

DIVIDE-AND-CONQUER DESIGN STRATEGY

- divide: Given a problem instance I. construct one or more smaller problem instances I₁,..., I_a

 - These are called subproblems
 - Usually, want subproblems to be small compared to the size of *I* (e.g., half the size)
- conquer: For $1 \leq j \leq a$, solve instance I_j recursively, obtaining solutions S_1, \dots, Sa
- combine: Given solutions S₁,...,Sa, use an appropriate combining function to find the solution S to the problem instance I
 - i.e., $S = \text{Combine}(S_1, \dots, Sa)$.

D&C PROTO-ALGORITHM

CORRECTNESS

	DnC_template(I)
	subproblems = $[I_1, I_2, \ldots, I_a]$
	<pre>subsolutions[j] = DnC_template</pre>
	return Combine (subsolutions)

- Prove base cases are correct
- Inductively assume subproblems are solved correctly
- Show they are correctly assembled into a solution

RUNTIME/SPACE COMPLEXITY? ______if BaseCase(I) return Result(I) subproblems = [I_1, I_2, ..., I_a] subsolutions = []

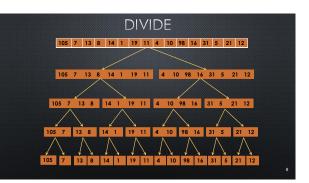
- Techniques covered in this lecture
 - Model complexities using recurrence relations
 - Solve with substitution, master theorem, etc.

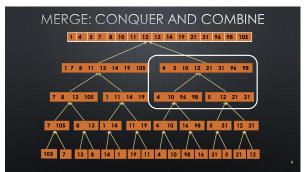
WORKED EXAMPLE: DESIGN OF MERGESORT

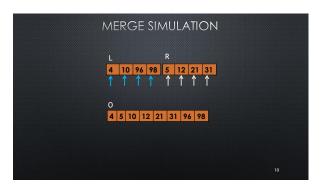
Here, a problem instance consists of an array A of n integers, which we want to sort in increasing order. The size of the problem instance is $n_{\rm c}$

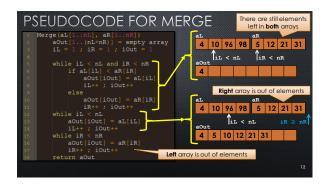
divide: Split A into two subarrays: A_L consists of the first $\lceil \frac{n}{2} \rceil$ elements in A and A_R consists of the last $\lfloor \frac{n}{2} \rfloor$ elements in A.

nquer: Run Mergesort on A_L and A_R . **mbine:** After A_L and A_R have been sorted, use a function Merge to continue. After A_L and A_R have been softed, use a function may be more A_L and A_R into a single softed array. Recall that this can be done in time $\Theta(n)$ with a single pass through A_L and A_R . We simply keep track of the "current" element of A_L and A_R , always copying the smaller one into the sorted array.

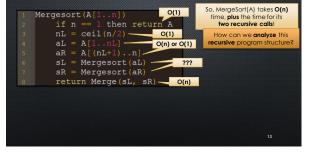








ANALYSIS OF MERGESORT



RECURRENCE RELATIONS

Suppose a_1, a_2, \ldots , is an infinite sequence of real numbers.

A recurrence relation is a formula that expresses a general term a_n in

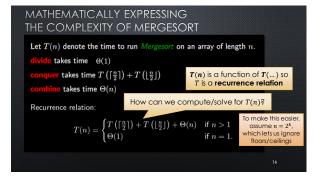
terms of one or more previous terms a_1, \ldots, a_{n-1} .

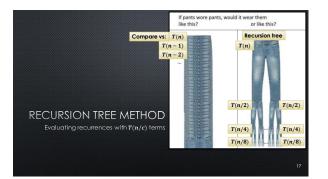
A recurrence relation will also specify one or more initial values starting at a_1 .

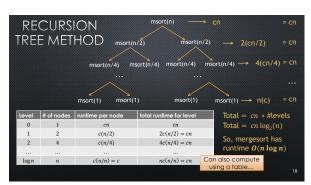
Solving a recurrence relation means finding a formula for a_n that does not involve any previous terms a_1, \ldots, a_{n-1} .

There are many methods of solving recurrence relations. Two important methods are guess-and-check and the recursion tree method.

15







In Math,

I use the

GUESS & HOPE

Method

20

RECURSION TREE METHOD FORMALIZED

 $\begin{aligned} & \text{Somple recurrence for} \\ & \text{for invo recursive calls on} \\ & \text{problem size } n/2 \end{aligned} \qquad T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \text{ is a power of } 2 \\ d & \text{if } n = 1, \end{cases} \\ & \text{where } c \text{ and } d \text{ are constants.} \end{aligned} \\ & \text{We can solve this recurrence relation when } n \text{ is a power of two, by constructing a recursion tree, as follows:} \end{aligned}$

the s

s; the result is T(n).

GUESS-AND-CHECK METHOD

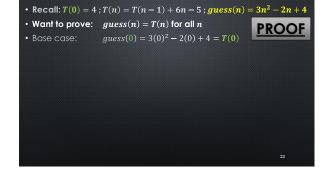
- Suppose we have the following recurrence $T(0) = 4; \qquad T(n) = T(n-1) + 6n 5$
- Guess the form of the solution any way you like
- My approach: the substitution method
 - Recursively substitute the formula into itself
 - Try to identify patterns to guess the final closed form
- Prove that the guess was correct

SUBSTITUTION METHOD: WORKED EXAMPLE

- Pecurrence: $T(0) = 4 \cdot T(n) T(n-1) + 6n 5$
- T(n-1) = T((n-1)-1) + 6(n-1) 5+ (6n-5) - 6
- T(n) = (T(n-2) + 6(n-1) 5) + 6n 5 (substitute)
- T(n-2) + 2(6n-5) 6 (try to preserve structure)
- = (T(n-3) + 6(n-2) 5) + 2(6n-5) 6 (substitute)
- = T(n-3) + 3(6n-5) 6(1+2) new terms? +(6n-5) -2(6)
- ... identify patterns and guess what happens in the limit
- $= T(0) + n(6n 5) 6(1 + 2 + 3 + \dots + (n 1)) = guess(n)$

21

- $guess(n) = T(0) + n(6n-5) 6(1+2+3+\dots+(n-1))$
- Use $1 + 2 + \dots + (n 1) = \frac{n(n-1)}{2}$
- $guess(n) = 4 + 6n^2 5n 6n(n-1)/2$ (simplify)
- $\bullet \qquad = 3n^2 2n + 4$
- Are we done?
- The form of *guess(n)* was an **educated guess**.
- To be sure, we must **prove** it correct using **induction**



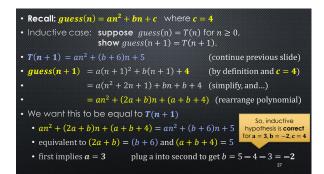
• Recall: $T(0) = 4$; $T(n) = T(n-1) + 6n - 5$;	$guess(n) = 3n^2 - 2n + 4$
• Want to prove: $guess(n) = T(n)$ for all n	PROOF
• Inductive case: suppose $guess(n) = T(n)$ show $guess(n + 1) = T(n + 1)$	for $n \ge 0$,
• $T(n+1) = T(n) + 6(n+1) - 5$	(by definition)
• $= guess(n) + 6(n+1) - 5$	(by inductive hypothesis)
• $= 3n^2 - 2n + 4 + 6(n+1) - 5$	(substitute)
$\bullet \qquad = 3n^2 + 4n + 5$	(simplify)
• $guess(n + 1) = 3(n + 1)^2 - 2(n + 1) + 4$	(by definition)
• $= 3n^2 + 4n + 5 = T(n+1)$	(simplify)

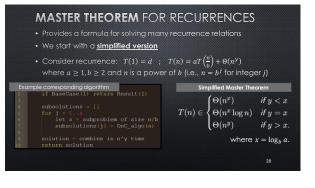
ANOTHER APPROACH

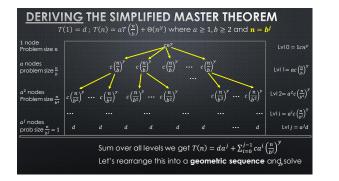
- Suppose you look for a while at the previous recurrence: • T(0) = 4; T(n) = T(n-1) + 6n - 5
- With some experience, you might just guess it's quadratic
- If you're right, it should have the form:
- an² + bn + c for some unknown constants a, b, c
- So, just carry the unknown constants into the proof!
 - You can then determine what the constants **must be** for the proof to work out

25

 T(0) = 4; T(n) = T(n - 1) + 6n - 5; guess(n) = an² + bn + c Want to prove: guess(n) = T(n) for all n 			
• Base case:	$guess(0) = a(0)^2 + b(0) + c = T(0) = 4$		
•	this holds iff $c = 4$	(<i>a</i> , <i>b</i> are not constrained)	
 Inductive case: 	suppose $guess(n) = T(n)$ show $guess(n + 1) = T(n)$		
• $T(n+1) = T(n)$	+ 6(n + 1) - 5	(by definition)	
• = gues	s(n) + 6(n+1) - 5	(by inductive hypothesis)	
• $=an^2$ -	bn + 4 + 6(n + 1) - 5	(substitute)	
• $=an^2$ -	+(b+6)n+5	(simplify)	
		26	







REARRANGING	
-------------	--

- $T(n) = da^{j} + \sum_{i=0}^{j-1} ca^{i} \left(\frac{n}{n}\right)^{y}$
- = $da^j + \sum_{i=0}^{j-1} ca^i \frac{n^j}{(b^i)^j}$
- = $da^j + \sum_{i=0}^{j-1} ca^i \frac{n^y}{(h^y)^i}$
- = $da^j + \sum_{i=0}^{j-1} c \mathbf{n}^{\mathbf{y}} \frac{a^i}{(b^{\mathbf{y}})^i}$
- = $da^j + \sum_{i=0}^{j-1} cn^y \left(\frac{a}{by}\right)^i$
- = $da^j + cn^y \sum_{i=0}^{j-1} \left(\frac{a}{b^y}\right)^i$
- Let $x = \log_b a$
- *x* relates # of subproblems to their size
- Rearranging we have $b^x = a$
- So $T(n) = da^{j} + cn^{y} \sum_{i=0}^{j-1} \left(\frac{b^{x}}{b^{y}}\right)^{i}$
- = $da^{j} + cn^{y} \sum_{i=0}^{j-1} (b^{x-y})^{i}$
- Also $d\mathbf{a}^j = d(\mathbf{b}^x)^j = d(\mathbf{b}^j)^x$
- Since $n = b^{j}$ this is just dn^{x}
- So $T(n) = dn^{x} + cn^{y} \sum_{i=0}^{j-1} (b^{x-y})^{i}$
- and we can simplify: let $r = b^{x-y}$

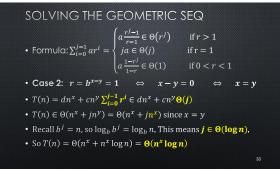
SOLVING THE GEOMETRIC SEQ

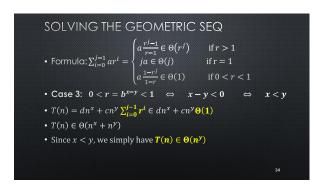
• $T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i$ where $r = b^{x-y}$	
• Geo. Seq. formula: $\sum_{i=0}^{j-1} ar^i = \begin{cases} a \frac{r^{j-1}}{r-1} \in \Theta(r^j) \\ ja \in \Theta(j) \\ a \frac{1-r^j}{1-r} \in \Theta(1) \end{cases}$	if <i>r</i> > 1 if r = 1 if 0 < <i>r</i> < 1
 So different solutions depending on r 	
• Case 1: $r = b^{x-y} > 1 \qquad \Leftrightarrow \qquad x-y > 0$	$\Leftrightarrow x > y$
• Case 2: $r = b^{x-y} = 1 \qquad \Leftrightarrow \qquad x-y = 0$	$\Leftrightarrow x=y$
• Case 3: $0 < r = b^{x-y} < 1 \iff x-y < 0$	$\Leftrightarrow x < y$

SOLVING THE GEOMETRIC SEQ

	$a\frac{r^{j-1}}{r-1} \in \Theta(r^j)$	if $r > 1$
• Formula: $\sum_{i=0}^{j-1} ar^i = -$	$ja \in \Theta(j)$	ifr = 1
	$\left(a\frac{1-r'}{1-r}\in\Theta(1)\right)$	if $0 < r < 1$

- Case 1: $r = b^{x-y} > 1 \quad \Leftrightarrow \quad x y > 0 \quad \Leftrightarrow \quad x > y$
- $T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i \in dn^x + cn^y \Theta(r^j)$
- $T(n) \in \Theta(n^x + n^y r^j) = \Theta(n^x + n^y (b^{x-y})^j) = \Theta(n^x + n^y (b^j)^{x-y})$
- Recall $b^j = n$, so $T(n) \in \Theta(n^x + n^y n^{x-y}) = \Theta(n^x + n^{y+x-y})$
- So $T(n) \in \mathbf{O}(n^x)$



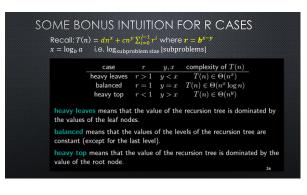


MASTER THEOREM FOR RECURRENCES

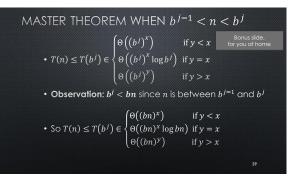
Simplified version

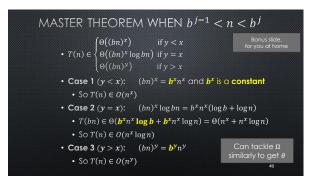
Consider recurrence: $T(n) = aT\binom{n}{b} + \theta(n^y) \text{ where } a \ge 1, b \ge 2 \text{ and } n = b^j$ And let $x = \log_b a$.

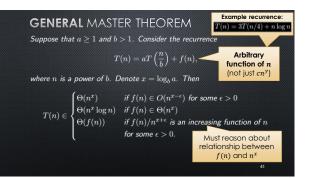
$$T(n) \in \begin{cases} \Theta(n^x) & \text{if } y < x \\ \Theta(n^x \log n) & \text{if } y = x \\ \Theta(n^y) & \text{if } y > x. \end{cases}$$

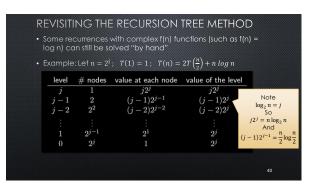


Recall: simplified master theorem Suppose that $a \ge 1$ and $b > 1$. Consider the recurrence $\Gamma(n) = aT \left(\frac{n}{b}\right) + \Theta(n^y)$, where n is a power of b. Denote $x = \log_b a$. Then $\Gamma(n) \in \begin{cases} \Theta(n^x) & \text{if } y < x \\ \Theta(n^x \log n) & \text{if } y = x \\ \Theta(n^y) & \text{if } y > x. \end{cases}$ Questions: $a = 2$, $b = 2$, $y = 2$, $x = 2$ which $\Theta(n)$ function P	$T(n) = 2T(n/2) + cn.$ $\boxed{\begin{array}{c} \Box^{-2}_{n} & \Box^{-2}_{n} & \Box^{-2}_{n} \\ \Theta(n^{x} \log n) = \Theta(n \log n) \end{array}}$ $T(n) = 3T(n/2) + cn.$ $\boxed{\begin{array}{c} \Box^{-3}_{n} & \Box^{-2}_{n} & \Box^{-1}_{n} \\ \Theta(n^{x}) = \Theta(n^{\log_{2} 2}) \end{array}}$ $T(n) = 4T(n/2) + cn.$ $\boxed{\begin{array}{c} \Box^{-4}_{n} & \Box^{-2}_{n} & \Box^{-1}_{n} \\ \Box^{-4}_{n} & \Box^{-2}_{n} & \Box^{-1}_{n} \\ \Theta(n^{x}) = \Theta(n^{2}) \end{array}}$ $T(n) = 2T(n/2) + cn^{3/2}.$ $\boxed{\begin{array}{c} \Box^{-2}_{n} & \Box^{-2}_{n} \\ \Box^{-2}_{n} & \Box^{-2}_{n} & \Box^{-1}_{n} \\ \Theta(n^{y}) = \Theta(n^{2}) \end{array}}$	nus slide, ou at home
	37	









REVISITING THE RECURSION TREE METHOD		
• Recall: $n = 2^{j}$; $T(1) = 1$; $T(n) = 2T\left(\frac{n}{2}\right) + n \log n$	value of the level	
Summing the values at all levels of the recursion tree, we have $T(n) = 2^j \left(1 + \sum_{i=1}^j i\right) = 2^j \left(1 + \frac{j(j+1)}{2}\right).$ Since $n = 2^j$, we have $j = \log_2 n$ and $T(n) \in \Theta(n(\log n)^2).$	$j2^{j}$ $(j-1)2^{j}$ $(j-2)2^{j}$ \vdots 2^{j} 2^{j}	
Since $n = 2$, we have $j = n_{0,2}n$ and $r(n) \in O(n(n_0, n))$.		