THIS TIME

Finishing TSP reductions

Complexity class NP

Oracles, certificates, polytime verification algorithms

CS 341: ALGORITHMS

Lecture 20 : intractability II - complexity class NP
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

RECALL

So far we know
TSP-Dec \leq_{P}^{T} TSP-
Optimal Value
TSP-Dec \leq_{P}^{T} TSPOptimization
In progress
TSP-Optimal Value
\leq_{P}^{T} TSP-Dec

Travelling Salesperson Problems

TSP-Optimal Value \leq_{p}^{T} TSP-Dec

Let's assume $O(1)$ time for	Technically not needed to

Algorithm: TSP-OptimalValue-Solver (G, w)
external TSP-Dec-Solver
$h i \leftarrow \sum_{e \in E} w(e) \xrightarrow[O(|E|)]{ }$
$l o \leftarrow 0 \quad O(1)$ for the oracle
if not TSP-Dec-Solver $(G, w, h i)$ then return (∞)
while $h i>l o$ \# iterations: $0(\log (h i-l o))$
$\left\{\begin{array}{l}\text { mid } \leftarrow\left\lfloor\frac{h i+l o}{2}\right\rfloor \\ \text { if TSP-Dec-Solver }(G, w, \text { mid })\end{array}\right.$
do then $h i \leftarrow$ mid else $l o \leftarrow m i d+1$
return (hi)

COMPARING $T(I)$ AND Size (I)

$$
\begin{aligned}
T(I) & \in O\left(|E|+\log \sum_{e \in E} w(e)\right) \\
\text { Size }(I) & =|V|+\sum_{e \in E}(\log w(e)+1+\log |V|+1) \\
& =|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E}(\log |V|+1) \\
& =|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E}(\log |V|)+|E|
\end{aligned}
$$

Want to show $T(I) \in O\left(\operatorname{Size}(I)^{c}\right)$ for some constant c (we show $\mathrm{c}=1$) $O\left(|E|+\log \sum_{e \in E} w(e)\right) \subseteq^{?} O\left(|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E} \log |V|+|E|\right)$ $\Leftrightarrow O\left(\log \sum_{e \in E} w(e)\right) \subseteq^{?} O\left(|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E} \log |V|\right)$ How to compare $\log \sum_{e \in E} w(e)$ and $\Sigma_{e \in E}(\log w(e)+1)$?

COMPARING $T(I)$ AND Size (I)

How to compare $\log \sum_{e \in E} w(e)$ and $\Sigma_{e \in E}(\log w(e)+1)$?
$\boldsymbol{\Sigma}_{\boldsymbol{e} \in \boldsymbol{E}}(\log \boldsymbol{w}(\boldsymbol{e})+\mathbf{1})=\left(\log w\left(e_{1}\right)+1\right)+\left(\log w\left(e_{2}\right)+1\right)+\cdots+\left(\log \left(w\left(e_{|E|}\right)\right)+1\right)$
Can we combine these terms into one log using $\log x+\log y=\log x y$?
$\boldsymbol{\Sigma}_{\boldsymbol{e} \in \boldsymbol{E}}(\log \boldsymbol{w}(\boldsymbol{e})+\mathbf{1})=\left(\log w\left(e_{1}\right)+\log 2\right)++\cdots+\left(\log \left(w\left(e_{|E|}\right)\right)+\log 2\right)$
$\boldsymbol{\Sigma}_{e \in E}(\log w(\boldsymbol{e})+\mathbf{1})=\log 2 w\left(e_{1}\right) 2 w\left(e_{2}\right) \ldots 2 w\left(e_{|E|}\right)=\log \prod_{e \in E} 2 \boldsymbol{w}(\boldsymbol{e})$
So how to compare $\log \prod_{e \in E} \mathbf{2 w}(e)$ and $\log \sum_{e \in E} w(e)$?
All $w(e)$ are positive integers, so $\prod_{e \in E} \mathbf{2 w}(e) \geq \sum_{e \in E} w(e)$
since log is increasing on $\mathbb{Z}^{+}, \log \prod_{e \in E} \mathbf{2 w}(e) \geq \log \sum_{e \in E} w(e)$

COMPARING $T(I)$ AND Size(I)

We in fact show $\boldsymbol{T}(I) \in O($ Size $(I))$

$$
O\left(\log \sum_{e \in E} w(e)\right) \subseteq ? O\left(|V|+\Sigma_{e \in E}(\log w(e)+1)+\Sigma_{e \in E} \log |V|\right)
$$

How to compare $\log \sum_{e \in E} w(e)$ and $\Sigma_{e \in E}(\log w(e)+1)$?

We just saw $\Sigma_{e \in E}(\log w(e)+\mathbf{1})=\log \prod_{e \in E} 2 w(e) \geq \log \sum_{e \in E} w(e)$

10

PROVING REDUCTIONS CORRECT

In more complex reductions where we transform the input before calling the oracle, we will need a more complex proof:
(A) If there is a(n optimal) solution in the input, our transformation will preserve that solution so the oracle can find it, and
(B) Our transformation doesn't introduce new solutions that are not present in the original input
(i.e., if we find a solution in the transformed input, there was a corresponding solution in the original input)

So far we know
TSP-Dec \leq_{P}^{T} TSP-Optimal Value
TSP-Dec \leq_{P}^{T} TSP-Optimization
TSP-Optimal Value \leq_{P}^{T} TSP-Dec
Let's show
TSP-Optimization \leq_{P}^{T} TSP-Dec

WHAT ABOUT REDUCING TSP-OPTIMIZATION TO TSP-DEC?

Problem 7.7

TSP-Optimization \leq_{P}^{T} TSP-Dec

Algorithm: TSP-Optimization-Solver $(G=(V, E), w)$
external TSP-OptimalValue-Solver, TSP-Dec-Solver
$T^{*} \leftarrow \operatorname{TSP}$-OptimalValue-Solver $(G, w) _$poly $(\operatorname{Size}(I))$
if $T^{*}=\infty$ then return ("no hamiltonian cycle exists")
$w_{0} \leftarrow w \simeq O(m)$ to copy matrix
$H \leftarrow \emptyset \quad O(1)$ to create list
for all $e \in E \xrightarrow[0(m) \text { iterations }]{ }$ do $\left\{\begin{array}{l}w_{0}[e] \leftarrow \infty \text { not TSP-Dec-Solver }\left(G, w_{0}, T^{*}\right) \\ \text { if } \\ \text { then }\left\{\begin{array}{l}w_{0}[e] \leftarrow w[e] \\ H\end{array} H[e]\right.\end{array}\right.$
do
return (H)

So this is a correct reduction Is it a polytime reduction? What's the runtime? Let's assume unit costs for simplicity Runtime $=\operatorname{poly}(\operatorname{Size}(I))+O(m)$
(What's a "useful" lower bound?)
Size(I) $\Omega(|E|)=\Omega(\mathrm{m})$
$\operatorname{Size}(I)=\Omega(|E|)=\Omega(m)$

What would change if we precisely counted the number of bits in each edge, weight, etc., in Size (I)?

At the end of the algorithm, there is a Hamiltonian Cycle \boldsymbol{C} of optimal weight T^{*} contained in H
If \boldsymbol{H} is precisely \boldsymbol{C}, then we are done. Suppose not to obtain a contradiction.
In this case, there are some other edges in H as well.
Let e be one such edge.
Consider the iteration when e was processed.
Note e was not removed in this iteration!

16

RECAP

Showed three flavours of TSP are polytime-equivalent (i.e., if you can solve one flavour in polytime, you can solve all three flavours in polytime)

One of these was a decision problem (yes/no),
and the other two were not (total weight, actual cycle)

Decision and non-decision flavours

of a problem are often polytime-equivalent Proofs for a polytime Turing reduction

Correctness (return value is correct for every possible input)
Polytime
(runtime is polynomial in the input size) [or poly(some lower bound on the input size)]

COMPLEXITY CLASS NP
NP: Non-deterministic polynomial time

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

whether it describes a solution to the problem?
Suppose there is a non-deterministic oracle, which returns a subset that sums to 0 if one exists and otherwise can return anything (even garbage) We call the oracle's output a certificate

TSP-Optimal Value \leq_{P}^{T} TSP-Dec	TSP-OptimalValue-Solver remains polytime even if the oracle runs in polytime instead of O (1)!
```Algorithm: TSP-OptimalValue-Solver \((G, w)\) external TSP-Dec-Solver \(h i \leftarrow \sum_{e \in E} w(e)\) lo \(\leftarrow 0\) if not TSP-Dec-Solver \((G, w, h i)\) then return ( \(\infty\) ) while \(h i>l o\)```	The key idea is: Consider polynomials $P_{R}(s)$ and $P_{o}(s)$ representing the runtime of a reduction and its oracle, respectively, on an input of size s. Worst possible runtime happens if every step in the reduction is a call to the oracle.   This is $P_{R}(s) P_{o}(s) \cdots$ multiplication of polynomials.
$\begin{aligned} & \text { do }\left\{\begin{array}{l} \text { mid } \leftarrow\left\lfloor\frac{h i+l o}{} \text { if } T S P-\text { Dec-Solver }(G, w, \text { mid })\right. \\ \text { then } h i \leftarrow \text { mid } \\ \text { else } l o \leftarrow \text { mid }+1 \end{array}\right. \\ & \text { return (hi) } \end{aligned}$	But multiplying polynomials of degrees $d_{1}, d_{2}$ results in a polynomial of degree $\leq d_{1}+d_{2}$. Example: $\begin{gathered} P_{1}(x)=5 x^{2}+10 x+100 \\ P_{2}(x)=20 x^{3}+20 \end{gathered}$ $P_{1}(x) P_{2}(x)=\left(5 x^{2}+10 x+100\right)\left(20 x^{3}+20\right)$ $=100 x^{5}+200 x^{4}+2000 x^{3}+100 x^{2}+200 x+2000$

ialynomials of degrees $d_{1}, d_{2}$ results in $P_{1}(x)=5 x^{2}+10 x+100$
$P_{2}(x)=20 x^{3}+20$
$\left.-100 x^{5}+200 x^{4}+200 x^{3}+100 x^{2}+200 x^{3}\right)$


## EXAMPLE: SUBSET-SUM PROBLEM

Suppose we are given some integers, $-7,-3,-2,5,8$
Does some subset of these sum to zero? Finding such a subset can In this case, yes: $(-3)+(-2)+5=0$


