CS 341: ALGORITHMS

Lecture 2: divide \& conquer

Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

Notable algorithms: mergesort, quicksort, binary search,

DIVIDE-AND-CONQUER DESIGN STRATEGY

- divide: Given a problem instance I, construct one or more smaller problem instances I_{1}, \ldots, I_{a}
- These are called subproblems
- Usually, want subproblems to be small compared to the size of I (e.g., half the size)
- conquer: For $1 \leq j \leq a$, solve instance I_{j} recursively, obtaining solutions $S_{1}, \ldots, S a$
- combine: Given solutions $S_{1, \ldots, S a}$, Use an appropriate combining function to find the solution S to the problem instance \boldsymbol{I}
- i.e., $S=\operatorname{Combine}\left(S_{1}, \ldots, S a\right)$.

D\&CPROTO-ALGORITHM

```
1 DnC template(I)
    if BaseCase(I) return Result(I)
    subproblems = [I_1, I_2, ..., I_a]
    subsolutions = []
for j = 1..a
    subsolutions[j] = DnC template(I_j)
    return Combine(subsolutions)
```


CORRECTNESS

```
DnC template(I)
if BaseCase(I) return Result(I)
subproblems = [I_1, I_2, ..., I_a]
subsolutions = []
for j = 1..a
        subsolutions[j] = DnC_template(I_j)
return Combine(subsolutions)
```

- Prove base cases are correct
- Inductively assume subproblems are solved correctly
- Show they are correctly assembled into a solution

RUNTIME/SPACE OOMPLEXITY?

```
DnC template(I)
    if BaseCase(I) return Result(I)
    subproblems = [I_1, I_2, ..., I_a]
    subsolutions = []
    for j = 1..a
        subsolutions[j] = DnC_template(I_j)
        return Combine(subsolutions)
```

- Techniques covered in this lecture
- Model complexities using recurrence relations
- Solve with substitution, master theorem, etc.

WORKED EXAMPIE: DESIGN OF MERGESORT

Here, a problem instance consists of an array A of n integers, which we want to sort in increasing order. The size of the problem instance is n.
divide: Split A into two subarrays: A_{L} consists of the first $\left\lceil\frac{n}{2}\right\rceil$ elements in A and A_{R} consists of the last $\left\lfloor\frac{n}{2}\right\rfloor$ elements in A.
conquer: Run Mergesort on A_{L} and A_{R}.
combine: After A_{L} and A_{R} have been sorted, use a function Merge to merge A_{L} and A_{R} into a single sorted array. Recall that this can be done in time $\Theta(n)$ with a single pass through A_{L} and A_{R}. We simply keep track of the "current" element of A_{L} and A_{R}, always copying the smaller one into the sorted array.

DIVIDE

MERGE: CONQUER AND COMBINE

MERGE SIMULATION

L	R								
4	10	10	96	98			12	21	31
,	1	,	1	1		\uparrow	1,	\uparrow	\uparrow
0									
4	5	10	12	12	21	31	96		8

PSEUDOCODE FOR MERGESORT

```
Mergesort(A[1..n])
    if n == 1 then return A
    nL = ceil(n/2)
    aL = A[1..nL]
    aR = A[(nL+1)..n]
    sL = Mergesort(aL)
    sR = Mergesort(aR)
    return Merge(sL, sR)
```


PSEUDOCODE FOR MERGE

Merge (aL[1..nL], aR[1..nR])
aOut [1.. (nL+nR)] = empty array
$i L=1$; iR = 1 ; iOut = 1
while iL < nL and iR < nR if aL[iL] < aR[iR]
aOut[iOut] = aL[iL] iL++ ; iOut++ else

$$
\text { aOut }[i O u t]=a R[i R]
$$

iR++ ; iOut++
while iL < nL aOut[iOut] = aL[iL] iL++ ; iOut++ while iR < nR aOut[iOut] = aR[iR]
 iR++ ; iOut++
return aOut

ANALYSIS OF MERGESORT

```
1 Mergesort(A[1..n])
    if n == 1 then return A
    nL}=\operatorname{ceil}(\textrm{n}/2)\longrightarrow\mathbf{O(1)
    aL =A[1..nL] O(n) or O(1)
    aR = A[(nL+1)..n]
    sL = Mergesort(aL)
    sR = Mergesort(aR)
    return Merge(sL, sR)
```

```
    ???
```

 ???
 O(n)
    ```

So, MergeSort(A) takes O(n) time, plus the time for its two recursive calls! How can we analyze this recursive program structure?
\(\operatorname{Hulk}(n)=F a c e-\operatorname{Chin}+\operatorname{Hulk}(n-1)\)

\section*{RECURRENCE RELATIONS}

A crucial analysis tool for recursive algorithms


\section*{RECURRENCE RELATIONS}

Suppose \(a_{1}, a_{2}, \ldots\), is an infinite sequence of real numbers.
A recurrence relation is a formula that expresses a general term \(a_{n}\) in terms of one or more previous terms \(a_{1}, \ldots, a_{n-1}\).

A recurrence relation will also specify one or more initial values starting at \(a_{1}\).

Solving a recurrence relation means finding a formula for \(a_{n}\) that does not involve any previous terms \(a_{1}, \ldots, a_{n-1}\).

There are many methods of solving recurrence relations. Two important methods are guess-and-check and the recursion tree method.

\section*{MATHEMATICALLY EXPRESSING THE COMPLEXITY OF MERGESORT}

Let \(T(n)\) denote the time to run Mergesort on an array of length \(n\). divide takes time \(\Theta(1)\)
conquer takes time \(T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\)
combine takes time \(\Theta(n)\)
\(\boldsymbol{T}(\boldsymbol{n})\) is a function of \(\boldsymbol{T}(\ldots)\) so \(T\) is a recurrence relation

Recurrence relation:
How can we compute/solve for \(T(n)\) ?
\[
T(n)= \begin{cases}T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\Theta(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1 .\end{cases}
\]

> To make this easier, assume \(n=2^{k}\),
> which lets us ignore floors/ceilings

If pants wore pants, would it wear them
like this?
or like this?

RECURSION TREE METHOD
Evaluating recurrences with \(T(n / c)\) terms


\begin{tabular}{|c|c|c|c|}
\hline Level & \# of nodes & runtime per node & total runtime for level \\
\hline 0 & 1 & \(c n\) & \(c n\) \\
\hline 1 & 2 & \(c(n / 2)\) & \(2 c(n / 2)=c n\) \\
\hline 2 & 4 & \(c(n / 4)\) & \(4 c(n / 4)=c n\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline \(\log n\) & \(n\) & \(c(n / n)=c\) & \(n c(n / n)=c n\) \\
\hline
\end{tabular}

Total = cn * \#levels
Total \(=\) cn \(\log _{2}(n)\)
So, mergesort has runtime \(\boldsymbol{O}(n \log n)\)

\section*{RECURSION TREE METHOD FORMALIZED}

Sample recurrence for two recursive calls on problem size \(\boldsymbol{n} / \mathbf{2}\)

where \(c\) and \(d\) are constants.
We can solve this recurrence relation when \(n\) is a power of two, by constructing a recursion tree, as follows:

Step 1 Start with a one-node tree, say \(N\), having the value \(T(n)\).
Step 2 Grow two children of \(N\). These children, say \(N_{1}\) and \(N_{2}\), have the value \(T(n / 2)\), and the value of \(N\) is replaced by \(c n\).
Step 3 Repeat this process recursively, terminating when a node receives the value \(T(1)=d\).
Step 4 Sum the values on each level of the tree, and then compute the sum of all these sums; the result is \(T(n)\).

\section*{GUESS-AND-CHECK METHOD}
- Suppose we have the following recurrence
\[
T(0)=4 i_{i},{ }_{i} T(n)=T(n-1)+6 n-5
\]
- Guess the form of the solution any way you like

\section*{In Math, I Use the GUESS \(\$\) HoPE Method}
- My approach: the substitution method
- Recursively substitute the formula into itself
- Try to identify patterns to guess the final closed form
- Prove that the guess was correct

\section*{SUBSTITUTION METHOD: WORKED EXAMPLE}

Recurrence: \(T(0)=4=T(n)=T(n-1)+6 n=5\)
- \(T(n-1)=T((n-1)-1)+6(n-1)-5\). Compare: new terms?
- \(T(n)=(T(n-2)+6(n-1)-5)+6 n-5\)
\(+(6 n-5)\)
(substitute)
\(=T(n-2)+2(6 n-5)-6\). . (try to preserve structure)
\(\nabla_{i}=(T(n-3)+6(n-2)-5)+2(6 n-5)-6\), (substitute)
\[
=T(n-3)+3(6 n-5)-6(1+2) \text { new terms? }+(6 n-5)-2(6)
\]
- ... identify patterns and guess what happens in the limit
\[
=T(0)+n(6 n-5)-6(1+2+3+\cdots+(n-1))=\text { guess }(n)
\]
- guess \((n)=T(0)+n(6 n-5)=6(1+2+3+\cdots+(n-1))\)
- Use \(1+2+\cdots+(n-1)=\frac{n(n-1)}{2}\)
- guess \((n)=4+6 n^{2}-5 n-6 n(n-1) / 2\)
(simplify)
\[
=3 n^{2}-2 n+4
\]
- Are we done?
- The form of guess( \(n\) ) was an educated guess.
- To be sure, we must prove it correct using induction
- Recall: \(I(0)=4, T(n)=I(n-1)+6 n-5\), guess \((n)=3 n^{2}-2 n+4\)
- Want to prove: guess \((n)=I(n)\) for all \(n\)
- Base case: \(;,\) guess \((0)=3(0)^{2}-2(0)+4=T(0)\)

\section*{PROOF}
- Recall: \(T(0)=4, T(n)=T(n-1)+6 n-5\), guess \((n)=3 n^{2}-2 n+4\)
- Want to prove: guess \((n)=I(n)\) for all \(n\)
- Inductive case: suppose guess \((n)=T(n)\) for \(n \geq 0\),

\section*{PROOF} show guess \((n+1)=T(n+1)\).
- \(T(n+1)=T(n)+6(n+1)-5\)
(by definition)
\[
\begin{aligned}
& =\text { guess }(n)+6(n+1)-5 \\
& =3 n^{2}-2 n+4+6(n+1)-5 \\
& =3 n^{2}+4 n+5
\end{aligned}
\]
(by inductive hypothesis)
(substitute)
(simplify)
- guess \((n+1)=3(n+1)^{2}-2(n+1)+4\)
(by definition)
\[
=3 n^{2}+4 n+5=T(n+1)
\]

\section*{ANOTHER APPROACH}
- Suppose you look for a while at the previous recurrence:
- \(T(0)=4 \cdot T(n)=T(n-1)+6 n-5\)
- With some experience, you might just guess it's quadratic
- If you're right, it should have the form:
- \(a n^{2}+b n+c\) for some unknown constants \(a, b, c\)
- So, just carry the unknown constants into the proof!
- You can then determine what the constants must be for the proof to work out
\(-T(0)=4, T(n)=T(n-1)+6 n-5, g u e s s(n)=a n^{2}+b n+c\)
- Want to prove:, guess \((n)=T(n)\) for all \(n\)
- Base case: \(;\) guess \((0)=a(0)^{2}+b(0)+c=T(0)=4\)
this holds iff \(c=4,=, H_{i},(a, b\) are not constrained \()\)
- Inductive case: suppose guess \((\mathrm{n})=T(n)\) for \(n \geq 0\), show guess \((n+1)=T(n+1)\).
- \(T(n+1)=T(n)+6(n+1)-5\)
\[
\begin{aligned}
& =\operatorname{guess}(n)+6(n+1)-5 \\
& =a n^{2}+b n+4+6(n+1)-5 \\
& =a n^{2}+(b+6) n+5
\end{aligned}
\]
(by definition)
(by inductive hypothesis)
(substitute)
(simplify)

\section*{- Recall: guess \((n)=a n^{2}+b n+c\) where \(c=4\)}
- Inductive case: suppose guess \((n)=T(n)\) for \(n \geq 0\), show guess \((n+1)=T(n+1)\).
- \(T(n+1)=a n^{2}+(b+6) n+5\)
- guess \((n+1)=a(n+1)^{2}+b(n+1)+4\)
\(=a\left(n^{2}+2 n+1\right)+b n+b+4\). (simplify, and...)
\[
=a n^{2}+(2 a+b) n+(a+b+4) \text { (rearrange polynomial) }
\]
- We want this to be equal to \(T(n+1)\)
- \(a n^{2}+(2 a+b) n+(a+b+4)=a n^{2}+(b+6) n+5\)
- equivalent to \((2 a+b)=(b+6)\) and \((a+b+4)=5\)
- first implies \(\boldsymbol{a}=3\)

So, inductive
hypothesis is correct for \(a=3, b=-2, c=4\)
\[
\text { plug a into second to get } b=5-4-3=-2
\]

\section*{MASTER THEOREM FOR RECURRENCES}
- Provides a formula for solving many recurrence relations
- We start with a simplified version
- Consider recurrence: \(T(1)=d ; T(n)=a T\left(\frac{n}{b}\right)+\theta\left(n^{y}\right)\) where \(a \geq 1, b \geq 2\) and \(n\) is a power of \(b\) (i.e., \(n=b^{j}\) for integer \(j\) )
Example corresponding algorithm
2
3
4
if BaseCase (I) return Result(I)
5
6
7 \(\quad\) subsolutions \(=[]\).

\section*{Simplified Master Theorem}
\[
T(n) \in \begin{cases}\Theta\left(n^{x}\right) & \text { if } y<x \\ \Theta\left(n^{x} \log n\right) & \text { if } y=x \\ \Theta\left(n^{y}\right) & \text { if } y>x .\end{cases}
\]
where \(x=\log _{b} a\).

\section*{DERIVING THE SIMPIIFIED MASTER THEOREM}
\(T(1)=d / T(n)=a T\left(\frac{n}{b}\right)+\theta\left(n^{y}\right)\) where \(a \geq 1, b \geq 2\) and \(n=b^{j}\)

\section*{1 node}

Problem size \(n\)
a nodes problem size \(\frac{n}{b}\)
\(a^{2}\) nodes Problem size \(\frac{n}{b^{2}}\)
\(a^{j}\) nodes prob size \(\frac{n}{b^{j}}=1\)


Sum over all levels we get \(T(n)=d a^{j}+\sum_{i=0}^{j-1} c a^{i}\left(\frac{n}{b^{i}}\right)^{y}\)
Let's rearrange this into a geometric sequence and solve

\section*{REARRANGING}
\(-T(n)=d a^{j}+\sum_{i=0}^{j-1} c a^{i}\left(\frac{n}{b i}\right)^{y} \quad-\) Let \(x=\log _{b} a\)
\(-d a^{j}+\sum_{i=0}^{j-1} c a^{i} \frac{n^{y}}{\left(b^{i}\right)^{y}}\)
- x relates \# of subproblems to their size
\(-d a^{j}+\sum_{i=0}^{j-1} c a^{i} \frac{n^{y}}{\left(b^{y}\right)^{i}}\)
- Rearranging we have \(b^{x}=a\)
\(=d a^{j}+\sum_{i=0}^{j-1} c n^{y} \frac{a^{i}}{\left(b^{y}\right)^{i}}\)
\(-=d a^{j}+\sum_{i=0}^{j-1} c n^{y}\left(\frac{a}{b^{y}}\right)^{i}\)
\(-S O T(n)=d a^{j}+c n^{y} \sum_{i=0}^{j-1}\left(\frac{b^{x}}{b^{y}}\right)^{i}\)
\(-=d a^{j}+c n^{y} \sum_{i=0}^{j-1}\left(b^{x-y}\right)^{i}\)
- Also \(d a^{j}=d\left(b^{x}\right)^{j}=d\left(b^{j}\right)^{x}\)
- Since \(n=b^{j}\) this is just \(d n^{x}\)
- So \(T(n)=d n^{x}+c n^{y} \sum_{i=0}^{j-1}\left(b^{x-y}\right)^{i}\)
- and we can simplify: leł \(r=b^{x-y}\)

\section*{SOLVING THE GEOMETRIC SEQ}
- \(T(n)=d n^{x}+c n^{y} \sum_{i=0}^{j-1} r^{i}\) where \(r=b^{x-y}\)

- So different solutions depending on \(r\)


\section*{SOLVING THE GEOMETRIC SEQ}


- \(T(n)=d n^{x}+c n^{y} \sum_{i=0}^{j-1} r^{l} \in d n^{x}+c n^{y} 0\left(r^{\prime}\right)\)
- \(T(n) \in \Theta\left(n^{x}+n^{y} r^{j}\right)=\Theta\left(n^{x}+n^{y}\left(b^{x-y}\right)^{j}\right)=\Theta\left(n^{x}+n^{y}\left(b^{j}\right)^{x-y}\right)\)
- Recall \(b^{j}=n\), so \(T(n) \in \Theta\left(n^{x}+n^{y} n^{x-y}\right)=\Theta\left(n^{x}+n^{y+x-y}\right)\)
- So \(T(n) \in \mathbf{O}\left(n^{x}\right)\)

\section*{SOLVING THE GEOMETRIC SEQ}

- Case 2: \(r=b^{x-y}=1 \Leftrightarrow x-y=0 \Leftrightarrow x=y\)
- \(T(n)=d n^{x}+c n^{y} \sum_{i=0}^{j-1} r^{i} \in d n^{x}+c n^{y} \Theta(j)\)
- \(T(n) \in \Theta\left(n^{x}+j n^{y}\right)=\Theta\left(n^{x}+j n^{x}\right)\) since \(x=y\)
- Recall \(b^{j}=n\), so \(\log _{b} b^{j}=\log _{b} n\). This means \(\boldsymbol{j} \in \boldsymbol{O}(\boldsymbol{\operatorname { l o g }} \boldsymbol{n})\).
- So \(T(n)=\Theta\left(n^{x}+n^{x} \log n\right)=0\left(\boldsymbol{n}^{x} \log n\right)\)

\section*{SOLVING THE GEOMETRIC SEQ}

- Case 3: \(0<r=b^{x-y}<1, \Leftrightarrow, x-y<0, \Leftrightarrow_{i} x<y\)
- \(T(n)=d n^{x}+c n^{y} \sum_{i=0}^{j-1} r^{i} \in d n^{x}+c n^{y} \Theta(1)\)
- \(T(n) \in \Theta\left(n^{x}+n^{y}\right)\)
- Since \(x<y\), we simply have \(\boldsymbol{T}(\boldsymbol{n}) \in \boldsymbol{O}\left(\boldsymbol{n}^{y}\right)\)

\section*{MASTER THEOREM FOR RECURRENCES}
- Simplified version

Consider recurrence:
\(T(n)=a T\left(\frac{n}{b}\right)+\Theta\left(n^{\nu}\right)\) where \(a \geq 1, b \geq 2\) and \(n=b \frac{b}{}\) And let \(x=\log _{b} a\).
\[
T(n) \in \begin{cases}\Theta\left(n^{x}\right) & \text { if } y<x \\ \Theta\left(n^{x} \log n\right) & \text { if } y=x \\ \Theta\left(n^{y}\right) & \text { if } y>x\end{cases}
\]

\section*{SOME BONUS INTUITION FOR R CASES}

Recall \(T(n)=d n^{x}+c n^{y} \sum_{i=0}^{j-1} r^{i}\) where \(r=b^{x-y}\)
\[
x=\log _{b} a \quad 1, \log \text { subproblem size } \mid \text { subproblems } \mid
\]
\begin{tabular}{cccc} 
case & \(r\) & \(y, x\) & complexity of \(T(n)\) \\
\hline heavy leaves & \(r>1\) & \(y<x\) & \(T(n) \in \Theta\left(n^{x}\right)\) \\
balanced & \(r=1\) & \(y=x\) & \(T(n) \in \Theta\left(n^{x} \log n\right)\) \\
heavy top & \(r<1\) & \(y>x\) & \(T(n) \in \Theta\left(n^{y}\right)\)
\end{tabular}
heavy leaves means that the value of the recursion tree is dominated by the values of the leaf nodes.
balanced means that the values of the levels of the recursion tree are constant (except for the last level).
heavy top means that the value of the recursion tree is dominated by the value of the root node.

\section*{WORKED EXAMPLES}

\section*{Recall: simplified master theorem}

Suppose that \(a \geq 1\) and \(b>1\). Consider the recurrence \(T(n)=a T\left(\frac{n}{b}\right)+\Theta\left(n^{y}\right)\), where \(n\) is a power of \(b\).

Denote \(x=\log _{b} a\). Then
\[
T(n) \in \begin{cases}\Theta\left(n^{x}\right) & \text { if } y<x \\ \Theta\left(n^{x} \log n\right) & \text { if } y=x \\ \Theta\left(n^{y}\right) & \text { if } y>x\end{cases}
\]

Questions: \(a=? \quad b=? \quad y=? \quad x=?\) which \(\Theta\) function?
\[
\begin{gathered}
T(n)=2 T(n / 2)+c n . \\
\mathrm{a}=2 ; \quad \mathrm{b}=2 ; \quad \mathrm{y}=1 ; \quad \mathrm{x}=1 \\
\Theta\left(n^{x} \log n\right)=\Theta(n \log n) \\
T(n)=3 T(n / 2)+c n . \\
\mathrm{a}=3 ; \quad \mathrm{b}=2 ; \quad \mathrm{y}=1 ; \quad \mathrm{x}=\log _{2} 3 \\
\Theta\left(n^{x}\right)=\Theta\left(n^{\log _{2} 3}\right)
\end{gathered}, \begin{gathered}
T(n)=4 T(n / 2)+c n . \\
\mathrm{a}=4 ; \quad \mathrm{b}=2 ; \quad \mathrm{y}=1 ; \quad \mathrm{x}=\log _{2} 4 \\
\Theta\left(n^{x}\right)=\Theta\left(n^{2}\right) \\
T(n)=2 T(n / 2)+c n^{3 / 2} . \\
\mathrm{a}=2 ; \quad \mathrm{b}=2 ; \quad \mathrm{y}=3 / 2 ; \quad \mathrm{x}=1 \\
\Theta\left(n^{y}\right)=\Theta\left(n^{3 / 2}\right)
\end{gathered}
\]

\section*{MASTER THEOREM WHEN \(b^{j^{-1}}<n<b^{j}\)}
- \(n / b\) is not always an integer!
- floors/ceilings are hard
- not a geometric sequence
- Suppose we get a big-O bound for \(b^{j-1}<n<b^{j}\) by instead considering the larger problem size \(b^{j}\)
- So \(T(n) \leq T\left(b^{j}\right) \in \begin{cases}\theta\left(\left(b^{j}\right)^{x}\right) & \text { if } y<x \\ \theta\left(\left(b^{j}\right)^{x} \log b^{j}\right) & \text { if } y=x \\ \theta\left(\left(b^{j}\right)^{y}\right) & \text { if } y>x\end{cases}\)

MASTER THEOREM WHEN \(b^{j-1}<n<b^{j}\)
,
- Observation: \(b^{j}<b n\) since \(n\) is between \(b^{j-1}\) and \(b^{j}\)
- So \(T(n) \leq T\left(b^{j}\right) \in \begin{cases}\Theta\left((b n)^{x}\right) & \text { if } y<x \\ \theta\left((b n)^{x} \log b n\right) & \text { if } y=x \\ \Theta\left((b n)^{y}\right) & \text { if } y>x\end{cases}\)

\section*{MASTER THEOREM WHEN \(b^{j-1}<n<b^{j}\)}


Bonus slide, for you at home
- Case \(1(y<x):(b n)^{x}=b^{x} n^{x}\) and \(b^{x}\) is a constant
- So \(T(n) \in O\left(n^{x}\right)\)
- Case \(2(y=x):(b n)^{x} \log b n=b^{x} n^{x}(\log b+\log n)\)
- \(T(b n) \in \Theta\left(b^{x} n^{x} \log b+b^{x} n^{x} \log n\right)=\Theta\left(n^{x}+n^{x} \log n\right)\)
- So \(T(n) \in O\left(n^{x} \log n\right)\)
- Case \(3(y>x): \quad(b n)^{y}=b^{y} n^{y}\)
- So \(T(n) \in O\left(n^{y}\right)\)

\section*{GENERAL MASTER THEOREM}

Suppose that \(a \geq 1\) and \(b>1\). Consider the recurrence
\[
T(n)=a T\left(\frac{n}{b}\right)+f(n)
\]
where \(n\) is a power of \(b\). Denote \(x=\log _{b} a\). Then
Arbitrary
function of \(\boldsymbol{n}\)
(not just \(c n^{y}\) )
\[
T(n) \in\left\{\begin{array}{ll}
\Theta\left(n^{x}\right) & \text { if } f(n) \in O\left(n^{x-\epsilon}\right) \text { for some } \epsilon>0 \text { 。 } \\
\Theta\left(n^{x} \log n\right) & \text { if } f(n) \in \Theta\left(n^{x}\right)
\end{array} \quad \begin{array}{l}
\text { if } f(n) / n^{x+\epsilon} \text { is an increasing function of } n
\end{array}\right.
\]

\section*{REVISITING THE RECURSION TREE METHOD}
- Some recurrences with complex \(f(n)\) functions (such as \(f(n)=\) \(\log n\) ) can still be solved Wy hand"
- Example: Let \(n=2\); \(T(1)=1, T(n)=2 T\left(\frac{n}{2}\right)+n \log n\)
\begin{tabular}{|c|c|c|c|c|}
\hline level & \# nodes & value at each node & value of the level & \\
\hline \(j\) & 1 & \(j 2^{j}\) & \(j 2^{j}\) & \\
\hline \(j-1\) & 2 & \((j-1) 2^{j-1}\) & \((j-1) 2^{j}\) & Note \\
\hline \(j-2\) & \(2^{2}\) & \((j-2) 2^{j-2}\) & \((j-2) 2^{j}\) & \[
\begin{gathered}
\log _{2} n=j \\
\text { So }
\end{gathered}
\] \\
\hline ! & ! & & : & \(\mathrm{j}^{j}=n \log _{2} n\) \\
\hline 1 & \(2^{j-1}\) & \(2^{1}\) & \(2^{j}\) & \\
\hline 0 & \(2^{j}\) & 1 & \(2^{j}\) & \()^{-1}=\frac{1}{2} \log\) \\
\hline
\end{tabular}

\section*{REVISITING THE RECURSION TREE METHOD}
- Recall: \(n=2-T(1)=1, T(n)=2 T\left(\frac{n}{2}\right)+n \log n\)

Summing the values at all levels of the recursion tree, we have
\[
T(n)=2^{j}\left(1+\sum_{i=1}^{j} i\right)=2^{j}\left(1+\frac{j(j+1)}{2}\right) .
\]

Since \(n=2^{j}\), we have \(j=\log _{2} n\) and \(T(n) \in \Theta\left(n(\log n)^{2}\right)\).
value of the level \(j 2^{j}\)
\((j-1) 2^{j}\)
\((j-2) 2^{j}\)```

