2

4

6

DIVIDE AND CONQUER Notable algorithms: mergesort, quicksort, binary search, ...

CS 341: ALGORITHMS

Lecture 2: divide & conquer I Readings: see website

Trevor Brown https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

1

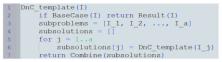
3

5

DIVIDE-AND-CONQUER DESIGN STRATEGY

- **divide:** Given a problem instance I, construct one or more smaller problem instances $I_1, ..., I_n$
- These are called **subproblems**
- Usually, want subproblems to be small compared to the size of *I* (e.g., half the size)
- **conquer:** For $1 \le j \le a$, solve instance I_j **recursively**, obtaining solutions S_1, \dots, Sa
- **combine:** Given solutions $S_1, ..., S_d$, use an appropriate combining function to find the solution S to the problem instance I
 - i.e., $S = \text{Combine}(S_1, \dots, Sa)$.

D&C PROTO-ALGORITHM



CORRECTNESS

- Prove base cases are correct
- Inductively assume subproblems are solved correctly
- Show they are correctly assembled into a solution

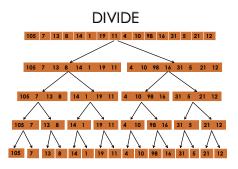
RUNTIME/SPACE COMPLEXITY?

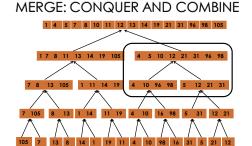
- Techniques covered in this lecture
 - Model complexities using recurrence relations
 - Solve with substitution, master theorem, etc.

WORKED EXAMPLE: DESIGN OF MERGESORT

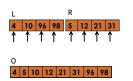
7

11





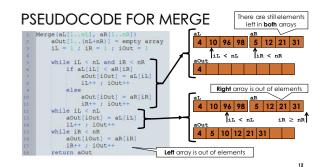
MERGE SIMULATION



10

PSEUDOCODE FOR MERGESORT

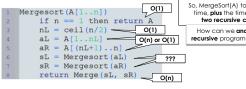
1	Mergesort (A[1n])
2	if n == 1 then return A
3	nL = ceil(n/2)
4	aL = A[1nL]
5	aR = A[(nL+1)n]
6	<pre>sL = Mergesort(aL)</pre>
7	sR = Mergesort(aR)
8	return Merge(sL, sR)



14

16

ANALYSIS OF MERGESORT

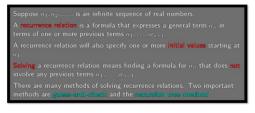


two recursive calls!
How can we analyze this recursive program structure?

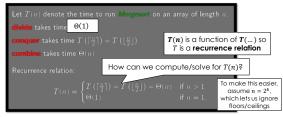
13

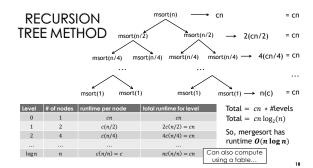
15

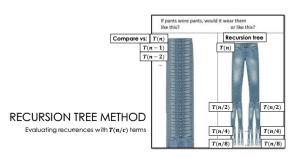
RECURRENCE RELATIONS



MATHEMATICALLY EXPRESSING THE COMPLEXITY OF MERGESORT







RECURSION TREE METHOD FORMALIZED

Sample recurre two recursive of problem size	$\frac{\text{ralls on}}{n/2} T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \text{ is a power of } 2 \\ d & \text{if } n = 1. \end{cases}$
v	here c and d are constants. We can solve this recurrence relation when u is a power of two, by onstructing a mean-frame time, as follows:
I	Step 1 Start with a one-node tree, say N_1 having the value $T(\alpha)$. Step 2 Grow two children of N_1 . These children, say N_1 and N_2 , have the value $T(\alpha/2)$, and the value of N is replaced by $c\alpha$.
	$\label{eq:step3} \begin{array}{llllllllllllllllllllllllllllllllllll$

GUESS-AND-CHECK METHOD

Suppose we have the following recurrence T(0) = 4;T(n) = T(n-1) + 6n - 5

- Guess the form of the solution any way you like
- My approach: the substitution method Recursively substitute the formula into itself
 - Try to identify patterns to guess the final closed form
- Prove that the guess was correct

In Math, I use the GUESS & HOPE Method

20

22

24

(simplify)

(simplify)

(by definition)

Recurrence: $T(0) = 4$; $T(n) = T(n-1) + 6n - 5$
T(n-1) = T((n-1)-1) + 6(n-1) - 5 Compare: new terms? +(6n-5) -6
T(n) = (T(n-2) + 6(n-1) - 5) + 6n - 5 (substitute)
= T(n-2) + 2(6n-5) - 6 (try to preserve structure)
= (T(n-3) + 6(n-2) - 5) + 2(6n-5) - 6 (substitute)
= T(n-3) + 3(6n-5) - 6(1+2)
identify patterns and guess what happens in the limit
$= T(0) + n(6n - 5) - 6(1 + 2 + 3 + \dots + (n - 1)) = guess(n)$
21

SUBSTITUTION METHOD: WORKED EXAMPLE

- $guess(n) = T(0) + n(6n 5) 6(1 + 2 + 3 + \dots + (n 1))$ Use $1 + 2 + \dots + (n - 1) = \frac{n(n-1)}{2}$
- $guess(n) = 4 + 6n^2 5n 6n(n-1)/2$ (simplify)
- $= 3n^2 2n + 4$

 $= 3n^2 + 4n + 5$

 $= 3n^2 + 4n + 5 = T(n + 1)$

- Are we done?
- The form of *guess*(*n*) was an **educated guess**.
- To be sure, we must prove it correct using induction

Recall: $T(0) = 4$; $T(n) = T(n-1) + 6n - 5$; $guess(n) = 3n^2 - 2n + 6n - 5n -$	4 Recall: $T(0) = 4$; $T(n) = T(n-1) + 6n - 5$; guess	$s(n)=3n^2-2n+4$
Want to prove: $guess(n) = T(n)$ for all n Base case: $guess(0) = 3(0)^2 - 2(0) + 4 = T(0)$	Want to prove: $guess(n) = T(n)$ for all n Inductive case: suppose $guess(n) = T(n)$ for $n \ge 0$, show $guess(n + 1) = T(n + 1)$.	
	T(n+1) = T(n) + 6(n+1) - 5 (by c	lefinition)
	= guess(n) + 6(n+1) - 5 (by i	nductive hypothesis)
	$= 3n^2 - 2n + 4 + 6(n+1) - 5 $ (sub	stitute)

19

ANOTHER APPROACH

- Suppose you look for a while at the previous recurrence: T(0) = 4; T(n) = T(n-1) + 6n - 5
- With some experience, you might just **guess** it's **quadratic** If you're right, it should have the form:
 - $an^2 + bn + c$ for some unknown constants a, b, c
- So, just carry the unknown constants into the proof!
 You can then determine what the constants must be for the proof to work out

25

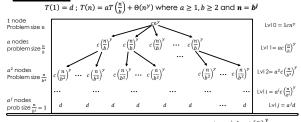
$T(0) = 4$; $T(n) = T(n-1) + 6n - 5$; $guess(n) = an^2 + bn + c$				
 Want to prove: 	guess(n) = T(n) for all n			
Base case:	$guess(0) = a(0)^2 + b(0) + c = T(0) = 4$			
	this holds iff $c = 4$	(<i>a</i> , <i>b</i> are not constrained)		
Inductive case:	Inductive case: suppose $guess(n) = T(n)$ for $n \ge 0$, show $guess(n + 1) = T(n + 1)$.			
T(n+1) = T(n)	+ 6(n + 1) - 5	(by definition)		
= gues	ss(n) + 6(n+1) - 5	(by inductive hypothesis)		
$=an^2$	+bn + 4 + 6(n + 1) - 5	(substitute)		
$=an^2$	+(b+6)n+5	(simplify)		
		26		

Recall: $guess(n) = an^2 + bn + c$ where c = 4Inductive case: suppose guess(n) = T(n) for $n \ge 0$,
show guess(n + 1) = T(n + 1). $T(n + 1) = an^2 + (b + 6)n + 5$ (continue previous slide) $guess(n + 1) = a(n + 1)^2 + b(n + 1) + 4$ (by definition and c = 4) $= a(n^2 + 2n + 1) + bn + b + 4$ (simplify, and...) $= an^2 + (2a + b)n + (a + b + 4)$ (rearrange polynomial)We want this to be equal to T(n + 1) $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 3) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 3) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 3) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 3) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 3) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 3) = an^2 + (b + 6)n + 5$ $an^2 + (2a + b)n + (a + b + 3) = an^2 + (b + 6)n + 5$

MASTER THEOREM FOR RECURRENCES

- Provides a formula for solving many recurrence relations
- We start with a simplified version
- Consider recurrence: T(1) = d; $T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^{y})$ where $a \ge 1, b \ge 2$ and n is a power of b (i.e., $n = b^{j}$ for integer j)

DERIVING THE SIMPLIFIED MASTER THEOREM



Sum over all levels we get $T(n) = da^j + \sum_{l=0}^{j-1} ca^l \left(\frac{n}{b^l}\right)^y$ Let's rearrange this into a **geometric sequence** and solve

REARRANGING

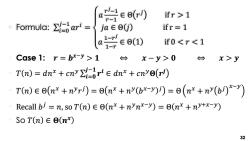
- $T(n) = da^{j} + \sum_{i=0}^{j-1} ca^{i} \left(\frac{n}{b^{i}}\right)^{\gamma}$
- $= da^j + \sum_{i=0}^{j-1} ca^i \frac{n^y}{(b^i)^y}$
- $= da^j + \sum_{i=0}^{j-1} ca^i \frac{n^y}{(b^y)^i}$
- $= da^j + \sum_{i=0}^{j-1} c \mathbf{n}^y \frac{a^i}{(b^y)^i}$
- $= da^j + \sum_{i=0}^{j-1} cn^y \left(\frac{a}{hy}\right)^i$
- $= da^{j} + cn^{y} \sum_{i=0}^{j-1} \left(\frac{a}{b^{y}}\right)^{i}$
- Let $x = \log_b a$
- x relates # of subproblems to their size
- Rearranging we have $b^x = a$
- So $T(n) = da^j + cn^y \sum_{i=0}^{j-1} \left(\frac{b^x}{b^y}\right)^i$
- $= da^{j} + cn^{y} \sum_{i=0}^{j-1} (b^{x-y})^{i}$
- Also $da^j = d(b^x)^j = d(b^j)^x$
- Since $n = b^{j}$ this is just dn^{x}
- So $T(n) = dn^{x} + cn^{y} \sum_{i=0}^{j-1} (b^{x-y})^{i}$
- and we can simplify: let $r = b^{x-y}$

SOLVING THE GEOMETRIC SEQ

 $T(n) = dn^{x} + cn^{y} \sum_{i=0}^{j-1} r^{i}$ where $r = b^{x-y}$

 Geo. Seq. form 	nula: $\sum_{i=0}^{j-1} ar^i$	$= \begin{cases} a \frac{n}{2} \\ ja \\ a \frac{1}{2} \end{cases}$	$\frac{r^{j}-1}{r-1} \in \Theta(r^{j})$ $a \in \Theta(j)$ $\frac{t-r^{j}}{1-r} \in \Theta(1)$	if r > if r = if 0 <	
 So different sol 	utions depend	ing or	1 r		
Case 1: r	$= b^{x-y} > 1$	⇔	x - y > 0	⇔	x > y
Case 2: r	$= b^{x-y} = 1$	⇔	x - y = 0	⇔	x = y
Case 3: 0	$< r = b^{x-y} < 1$	⇔	x-y < 0	⇔	x < y
					31

SOLVING THE GEOMETRIC SEQ



SOLVING THE GEOMETRIC SEQ

Formula: $\sum_{i=0}^{j-1} ar^i = \langle$	$\left(a\frac{r^{j-1}}{r-1}\in\Theta(r^{j})\right)$	if r > 1
• Formula: $\sum_{i=0}^{j-1} ar^i = \langle$	$ja \in \Theta(j)$	ifr = 1
	$a\frac{1-r^j}{1-r} \in \Theta(1)$	${\rm if} 0 < r < 1$

```
Case 2: r = b^{x-y} = 1 \quad \Leftrightarrow \quad x - y = 0 \quad \Leftrightarrow \quad x = y
```

- $T(n) = dn^{x} + cn^{y} \sum_{i=0}^{j-1} r^{i} \in dn^{x} + cn^{y} \Theta(j)$
- $T(n) \in \Theta(n^x + jn^y) = \Theta(n^x + jn^x)$ since x = y
- Recall $b^j = n$, so $\log_b b^j = \log_b n$. This means $j \in \Theta(\log n)$.

33

35

So $T(n) = \Theta(n^x + n^x \log n) = \Theta(n^x \log n)$

SOLVING THE GEOMETRIC SEQ

- Formula: $\sum_{i=0}^{j-1} ar^i = \begin{cases} a \frac{r^{j-1}}{r-1} \in \Theta(r^j) & \text{ if } r > 1\\ ja \in \Theta(j) & \text{ if } r = 1\\ a \frac{1-r^j}{1-r} \in \Theta(1) & \text{ if } 0 < r < 1 \end{cases}$
- **Case 3:** $0 < r = b^{x-y} < 1 \quad \Leftrightarrow \quad x-y < 0 \quad \Leftrightarrow \quad x < y$

34

- $T(n) = dn^{x} + cn^{y} \sum_{i=0}^{j-1} r^{i} \in dn^{x} + cn^{y} \Theta(1)$
- $T(n)\in \Theta(n^x+n^y)$
- Since x < y, we simply have $T(n) \in \Theta(n^y)$

MASTER THEOREM FOR RECURRENCES

Simplified version

Consider recurrence: $T(n) = aT \left(\frac{n}{b}\right) + \Theta(n^y)$ where $a \ge 1, b \ge 2$ and $n = b^j$ And let $x = \log_b a$.

	$\Theta(n^x)$	if y < x
$T(n) \in \langle$	$\Theta(n^x \log n)$	if y = x
	$\Theta(n^y)$	if $y > x$.

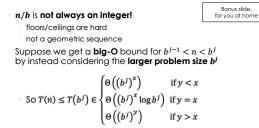
SOME BONUS INTUITION FOR R CASES

Recall: $T(n) = dn^{x} + cn^{y} \sum_{i=0}^{j-1} r^{i}$ where $r = b^{x-y}$ $x = \log_{b} a$ i.e. $\log_{subproblem size}$ [subproblems]

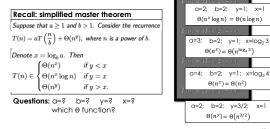
heavy leaves	r > 1	$T(n) \in \Theta(n^r)$
wee means that s of the leaf nod		
s of the leaf nod means that the (except for the l		

38

MASTER THEOREM WHEN $b^{j-1} < n < b^{j}$



WORKED EXAMPLES



MASTER THEOREM WHEN $b^{j-1} < n < b^j$

$T(n) \in \begin{cases} \Theta((bn)^{x}) & \text{if } y < x\\ \Theta((bn)^{x} \log bn) & \text{if } y = x\\ \Theta((bn)^{y}) & \text{if } y > x \end{cases}$	Bonus slide, for you at home
$T(n) \in \left\{ \Theta((bn)^x \log bn) \text{ if } y = x \right\}$	
$\Big(\Theta\big((bn)^y\big) \qquad \text{if } y > x$	
Case 1 $(y < x)$: $(bn)^x = b^x n^x$ and b^x is	a constant
So $T(n) \in O(n^x)$	
Case 2 $(y = x)$: $(bn)^x \log bn = b^x n^x (\log bn)$	$b + \log n$)
$T(bn) \in \Theta(\mathbf{b}^{x} n^{x} \log \mathbf{b} + \mathbf{b}^{x} n^{x} \log n) = \Theta(\mathbf{a}^{x} n^{x} \log n)$	$n^x + n^x \log n$)
So $T(n) \in O(n^x \log n)$	
Case 3 $(y > x)$: $(bn)^y = b^y n^y$	Can tackle Ω
So $T(n) \in O(n^{y})$	similarly to get θ
	40

MASTER THEOREM WHEN $b^{j-1} < n < b^j$

$$T(n) \leq T(b^{j}) \in \begin{cases} \Theta\left((b^{j})^{x}\right) & \text{if } y < x \end{cases} \xrightarrow[\text{borve stide,} \\ \Theta\left((b^{j})^{x} \log b^{j}\right) & \text{if } y = x \\ \Theta\left((b^{j})^{y}\right) & \text{if } y > x \end{cases}$$

Observation: $b^{j} < bn$ since n is between b^{j-1} and b^{j}

a=2; b=2; y=1; x=1

 $\Theta(n^x \log n) = \Theta(n \log n)$

 $\Theta(n^x) = \Theta(n^{\log_2 3})$

4T(n/2) + cm.

 $\Theta(n^x) = \Theta(n^2)$

b=2; y=3/2;

 $\Theta(n^y) = \Theta(n^{3/2})$

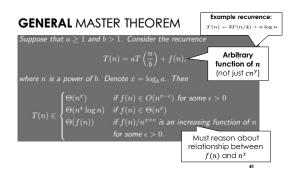
x=1

37

39

= 3T(n/2) + cn.

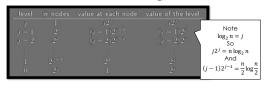
$$So T(n) \le T(b^{j}) \in \begin{cases} \Theta((bn)^{x}) & \text{if } y < x \\ \Theta((bn)^{x} \log bn) & \text{if } y = x \\ \Theta((bn)^{y}) & \text{if } y > x \end{cases}$$



REVISITING THE RECURSION TREE METHOD

Some recurrences with complex f(n) functions (such as $f(n) = \log n$) can still be solved "by hand"

Example: Let $n = 2^{j}$; T(1) = 1; $T(n) = 2T(\frac{n}{2}) + n \log n$



REVISITING THE RECURSION TREE METHOD

