exists}$ constant c c.t. for all I, we have $T \in O\left(\operatorname{Size}\left(R_{1}\right)^{c}\right)$

27

Representation 3: What if we were to represent the graph as a weight matrix W but

LOWER BOUNDING Size(I)

To prove that a reduction's runtime $\boldsymbol{T}(\boldsymbol{I})$ on input is polynomial in the size of I :

Define a lower bound $\boldsymbol{L}(\boldsymbol{I})$ on the size of I

For every possible representation I_{R} of $I_{\text {, }}$

$\boldsymbol{L}(\boldsymbol{I}) \leq \boldsymbol{\operatorname { S i z e }}\left(\boldsymbol{I}_{R}\right)$ should hold
Can be proved with information theory, or ad-hoc; outside the scope of the course In this course, we can be a bit sloppy, and just use the table of valid choices here to obtain a term for each variable in I
Then, if we can show $\quad T(I) \leq \operatorname{poly}(L(I))$,
we have actually shown $T(I) \leq \operatorname{poly}(\boldsymbol{\operatorname { s i z }}(\boldsymbol{I}))$

The following are valid choices of $L(I)$ for various input types:
Input 1 or
$\log (x)$
$\operatorname{Graph}(V, E) \quad 1$ or $\begin{array}{ll}\text { possibly with } & |V| \text { or }|E| \text { or } \\ \text { weights } W & |V|+|E| \text { or }\end{array}$ $\sum_{e \in E}(\log (w(e))+1)$
\square $\sum_{i}^{n}(\log (A[i])+1)$
$\times n$ matrix $m \quad n^{2}$ or $\sum_{i j}\left(\log \left(m_{i j}\right)+1\right)$ Justifying sloppy analysis: Polynomial differences in $|V|^{2} \mathrm{vs}(|\mathrm{E}|+|V|)^{40}$ don't matter Such differences cannot change whether a runtime $T(I)$ is in poly $(L(I)$) or not

TSP-Optimal Value \leq_{P}^{T} TSP-Dec	So what's a valid $L(I)$ for an input I to TSP-OptimalValue-Solver?
Algorithm: TSP-OptimalValue-Solver (G, w) external TSP-Dec-Solver \qquad	Input is a graph G with weight matrix w . From the table of valid $L(I)$ choices, we let $L(I)=\|E\|+\sum_{e \in E}(\log (w(e))+1)$.
$h i \leftarrow \sum_{e \in E}{ }^{w}(e) \quad O(\|E\|)$ $l o \leftarrow 0$ $O(1)$ $O(1)$ for the oracle	What's the relationship between the reduction's runtime $\boldsymbol{T}(I)$ and $\boldsymbol{L}(I)$?
if not TSP-Dec-Solver (G,w,hi) \#teen return (∞)	
while $h i>l o$ \# iterations: O(log $(\mathrm{hi}-\mathrm{lo})$)	$T(I)=O\left(\|E\|+\log \sum_{e \epsilon E} w(e)\right)$
$\left\{\begin{array}{l} \text { mid } \leftarrow\left\lfloor\frac{h i+l o}{2}\right\rfloor \\ =\log \sum_{e \in E} w(e) \end{array}\right.$	$\text { and } L(I)=O\left(\|E\|+\sum_{e \in E}(\log (w(e))+\mathbf{1})\right)$
$\text { do }\left\{\begin{array}{l} \text { then } h i \leftarrow \text { mid } \\ \text { else } l o \leftarrow \text { mid }+1 \end{array}\right] \begin{aligned} & \begin{array}{l} \text { Loop body } \\ O(1) \end{array} \end{aligned}$	As we argued earlier, $T(I) \in \operatorname{poly}(L(I))$
return ($h i$)	And thus $T(I) \in$ poly (Size($($)
This is a standard binary search technique. So	So this reduction has runtime that is polynomial in the input size!

