CS 341: ALGORITHMS

Lecture 2: divide & conquer |

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

x lIIIIEIIlS'I'lHII RECURSION

HI'I'IIIWI' UNDERSTANDING RECURSION

DIV

DE AN

D CONQUER

Notable algorithms: mergesort, quicksort, binary search, ...

DIVIDE-AND-CONQUER DESIGN STRATEGY

- divide: Given a problem instance I,
consfruct one or more smaller problem instances I, ..., I,

 These are called subproblems

« Usudlly, want subproblems o be small
compared to the size of I (e.g., half the size)

» conquer:For1 < j < a, solve instance I; recursively,
obtaining solutions §,, ..., Sa

« combine: Given solutions §,, ..., Sa,
use an appropriate combining function to find
the solution § to the problem instance I

e .e., § = Combine(s,, ..., Sa).

D&C PROTO-ALGORITHM

1 DnC template (I)

2 1f BaseCase (l) return Result (I)

3 subproblems = [I 1, I 2, ..., 1 a]

4 subsolutions = []

5 for 3 = 1..a

6 | subsolutions|[]j]| = DnC template (I j)
.

ieturn Combine (subsolutions)

CORRECTNESS

1 DnC template (1)

2 1f BaseCase (l) return Result (I)

3 subproblems = [I 1, I 2, ..., I aj

il subsolutions = ||

5 for 7 = 1..a

6 | subsolutions|[]j] = DnC template (Il j)
.

feturn Comblne (subsolutions)

* Prove base cases are correct
» Inductively assume subproblems are solved correctly
« Show they are correctly assembled into a solution

RUNTIME/SPACE COMPLEXITY ¢

1 DnC template (1)

2 1f BaseCase (l) return Result (I)

3 subproblems = [I 1, I 2, ..., I aj

il subsolutions = ||

5 for 7 = 1..a

6 | subsolutions|[]j] = DnC template (Il j)
.

feturn Combine (subsolutions)

« Technigques covered In this lecture

 Model complexities using recurrence relations

e Solve with substitution, master theorem, etc.

WORKED EXAMPLE: DESIGN OF MERGESORT

Here, a problem instance consists of an array A of n integers, which we
want to sort in increasing order. The size of the problem instance is n.

Split A into two subarrays: Ay, consists of the first [5] elements
in A and AR consists of the last |5 | elements in A.

Run on Ay, and Ap.

After A;, and Agr have been sorted, use a function to
merge A, and Ag into a single sorted array. Recall that this can be done
in time ©(n) with a single pass through Ay, and Ar. We simply keep
track of the “current” element of A;, and Ag, always copying the smaller
one into the sorted array.

DIVIDE

106 7 13 8 14 1 19 11 4 10 98 16 31 5 21 12

13 8 14 1 19 11 @24 10 98 16 31 5 21 12

4 10 98 16 @31 5

MERGE: CONQUER AND COMBINE

1 4 5 7 8 10 11 12 13 14 19 21 31 96 98 105

..

17 8 11 13 14 19 105 4 5 10 12 21 31 96 98

.

7 8 13 105 @1 11 14 19 @4 10 96 98
7\

MERGE SIMULATION

L R
4 1096 98 |5 12|21 31
T

O
41510112 213196 98

PSEUDOCODE FOR MERGESORT

1
2
3
4
5
6
’
8

Mergesort (A[l..n])

1f n == 1 then return A
nL = ceil(n/2)

alL, = A[l..nL]

aR = A[(nL+1)..n]

sLL = Mergesort (al)

sR = Mergesort (aR)

return Merge (sL, sR)

11

PSEUDOCODE FOR MERGE |

aOut [10ut] = alL[iL]

1L++ ; 10ut++ . :
else Right array is out of elements

aOut[10ut] = aR[1R] aL aR

PRE;douEt 41109698 5 112/21/31

while 1L < nL

1 Merge(aL[l..nL], aR[1l..nR]) aL aR

2 aOut[l.. (nL+nR)] = empty array nmmm Bmmm
3 iL =1 ; 1R =1 ; 10ut = 1

4 iL < nL iR < nR

5 while iL < nL and iR < nR alut

6 e el Al L

7

8

9

B
=

[
Mo

13 aOut[10ut] = aL[iL] iL < nL iR = nR
14 iL++ ; iout++ aOut

S el sz

16 aOut[10ut] = aR[1iR]

=
~]

return aout Left array is out of elements

[
Q0

12

@ J o U = Ww N

ANALYSIS OF MERGESORT

Mergesort (A[l..n])
1f n == 1 then return A

nL = ceil (n/2) iSO
al. = A[l..hL]w
aR = A[(nL+1)..n]

sLL = Mergesort (al)
sR = Mergesort (aR)

return Merge (sL, sR) <JEKJOMN

So, MergeSort(A) takes O(n)

time, plus the time for its
two recursive calls!

How can we analyze this
recursive program structure?

13

Hulk(n) = Face - Chin + Hulk(n—1)

RECURRENCE RELATIONS

A crucial analysis tool for recursive algorithms

14

RECURRENCE RELATIONS

Suppose ai,as, ..., is an infinite sequence of real numbers.

A Is a formula that expresses a general term a,, in
terms of one or more previous terms ai,...,Q,_1.

A recurrence relation will also specify one or more starting at
ai.

a recurrence relation means finding a formula for a,, that does
involve any previous terms aq,...,a,—1.

There are many methods of solving recurrence relations. Two important
methods are guess-and-check and the recursion tree method.

15

MATHEMATICALLY EXPRESSING
THE COMPLEXITY OF MERGESORT

Let T'(n) denote the time to run on an array of length n.

takes time 0(1)

takes time T (f%}) + T (L%J) T(n) is a function of T(...) so
_ T is a recurrence relation
takes time O(n)
_ How can we compute/solve for T(n)<e
Recurrence relation:
To make this easier,

T(n) — TU%U"‘T(L%J)‘I‘@(R) it n > 1 assume n = 2%,
(?’1) — @(1) £ —1 which lets us ignore

floors/ceilings

16

If pants wore pants, would it wear them
like this? or like this?

Recursion tree

BUSARAARRARAARIARIARIRANIARNL

RECURSION TREE METHOD

Evaluating recurrences with T(n/c) terms

T(n/8) ||| Hll.i1\ [l| T(n/8)

17

RECURSION s i
TREE METHOD msort(n//\nsort n/2) — —s 2(cn/2) =Cn

o /\

msort(n/4) msort(n/4) msort(n/4) msort(n/4) —> 4(cn/4) =

/\ /\

msort(1 msort (1 msort(1 msort(1 n(c) = Ch

Total = cn * #levels

il Total = cnlog,(n)
2c(n/2) =cn

4c(n/4) = cn

of nodes total runtime for level

runtime per node

So, mergesort has
runtime O(nlogn)

nc(n/n) = cn Can also compute

using a table...

18

RECURSION TREE METHOD FORMALIZED

Sample recurrence for

two recursive calls on 2T (3) +en if n>1is a power of 2
problem size n/2 I(n) = e 1

where ¢ and d are constants.

We can solve this recurrence relation when n is a power of two, by
constructing a recursion tree, as follows:

| step 1 SERTLE , say N, having the value T'(n).
MGrow of N. These children, say N; and Ns,

have the value T'(n/2), and the value of N is replaced by cn.

MRepeat this process recursively, terminating when a node
receives the value T'(1) = d.

m5um the values on each level of the tree, and then compute
the ; the result is T'(n).

19

GUESS-AND-CHECK METHOD In Mafh'

» Suppose we have the following recurrence l USQ "'he

T(0) = 4; T(n)=T(n—1)+6n—-5 GUESS ¢ HoPE
« Guess the form of the solufion any way you like MQ“’I\Od
« My approach: the substitution method

« Recursively substitute the formula into itself
* Try tfo idenftify patterns to guess the final closed form

* Prove that the guess was correct

20

SUBSTITUTION METHOD WORKED EXAI\/\:’LE

i e —————— — —

Recurrence: T(0)=4; T(n) = T(n —1)+6n-5

Compare: new terms¢e

¢+ Tn-D=T(n=1) - 1) +6(n-1)—5 F6ns) 6

e TM)=(Tn-2)+6(n—=-1)—-5)+6Nn-5 (substitute)

=T(n—2)+2(6n—5)—6 ry to preserve structure)

=(Tn-3)+6(n—-2)—5)+2(6n—5)—=6 (substitute)

=T(n—3)+3(6n—5) —6(1+ 2) new termse +(6n-5) -2(6)

e ... Idenftify patterns and guess what happens in the limit
=T0)+n(6n-5—-6(1+2+3+--+(n—1)) = guess(n)

21

e guess(n) =T(0)+n(6n—5) — 6(|1 + 243+ -+ (n— 1).)

n(n-1)
2

e S B S e
e guess(n) =4+ 6n°—5n—6n(n—1)/2 (simplify)
. =3n%?—-2n+4

» Are we done¢

» The form of guess(n) was an educated guess.
» To be sure, we must prove It correct using induction

22

» Recall: T(0) =4;T(n) =T(n—1) + 6n—5; guess(n) = 3n* —2n + 4

. Want to prove: guess(n) = T(n) for all n m

« Base case: guess(0) = 3(0)* =2(0) +4 =T(0)

23

Recal: T(0) =4;T(n)=T(n—1) + 6n—5; guess(n) =3n*—-2n+4

Want to prove: guess(n) = T(n) for all n

Inductive case: suppose guess(n) =T(n) forn = 0,
show guess(n+1)=T(n + 1).

Tm+1) =Tn)+6(n+1)—-5
= guess(n) + 6(n+ 1) — 5
=3n’-2n+4+6(n+1)-5
=3n°+4n+5
guessm+1) =3(n+1)?-2(n+1)+4
=3n°+4n+5=Tn+1)

(by definition)

(by inductive hypothesis)
(substitute)

(simplify)

(by definition)

(simplify)

24

ANOTHER APPROACH

« Suppose you look for a while at the previous recurrence:
e T(0)=4;T(n)=T(n—1)+ 6Nn—-5
« With some experience, you might just guess it's quadratic
» |[f you're right, it should have the form:
» an® + bn + ¢ for some unknown constants a, b, ¢
» SO, Just carry the unknown constants into the proof!

« YOuU can then determine what the constants must be
for the proof to work out

25

T(0)=4;T(n) =T(n—1) + 6n —5; guess(n) = an* + bn + c
Want to prove: guess(n) = T(n) for all n

Base case:

guess(0) = a(0)? + b(0) + c = T(0) = 4
this holds iff ¢ = 4 (a, b are not constrained)

Inductive case: suppose guess(n) =T(n) forn = 0,

Tm+1) =

show guess(n+1)=T(n+ 1).

Tm)+6(n+1)—=>5 (by definition)
guess(n) + 6(n+1)—5 (by inductive hypothesis)
an* +bn+4+6(n+1)—-5 (substitute)

an‘+ (b +6)n+5 (simplify)

26

Recall: guess(n) = an®* + bn + ¢ where ¢ = 4

Inductive case: suppose guess(n) =T(n) forn = 0,
show guess(n+1)=T(n + 1).

Tn+1) =an*+ (b +6)n+5

(continue previous slide)

guessm+1) =an+1)?*+b(n+1)+4 (by definition and ¢ = 4)
=a(n*+2n+1)+bn+b+4 (simplify,and...)
=an*+ (2a+b)n+ (a+ b +4) (rearrange polynomial)

We want this to be equal fo T(n + 1)

So, inductive

can*+ 2a+b)n+(a+b+4) =an®+ (b+ 6)n+ 5 [NAYLUAECINLIES

» equivalentto (2a+b)=(b+6)and(a+b+4) =5

e firstimpliesa = 3

fora=3,b=-2,c=4

plug ainto secondtogetb =5—4—-3 = -2

27

=

MASTER THEOREM FOR RECURRENCES

* Provides a formula for solving many recurrence relations

« We start with a simplified version

« Considerrecurrence: T(1)=d ; T(n) =aT (%) + O(n?)
where a > 1,b > 2 and n is a power of b (i.e., n = b’ for integer j)

Example corresponding algorithm Simplified Master Theorem

1f BaseCase (l) return Result (1) :
O(n®) ify<zx

subsolutions = |[] s
for j - T(n) € { O(n*logn) ify==

| let s = subproblem of size n/b :
subsolutions[j] = DnC algo(s) @('n,y) Ify Sa
ESolution = combine in n”y time where x = logb a.

o W 0 d o0 b W N

return solution

28

DERIVING THE SIMPLIFIED MASTER THEOREM

A0 Bt B s (%) +0mY)wherea=>1b=>2aondn="»1

1 node

cnY oo
Problem size n / \ Lvl O = 1cn?
a hodes (n)y (n)y (n)y (n)y :
Cl|l— OG5 Cl|— e e Kl s

problem size > A// b]b \b b\{\A Lvi 1= ac (%)

a’? nodes n\vy n\Y n\Yy n\v C(£>y C<£>y Lyl 9 azc(%)y
Problem size % = (b_z> e (b_z) 5 (b_z BRI ﬁ) b2 e e b2 b

: y

Lvli = a'c (%)

a’ nodes .
d d d d d d d Lvlj = a’d

. n
prob size o 1

. SBRR y
Sum over dll levels we get T(n) = da’ + Z{zg ca (ﬁ)

bl

Let’s rearrange fhis intfo a geometric sequence ang solve

REARRANGING

y % 2%
« T(n) = da + T/ cal (2) Letx = log, @
e x relates # of subproblems to their size

3 j i
i S Zz o €@ (b)y « Rearranging we have b* = a
2 52 Sy b*
= dal + R Leal By e« SOT(n) = da’ + cn? 2 (by)
el e y & e = da’ + cn¥ Z]_ (b*=Y)!
=da’ + X, len L 0

« Also da/ = d(b*)/ = d(b))”

" ' i
— da’l + J71 oy .
a’ + ij—q Cn (by) « Since n = b’ this is just dn*

A y a)’ : — dn* y sl px—yyi
= da) +cn? 3155 (5) So T(n) = dn* + cn? YJ_3 (b*7)

- and we can simplify: let r = b*™Y

30

SOLVING THE GEOMEIRIC SEQ
e A S e +cn3’21_ rt where r = b*77

frj

S @(rf)

« Geo. Seq. formula: Z{;& art =< ja € 0(j)

LA

S
» So different solutions depending on r
c Casel: r=bpr""7r>1 & o x—y>0
c Case2: r=bpr"7r=1 & x—y=0
e Cased: 0<r=>pr7r<1 e x-y<o0

ifr>1
=1
335 1 30 et s |
e
R et
S

31

SOLVING THE GEOMEIRIC SEQ

oot :
ar] 1€®(r1) 8 o5 st g |
fr=sk
» Formula: Y/-tart =4 ja € 0()) st
klﬂe@ﬂ) ifo<r<1
e Casel: r=bp*"7r>1 & x—y>0 o, e

T(n) = dn* +cn3’Z] Or € dn* +cn3’®(r1)

T(n) € @(nx + nyrj) = @(Tlx L ny(bx_y)j) FE (nx T ny(bj)x_y)

Recall b/ = n,so T(n) € O(n* + n¥Yn*Y) = O(n* + nY*t*7)
SoT(n) € O(n¥)

32

SOLVING THE GEOMEIRIC SEQ

i T
| _ B
. Formulo:Z{;gar‘ =< ja € 0(j) sk
Klﬂe@u) if0<r<1
e Case2: r=b*7Y=1 S x—y=0 gy

T(n) =dn* + cn? Z’ Or € dn* + cn?0(j)
T(n) € O(n* + jnY) = 0(n* + jn*) sincex =y

» Recall b/ = n, solog, b/ = log, n. This means j € O(logn).
SoT(n) =0(n*+n*logn) = O(n*logn)

33

SOLVING THE GEOMEIRIC SEQ

: aZeo(r) ifr>1
. FormuIO:Z{:é ar =< ja € 0(j) sk
Klﬂe@u) if0<r<1

Cased: 0<r=»hr"’r)<1 & x—-y<0 &S x<y

T(n) =dn* 4+ cn” Z’ Or € dn* + cn?0(1)
T(n) € O(n* +n?Y)
 Since x < y, we simply have T(n) € O(n?)

34

MASTER THEOREM FOR RECURRENCES

« Simplified version

Consider recurrence:
T(n) = aT (%) +0nY)wherea>1b=>2andn =1
And let x = log, a.

O(n®) ify <z
T(n) € { O(n*logn) ify==

O(nY) ify > x.

35

SOME BONUS INTUITION FOR R CASES

Recall: T(n) = dn* + cn” 2{;31”" where r = b*™Y
x =logpa 1.€.108subproblem size |SUbproblems

case r y,x complexity of T'(n)
heavy leaves r>1 y<uz T(n) € ©(n*)

balanced r=1 y=2 T(n)eO®n*logn)
heavy top r<1 y>ux T(n) € ©(nY)

means that the value of the recursion tree is dominated by
the values of the leaf nodes.

means that the values of the levels of the recursion tree are
constant (except for the last level).

means that the value of the recursion tree is dominated by the

value of the root node.
36

WORKED EXAMPLES

T(n) =2T(n/2) + cn.
a=2; b=2; y=1; x=]
O(n*logn) = O(nlogn)
T(n) =3T(n/2) + cn.
a=3; b=2; y=1; x=log,3
0(n¥) = 0(n!o82 3)

Recall: simplified master theorem

Suppose that a > 1 and b > 1. Consider the recurrence
n

T(n) = aT (b

) + ©(nY), where n is a power of b.

Denote x = log, a. Then

O(n®) ify <z T(n) = 4T (n/2) + cn.
XY\ — 2
O(n?) ify > x. O(n*)= 0(n%)

T(n) = 2T (n/2) + cn®/2.
a=2; b=2; y=3/2; x=]
O(n¥) = 0(n3/?)

Questions: 0=¢2 b=2 y=2¢ x=¢
which 0 functione

37

MASTER THEOREM WHEN b/~ < n < b/

Bonus slide,

* n/b is not always an integer! for you at home
 floors/ceilings are hard
e NOt a geometric sequence

» Suppose we get a big-O bound for b/~ < n < b/
by instead considering the larger problem size b’

o ((v))") ify < x
+ SoT(n) < T(b)) €{ 0((b/)" logh’) ify =x
© ((bj)y) ify > x

38

MASTER THEOREM

WHEN b/71 <n < b/

: B lide,
f® ((b])x) ify <x for ;/)jS;r Ihc?me

+ T(n) < T(b') €{ 0((b/)" logh!) ify =x

0 ((bj)y) ify > x

« Observation: b/ < bn since n is between b’~1 and b/

» SOT(n) <T(b’) €+

rG)((bn)") ify < x
@((bn)x log bn) A

k@)((bn)y) ify > x

39

MASTER THEOREM WHEN b/~ < n < b/

o(Gmy) ity < e
» T(n) €4 0((bn)*loghn) ify = x
LO((bn)?) ify > x

Casel (y<x): (bn)*=>b*n* and b* is a constant
« SOT(n) € 0(n*)

Case2 (y=x): (bn)*loghn =b*n*(logh + logn)
 T(bn) € ©(b*n*logb + b*n*logn) = O(n* + n*logn)
« SOT(n) € 0O(n*logn)

Case 3 (y>x): (bn)Y = b¥n? Can tackle Q

similarly to get 6

« SOT(n) € 0(nY)

40

Example recurrence:

GENERAL MASTER THEOREM

Suppose that a > 1 and b > 1. Consider the recurrence

n Arbitrary
ro - ar ()
ke b + F(n), function of n

not just cnY
where n is a power of b. Denote x = log, a. Then (not])

O(n®*) if f(n) € O(n*¢) for some ¢ > 0
O(n*logn) if f(n) € O(n")

T(n) € , . . : ;
O(f(n)) if f(n)/n*"€ is an increasing function of n

for some € > 0. Must reason about

relationship between

f(n) and n*

REVISITING THE RECURSION TREE METHOD

« Some recurrences with complex f(n) functions (such as f(n) =
log n) can still be solved “by hand™

-B@wp@wehn=ﬂ;T@)=1;7ﬁo=2TG)+nwgn

level # nodes value at each node value of the level

j 1 527
j—1 2 (j—1)27-1
ji—2 2 (5 —2)2~*

1 i 9!

0 2 1

42

REVISITING THE RECURSION TREE METHOD

e Recalbn=2); T(1)=1; T()=2T (g) +nlogn value of the level

.2]
Summing the values at all levels of the recursion tree, we have (j i)27
| — 2)27
jg+1) J
1 = 27 : ;
-2 (1) 2 (2 »

Since n = 27, we have j = log,n and T'(n) € ©(n(logn)?). 2!

43

