

Lecture 20: intractability II – complexity class NP

Reddings, see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

THIS TIME

- Finishing TSP reductions
- Complexity class NP
 - Oracles, certificates, polytime verification algorithms

COMPARING T(I) AND Size(I)

• How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?

• $\Sigma_{e \in E}(\log w(e) + 1) = (\log w(e_1) + 1) + (\log w(e_2) + 1) + \dots + (\log (w(e_{|E|})) + 1)$

• Can we combine these terms into one log using $\log x + \log y = \log xy$?

- $\Sigma_{e \in E}(\log w(e) + 1) = (\log w(e_1) + \log 2) + \dots + (\log (w(e_{|E|})) + \log 2)$
- $\Sigma_{e \in E}(\log w(e) + 1) = \log 2w(e_1) 2w(e_2) \dots 2w(e_{|E|}) = \log \prod_{e \in E} 2w(e)$
- So how to compare log ∏_{e∈E} 2w(e) and log ∑_{e∈E} w(e)?
 All w(e) are positive integers, so ∏_{e∈E} 2w(e) ≥ ∑_{e∈E} w(e)
 - Since log is increasing on \mathbb{Z}^+ , $\log \prod_{e \in E} 2w(e) \ge \log \sum_{e \in E} w(e)$

COMPARING T(I) AND Size(I)

$$\begin{split} & \text{ le in fact show } T(I) \in \mathcal{O}(Size(I)) \\ & \mathcal{O}(\log \sum_{e \in E} w(e)) \subseteq^2 \mathcal{O}(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log|V|) \\ & \text{ How to compare } \log \sum_{e \in E} w(e) \text{ and } \sum_{e \in E} (\log w(e) + 1)? \end{split}$$

We just saw $\sum_{e \in E} (\log w(e) + 1) = \log \prod_{e \in E} 2w(e) \ge \log \sum_{e \in E} w(e)$

So $T(I) \in O(Size(I)^c)$ where c = 1

So this reduction has runtime that is polynomial in the input size!

PROVING REDUCTIONS CORRECT

- In more complex reductions where we transform the input before calling the oracle, we will need a more complex proof:
- (A) If there is a (n optimal) solution in the input, our transformation will preserve that solution so the oracle can find it, and
- (B) Our transformation doesn't introduce new solutions that are **not** present in the original input
- (i.e., if we find a solution in the transformed input, there was
 a corresponding solution in the original input)

lore on this late

- So far we know
 - TSP-Dec \leq_P^T TSP-Optimal Value
 - TSP-Dec \leq_P^T TSP-Optimization
 - TSP-Optimal Value \leq_p^T TSP-Dec
- Let's show
 - TSP-Optimization \leq_P^T TSP-Dec

RECAP

- Showed three flavours of TSP are polytime-equivalent (i.e., if you can solve one flavour in polytime, you can solve all three flavours in polytime)
- One of these was a decision problem (ves/no)
- and the other two were not (total weight, actual cycle)
- Decision and non-decision flavours
 of a problem are often polytime-equivalent
- Proofs for a polytime Turing reduction
 - Correctness (return value is correct for every possible input)
 - Polytime (runtime is polynomial in the input size)
 [or poly(some lower bound on the input size)]

18

