CS 341: ALGORITHMS

Lecture 20: intractability II – complexity class NP

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

THIS TIME

- Finishing TSP reductions
- Complexity class NP
 - Oracles, certificates, polytime verification algorithms

RECALL

- So far we know
 - TSP-Dec \leq_P^T TSP-Optimal Value
 - TSP-Dec \leq_P^T TSP-Optimization
- In progress
 - TSP-Optimal Value \leq_P^T TSP-Dec

Travelling Salesperson Problems

Problem 7.5

TSP-Optimization

Instance: A graph G and edge weights $w : E \to \mathbb{Z}^+$. **Find:** A hamiltonian cycle H in G such that $w(H) = \sum_{e \in H} w(e)$ is minimized.

Problem 7.6

TSP-Optimal Value Instance: A graph G and edge weights $w : E \to \mathbb{Z}^+$. Find: The minimum T such that there exists a hamiltonian cycle H in G

with w(H) = T.

Problem 7.7

TSP-Decision Instance: A graph G, edge weights $w : E \to \mathbb{Z}^+$, and a target T. Question: Does there exist a hamiltonian cycle H in G with $w(H) \leq T$?

What's the size of the input I = (G, w)?

Size(I) = Size(G) + Size(w)

So, suppose *G* is represented as an **array of adjacency lists** (one list for each vertex), with each list containing **edges** to neighbouring vertices, and an edge is represented by a **weight** and the **name** of the target vertex

Bits to store **weight** of the edge (storing w(e) takes $\log w(e) + 1$ bits)

Size(I) = |V| +
$$\sum_{e \in E} (\log w(e) + 1 + \log |V| + 1)$$

Array of empty lists for all vertices v

For all edges

Bits to store the name of the target vertex (in 1.. | V |)

Let's relate this to runtime... what's the runtime?

TSP-Optimal Value \leq_P^T **TSP-Dec** Let's assume O(1) time for Technically not needed to show polytime.. But simplifies operations on weights **Algorithm:** TSP-OptimalValue-Solver(G, w) **external** TSP-Dec-Solver O(|E|) $hi \leftarrow \sum_{e \in E} w(e)$ O(1) for the oracle O(1) $lo \leftarrow 0$ if not TSP-Dec-Solver(G, w, hi) then return (∞) while hi > lo# iterations: $O(\log(hi - lo))$ $\binom{mid \leftarrow \left|\frac{hi+lo}{2}\right|}{2}$ $= \log \sum_{e \in E} w(e)$ Runtime $T(I) \in$ $\begin{cases} \text{if } TSP-\bar{Dec}-\bar{Solver}(G,w,mid) \\ \text{then } hi \leftarrow mid \end{cases}$ $O(|E| + \log \sum_{e \in F} w(e))$ do 0(1)else $lo \leftarrow mid + 1$ return (hi)

COMPARING T(I) AND Size(I)• T(I) $\in O(|E| + \log \sum_{e \in F} w(e))$ • *Size(I)* $= |V| + \sum_{e \in F} (\log w(e) + 1 + \log |V| + 1)$ $= |V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} (\log |V| + 1)$ $= |V| + \sum_{e \in F} (\log w(e) + 1) + \sum_{e \in F} (\log |V|) + |E|$ • Want to show $T(I) \in O(Size(I)^c)$ for some constant c (we show c=1) $O(|\mathbf{E}| + \log \sum_{e \in E} w(e)) \subseteq O(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log |V| + |\mathbf{E}|)$ $\Leftrightarrow O(\log \sum_{e \in E} w(e)) \subseteq O(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log |V|)$ How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?

COMPARING T(I) AND Size(I)• How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$? • $\Sigma_{e \in E}(\log w(e) + 1) = (\log w(e_1) + 1) + (\log w(e_2) + 1) + \dots + (\log (w(e_{|E|})) + 1))$ • Can we combine these terms into one log using $\log x + \log y = \log xy$? • $\Sigma_{e \in E}(\log w(e) + 1) = (\log w(e_1) + \log 2) + + \dots + (\log (w(e_{|E|})) + \log 2))$ • $\sum_{e \in E} (\log w(e) + 1) = \log 2w(e_1) 2w(e_2) \dots 2w(e_{|E|}) = \log \prod_{e \in E} 2w(e)$ • So how to compare $\log \prod_{e \in E} 2w(e)$ and $\log \sum_{e \in E} w(e)$? • All w(e) are positive integers, so $\prod_{e \in E} 2w(e) \ge \sum_{e \in E} w(e)$ • Since log is increasing on \mathbb{Z}^+ , $\log \prod_{e \in E} 2w(e) \ge \log \sum_{e \in E} w(e)$

COMPARING T(I) AND Size(I)• We in fact show $T(I) \in O(Size(I))$ $O(\log \sum_{e \in E} w(e)) \subseteq O(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log|V|)$ How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?

We just saw $\sum_{e \in E} (\log w(e) + 1) = \log \prod_{e \in E} 2w(e) \ge \log \sum_{e \in E} w(e)$

So $T(I) \in O(Size(I)^c)$ where c = 1

So this reduction has runtime that is polynomial in the input size!

TSP-Optimal Value \leq_P^T **TSP-Dec**

```
Algorithm: TSP-OptimalValue-Solver(G,w)

external TSP-Dec-Solver

hi \leftarrow \sum_{e \in E} w(e)

lo \leftarrow 0

if not TSP-Dec-Solver(G, w, hi) then return (\infty)

while hi > lo

\begin{cases} mid \leftarrow \lfloor \frac{hi+lo}{2} \rfloor \\ \text{if TSP-Dec-Solver}(G, w, mid) \end{cases}
```

```
then hi \leftarrow mid
else lo \leftarrow mid + 1
return (hi)
```

So TSP-OptimalValue-Solver is polytime... But is it a correct reduction from TSP-Optimal Value to TSP-Dec?

Need to prove: TSP-OptimalValue-Solver(G,w) returns the weight *W* of the shortest Hamiltonian Cycle (HC) in G

Sketch: We return ∞ iff there is no HC. Key loop invariant: $W \in [lo, hi]$. So, at termination when hi = lo, we return exactly hi = W.

9

TSP-Optimal Value \leq_P^T **TSP-Dec**

```
Algorithm: TSP-OptimalValue-Solver(G, w)

external TSP-Dec-Solver

hi \leftarrow \sum_{e \in E} w(e)

lo \leftarrow 0

if not TSP-Dec-Solver(G, w, hi) then return (\infty)

while hi > lo

\int mid \leftarrow \lfloor \frac{hi+lo}{2} \rfloor
```

```
do 

\begin{cases}
    if TSP-Dec-Solver(G, w, mid) \\
    then hi \leftarrow mid \\
    else lo \leftarrow mid + 1
  \end{cases}

return (hi)
```

So, TSP-OptimalValue-Solver is **polytime**, and is a **correct** reduction.

We have therefore shown: **TSP-Optimal Value is polytime reducible to TSP-Dec**

So, if an **0**(1) implementation of TSP-Dec-Solver exists, then we have a **polytime** implementation of TSP-Optimal-Value-Solver!

In fact, TSP-OptimalValue-Solver remains **polytime** even if the implementation of the **oracle runs in polytime** instead of O(1)! (bonus slides)

PROVING REDUCTIONS CORRECT

- In more complex reductions where we transform the input before calling the oracle, we will need a more complex proof:
- (A) If there is a (n optimal) solution in the input, our transformation will preserve that solution so the oracle can find it, and
- (B) Our transformation doesn't introduce new solutions that are not present in the original input
 - (i.e., if we find a solution in the transformed input, there was a corresponding solution in the original input)

More on this later...

INPUT SIZE CHEAT SHEET

Exponentially larger than optimal representation!

Input I	Perfectly fine choices of Size(I)	To write down x=1,	Input I	Examples of BAD choices of <i>Size(I)</i>	
int x	1 or $llog(x) + 1$	need log(1)+1=1 bit. For x=2 this is 2 bits. For x=4, 3 bits.	int x	x	
	$\lfloor \log(x) \rfloor + 1$ (can simplify to $\log(x) + 1$ or $\log x$)		Graph (V,E)	$2^{ V }$ or $ V ^{ E }$ or $\sum w(a)$	
Graph (V,E)		y expression that your analysis easy	<i>A</i> [1 <i>n</i>] of int	$\sum_{e \in E} w(e)$ 2^{n} or $\sum_{i} A[i]$	
with weights W:	V + E or $\sum_{e \in E} (\log(w(e)) + 1)$ or $\sum_{u,v \in V} (\log(w(u,v)) + 1)$ any sum of terms above	or		~= no exponentiation nstant terms	
<i>A</i> [1 <i>n</i>] of int	n or $\sum_{i} (\log(A[i]) + 1)$	combine	Technically any pseudo-polynomial combination of these terms is fine. For example, the following is fine: $(E ^{100} + V ^2) \cdot \sum_{e \in E} (\log(w(e)) + 1)$		
n x n matrix m	n^2 or $\sum_{i,j} (\log(m_{ij}) + 1)$				

- So far we know
 - TSP-Dec \leq_P^T TSP-Optimal Value
 - TSP-Dec \leq_P^T TSP-Optimization
 - TSP-Optimal Value \leq_P^T TSP-Dec
- Let's show
 - TSP-Optimization \leq_P^T TSP-Dec

WHAT ABOUT REDUCING TSP-OPTIMIZATION TO TSP-DEC?

Problem 7.5

TSP-Optimization

Instance: A graph G and edge weights $w : E \to \mathbb{Z}^+$. **Find:** A hamiltonian cycle H in G such that $w(H) = \sum_{e \in H} w(e)$ is

> Need to return the **actual** minimum Hamiltonian Cycle!

Problem 7.7

minimized.

TSP-Decision

Instance: A graph G, edge weights $w : E \to \mathbb{Z}^+$, and a target T. **Question:** Does there exist a hamiltonian cycle H in G with $w(H) \le T$? We already know how to get the **weight** *T*^{*} of the minimum HC...

Idea: Use *T*^{*} along with calls to the oracle to somehow figure out **which edges** are involved in the minimum HC?

Given only a <u>single bit</u> of information **per call** to the oracle

TSP-Optimization \leq_P^T **TSP-Dec**

Algorithm: TSP-Optimization-Solver (G = (V, E), w)**external** TSP-OptimalValue-Solver, TSP-Dec-Solver $T^* \leftarrow TSP-OptimalValue-Solver(G, w)$ if $T^* = \infty$ then return ("no hamiltonian cycle exists") $w_0 \leftarrow w$ $H \leftarrow \emptyset$ If removing edge *e* removes **every** Hamiltonian cycle of minimum weight for all $e \in E$ $\int w_0[e] \leftarrow \infty$ **)** if not TSP-Dec-Solver (G, w_0, T^*) do then $\begin{cases} w_0[e] \leftarrow w[e] \\ H \leftarrow H \cup \{e\} \end{cases}$ return (H)[Correctness] Loop invariant: there exists a HC of weight T^* in w_0 By the end of the loop, H contains all finite edges in w_0

To remove any dependence on this "other oracle," simply replace this call with the reduction **code** we showed

Already know this call is poly-time reducible to TSP-Dec!

then *e* is part of **every** minimum Hamiltonian cycle, and we add it to *H* (and add it back into the graph)

At the end, the graph contains precisely the edges that are needed to produce a minimum HC

15

So some HC C of weight T^* is contained in H

At the end of the algorithm, there is a Hamiltonian Cycle C of optimal weight T^* <u>contained in</u> H

> If *H* is <u>precisely</u> *C*, then we are done. **Suppose not** to obtain a contradiction.

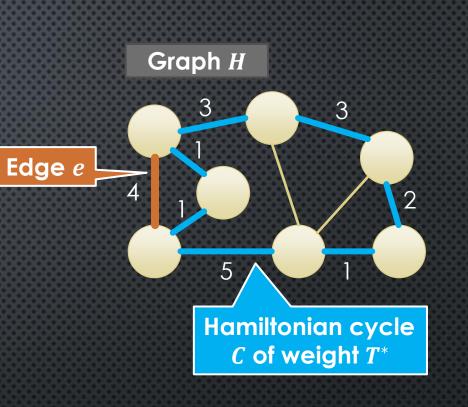
In this case, there are some **other edges** in *H* as well.

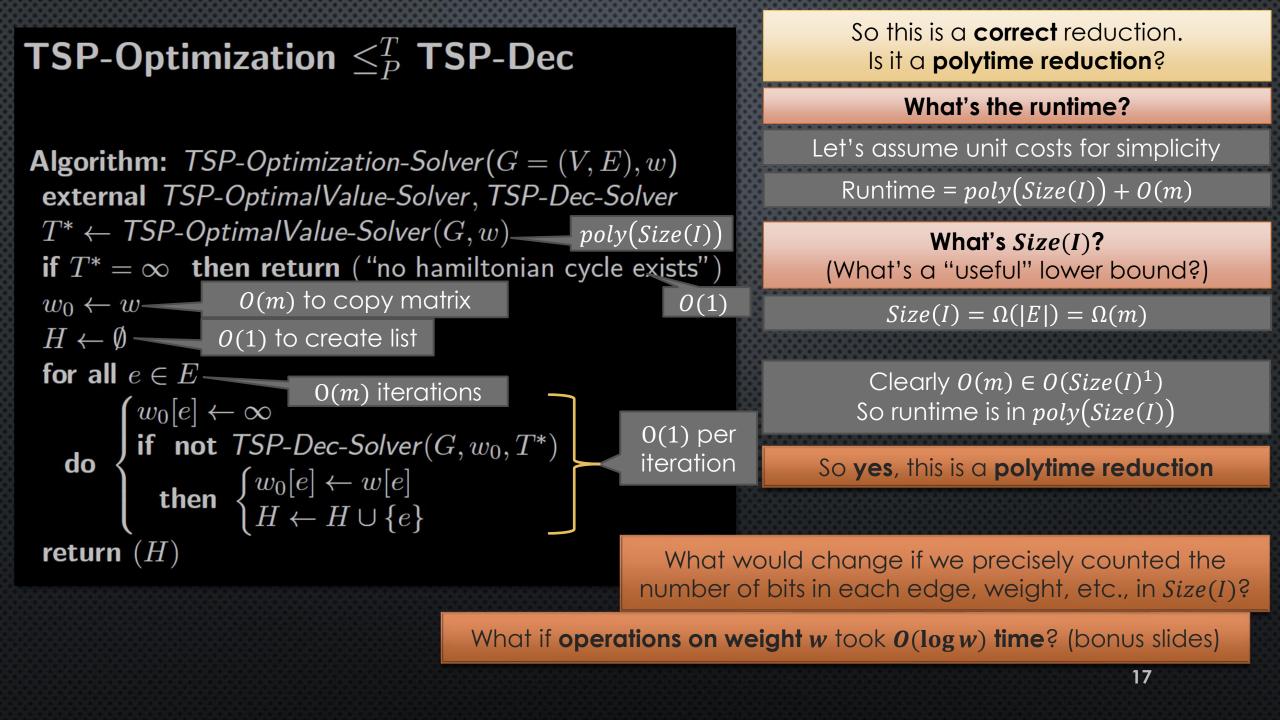
Let e be one such edge.

Consider the iteration when *e* was processed. Note *e* was **not removed** in this iteration!

Doing so would remove **all** Hamiltonian Cycles of weight T^* , **including** C.

This means the edge must be part of *C*---contradiction!





RECAP

- Showed three flavours of TSP are polytime-equivalent (i.e., if you can solve one flavour in polytime, you can solve all three flavours in polytime)
 - One of these was a decision problem (yes/no), and the other two were not (total weight, actual cycle)
- **Decision and non-decision flavours** of a problem are often polytime-equivalent
- Proofs for a polytime Turing reduction
 - Correctness (return value is correct for every possible input)
 - Polytime (runtime is polynomial in the input size) [or poly(some lower bound on the input size)]

Note: only one of my sections got here

COMPLEXITY CLASS <u>NP</u>

NP: Non-deterministic polynomial time

EXAMPLE: SUBSET-SUM PROBLEM
 Suppose we are given some integers, -7, -3, -2, 5, 8

Does some subset of these sum to zero?
In this case, yes: (-3) + (-2) + 5 = 0

Finding such a subset can be extremely difficult

Suppose I give you a **certificate** consisting of an array of numbers, and **claim** it represents such a subset

If I'm telling the truth, then we call this a **yes-certificate**. It is is essentially a **proof** that "yes" is the correct output.

Can you use a yes-certificate to solve the problem efficiently?

Of course, I might lie and give you a subset that does **not sum to zero**...

I could even give you numbers that are **not in the input**...

Can you determine whether I am lying in polynomial time?

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

- Suppose there is a non-deterministic oracle, which returns a subset that sums to 0 if one exists and otherwise can return anything (even garbage)
- We call the oracle's output a certificate
- Given a certificate, can you verify in polytime whether it describes a solution to the problem?

```
Otherwise, either C is not a
subset of the input (return
false), or C sums to a non-
zero value (return false)
```

If there **exists** a subset that sums to 0, then **C** is one such subset, and we return **true**

```
SubsetSumWithOracle(I) -
C = Oracle(I)
return verify(I, C)
```

Given such an oracle, this algorithm would **solve** subset-sum

```
verify(I, C)
    if C not subset of I then return false
    return (sum(C) == 0)
```

"Non-deterministic" is the N in NP, and it is so named because of oracles

Here "**non-deterministic**" just means the oracle is magically guaranteed to return a yes-certificate if one exists

BONUS SLIDES

TSP-Optimal Value \leq_P^T **TSP-Dec**

```
Algorithm: TSP-OptimalValue-Solver(G, w)

external TSP-Dec-Solver

hi \leftarrow \sum_{e \in E} w(e)

lo \leftarrow 0

if not TSP-Dec-Solver(G, w, hi) then return (\infty)

while hi > lo

do \begin{cases} mid \leftarrow \lfloor \frac{hi+lo}{2} \rfloor \\ \text{if TSP-Dec-Solver}(G, w, mid) \\ \text{then } hi \leftarrow mid \\ else \ lo \leftarrow mid + 1 \end{cases}
```

return (*hi*)

TSP-OptimalValue-Solver remains **polytime** even if the **oracle runs in polytime** instead of O(1)!

The key idea is: Consider polynomials $P_R(s)$ and $P_O(s)$ representing the runtime of a reduction and its oracle, respectively, on an input of size s. Worst possible runtime happens if every step in the reduction is a call to the oracle. This is $P_R(s)P_O(s)$ --- multiplication of polynomials.

But multiplying polynomials of degrees d_1 , d_2 results in a polynomial of degree $\leq d_1 + d_2$. Example: $P_1(x) = 5x^2 + 10x + 100$ $P_2(x) = 20x^3 + 20$ $P_1(x)P_2(x) = (5x^2 + 10x + 100)(20x^3 + 20)$ $= 100x^5 + 200x^4 + 2000x^3 + 100x^2 + 200x + 2000$ Let's assume $O(\log w)$ time for reading/writing/arithmetic operations on each weight w (and $O(\log w)$ space).

So this is a **correct** reduction. Is it a **polytime reduction**?

What's the runtime on such an input?

Runtime = poly(Size(I))+ $O(m + \sum_{u,v \in V} \log w(u,v))$

What's Size(I)? (or a useful lower bound on it)

 $Size(I) = O(|E| + \sum_{u,v \in V} \log w(u,v))$

Clearly $O(m + \sum_{u,v \in V} \log w(u,v)) \in poly(Size(I))$

So, this is still a polytime reduction

Unit cost vs non-unit cost assumptions usually do **not** usually make a difference...

This should not be surprising, since the same $O(\log w)$ terms are introduced into both space and time complexities...

Algorithm: TSP-Optimization-Solver (G = (V, E), w)external TSP-OptimalValue-Solver, TSF Suppose we show $T^* \leftarrow TSP-OptimalValue-Solver(G, w)$ this is poly(Size(I))if $T^* = \infty$ then return ("no hamiltonian cycle exists") $w_0 \leftarrow w = O(\sum_{u,v \in V} \log w(u,v))$ to copy matrix O(1) $H \leftarrow \emptyset$ = 0(1) to create list O(m) iterations: for all u, vfor all $e \in E$ $w_0[e] \leftarrow \infty \qquad O(\log w(u,v))$ O(1)if not TSP-Dec-Solver (G, w_0, T^*) do then $\begin{cases} w_0[e] \leftarrow w[e] \\ H \leftarrow H \cup \{e\} \end{cases}$ $O(\log w(u,v))$ 0(1)return (H)

24