CS 341: ALGORITHMS

Lecture 20: infractability Il - complexity class NP

RECALL

Travelling Salesperson Problems

» So far we know

« TSP-Dec <7 TSP-
Optimal Value

« TSP-Dec <}, TSP- Problem 7.
Optimization TSP-Optir

Instance:
« In progress

« TSP-Optimal Value
<I T1SP-Dec

TSP-Optimal Value <}, TSP-Dec

Let's assume 0(1) time for Technically not needed to
operations on weights show polytime.. But simplifies

Algorithm: TSP- 2/Value-S

external

) O(IED

w0 o(1) 0(1) for the oracle

if not TSP then return

while # iterations: 0(log(hi — lo))

[! 4) = logXecp w(e) Runtime T(I) €

1 "u"‘:‘l‘"" Jec-Solver (G, w, mid o O(E| + log Yeer w(e))

else

do

return

2023-11-21

THIS TIME

« Finishing TSP reductions
« Complexity class NP

« Oracles, certificates, polytime verification algorithms

hat's the size of the input I = (G,
n = (G) + Size(w)
So, suppose G is represented as an array of adjacency lists (one list for each vertex),
with each list containing edges to neighbouring vertices,
and an edge is represented by a weight and the name of the target vertex
Bits to store weight of the edge Bis fo store the

(storing w(e) takeslogw(e) + 1 bits) name of the target
vertex(in 1. V])

D=+ Z(Iozwte» +1+log|V|+1)

Array of empty lists for all vertices v For all edges

Let's relate this to runtime... what's the runtime?2

COMPARING T(I) AND Size(I)
* T(D € O(|E| + logY.cp w(e))
e Size(I) = |V|+ Xeep(logw(e) + 1 +log|V]+ 1)
= V| + Z,ep(ogw(e) + 1) + X cp(loglV| + 1)
= V| + Zeep(logw(e) + 1) + Zeep(log|V]) + |E|
» Want to show T(I) € 0(Size(I)) for some constant ¢ (we show c=1)
O(|E| +logYeepw(e)) S O(IV| + Zeep(logw(e) + 1) + Zeeg log|V] + |ED)
© 0(logY.cpw(e) S’ o(|V| + + Zeep log|V)
How to compare log Y., w(e) and ?

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

COMPARING T(I) AND Size
* How to compare log ... w(e) and ?
< = (logw(e)) + 1) + (logw(ey) + 1) + - + (log (W(ew)) + 1)

Can we combine these terms into one log using log x + log y = log xy?

(logw(ey) +1log2) + + - + (lug (w(em)) +log 2’)

= log2w(e;) 2w(ey) ... 2w(ejz)) = log[l.ex 2w(e)

So how to compare log[l.c; 2w(e) and log .. w(e)?
« All w(e) are positive integers, s0 [Ieg2w(e) = X cpw(e)

logis increasing on Z*, log[Ieer 2w(e) = log Y .cpw(e)

So TSP-OptimalValue-Solveris polytime... But is it a
correct reduction from TSP-Optimal Value to TSP-Dec?

TSP-Optimal Value <}, TSP-Dec

Need to prove:
TSP-OptimalValue-Solver(G,w)
returns the weight W
of the shortest Hamiltonian Cycle (HC) in G

Algorithm
external

if not TSF then return
while Sketch: We return o iff there is no HC.
2 Key loop invariant: W € [lo, hi].
So, at termination when hi = lo,

do we return exactly hi = W.

return

PROVING REDUCTIONS CORRECT

« In more complex reductions where we transform the input
before calling the oracle, we willneed a more complex proof:

« (A) If there is a(n optimal) solution in the input, our
transformation will preserve that solution so the oracle can find
it, and

« (B) Our fransformation doesn't infroduce new solutions that are
not present in the original input
- (i.e., if we find a solution in the transformed input, there was
a corresponding solution in the original input)
More on this later...

n

2023-11-21

COMPARING T(I) AND Size(I)

» We in fact show T(I) € 0(Size(l))

0(log¥.cx w(e)) S’ 0(V] +
How to compare log). w(e) and K

We just saw

+ Zeer loglV])

8 [lecg 2w(e) = logy .. w(e)

So T(I) € O(Size(I)°) where ¢ =

TSP-Optimal Value

Algorithm:

if not T
while /;

if
| then
else

return

do

INPUT SIZE CHEAT SHEET

Graph (V,E)

with weights w:

A[1..n] of int

nxn matrixm

Perfectly fine

choices of Size(I)

Pick any expression that

TSP-Dec

So, TSP-OptimalValue-Solveris polytime,
and is a correct reduction.

We have therefore shown:
TSP-Optimal Value is polytime
reducible to TSP-Dec

So, if an 0(1) implementation of TSP-Dec-Solver
exists, then we have a polytime implementation of
TSP-Optimal-Value-Solver!

then return

In fact, TSP-OptimalValue-Solver remains
polytime evenif the implementation of the
oracle runs in polytime instead of O(1)! (bonus slides)

Exponentially larger than
optimal representation!

Examples of BAD
To write down x=1, choices of Size(I)
need log(1) bit. Ed x
For x=2 this is 2 bits. V]
Forxes, 3bits. [
Zeeew(©)
A[l..n] of int 2" or

makes your analysis easy 2iAli]

VI + |E| or

Seer(log(w(e)) +1) or
Tuvev (log(w(w, v)) +1) or

Pseudo-polynomial ~= no exponentiation
of non-constant ferms

any sum of terms above

nor

i(log(Ali]) +1)
n? or

3 (log(m;;) + 1)

Technically any pseudo-polynomial
ccombination of these fermsiis fine.
For example, the following s fine:
(I +VI?) - Eeep(log(w(e)) + 1)

2023-11-21

WHAT ABOUT REDUCING
TSP-OPTIMIZATION TO TSP-DEC?

« So far we know

» TSP-Dec <¥ TSP-Optimal Value
+ TSP-Dec <¥ TSP-Optimization
« TSP-Opti RSP
TSP-Optimal Value <} TSP-Dec i , ﬁiﬂ‘ﬁi"f&;ﬂ?ﬁl‘mf
* Let's show — minimum HC...

P 2 T s ¢], N 3 I Idea: Use T* along with calls
» TSP-Optimization <p TSP-Dec s Ml o the oracle fo somehow

- : figure out which edges are
involvedin the minimum HC?
Givenonly a single bit of
information per call fo the oracle

TSP-Optimizati At the end of the algorithm, there is
ptimization To remove any dependence on this a Hamiltonian Cycle € of optimal weight T* contained in H
“other oracle," simply replace this call If i Graph H
y " H is precisely €, then we are done. Pt
with the reduction code we showed Suppose not fo obtain a contradiction.
Already know this callis poly-fime In this case, there are some other edges in H as well.
reducible to TSP-Dec! Let e be one such edge.

Consider the iteration when e was processed.

n (ot Note e was not removed in this iferation!

If removing edge e removes every e e ey Doing so would remove all Hamilfonian Cycles of weight T,
Hamiltonian cycle of minimum weight Hamiltonian cycle, and we add it to H including C.

(and add it backinto the graph) This means the edge must be part of ¢---contradiction!
At the end, the graph contains

precisely the edges that are needed
to produce a minimum HC

[Correctness] Loop invariant: there
exists a HC of weight T* in wq 15

By the end of the loop, H contains all finite edgesin wy S0 some HC € of weight T* is contained in H

So this i t reduction.
p-0p P-D ikks s st RECAP
What's the runtime? » Showed three flavours of TSP are polytime-equivale
et's assume osts for simp (i.e., if you can solve one flavour in polytime,
R e=po e 0 you can solve all three flavours in polytime)
; e u"ﬁ'&‘s’;‘j,"fg\fjgbomda, + One of these was a decision problem (yes/no),
0(m) to copy ma 0 : and the other two were not (total weight, actual cycle)
0 o eate
e 5 » Decision and non-decision flavours
— o e oly(Size of a problem are often polytime-equivalent
0 pel
erafio * Proofs for a polytime Turing reduction

» Correctness (return value is correct for every possible input)

« Polytime (runtime is polynomial in the input size)
[or poly(some lower bound on the input size)]

18

2023-11-21

EXAMPLE: SUBSET-SUM PROBLEM

» Suppose we are given some integers, -7, -3,-2, 5, 8

Note: only one of my
sections got here

COMPLEXITY CLASS NP

NP: Non-deter stic polynomial time

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

Otherwise, either C is not a

subset of the input (return

false), or C sums to a non-
zero value (retumn false)

e there is a non-deterministic oracle,
which returns a subset that sums to 0 if one exists
and otherwise can return anything (even garbage)
We call the oracle's output a certificate

Given a cerfificate, can you verify in polytime
whether it describes a solution to the problem?

If there exists a subset that
sums to 0, then C is one such
subset, and we refurn true

Given such an oracle,
this algorithm would
solve subset-sum
“Non-deterministic” is the
‘ Nin NP, and it is so named
because of oracles

Here “non-deterministic” just means
the oracle is magically guaranteed to
return a yes-certificate if one exists

TSP-OptimalValue-Solver rem:
the oracle runs in polytime

SP-Optimal Value

The key idea is: Consider polynomials Pg(s) and
Py (s) representing the runtime of a reduction and its
oracle, respectively, on an input of size s.
Worst possible runtime happens if every step in the
reductionis a call to the oracle.

then return
multiplication of polynomials.

if mot T Solver .
while This is Pr(s)Po(s)

But multiplying polynomials of degrees d; , d, resultsina

polynomial of degree < d; + d,. Example:
x2 +10x + 100
%3 + 20
2 (5x2 + 10x + 100)(20x3 + 20)

=100x° + 200x* + 2000x + 100x? + 200x + 2000

do

if 7
‘ then

return (/

+ Does some subset of these sum fo zero? ‘giqingsuch @ subset can

* Inthis case, yes: (-3) + (-2) +5=0

Suppose | give you a certificate
consisting of an array of numbers,
and claim it represents such a subset

If I'm telling the truth, then we call
this a yes-certificate. It is is
essentially a proof that
“yes" is the correct output.

Can you use a yes-certificate to
solve the problem efficiently2

be extremely difficult

Of course, | might lie and give you a
subset that does not sum to zero.

| could even give you numbers that
are not in the input...

Can you determine whether | am
lying in polynomial time2

BONUS SLIDES

So this is a comrect reduction.
Is it a polytime reduction?

What's the runtime on such an input?

0 0

What's Size(I)?
(or a useful lower bound on it)
0 og

