2

THIS TIME

Finishing TSP reductions

- Complexity class NP
 - Oracles, certificates, polytime verification algorithms

Lecture 20: intractability II – complexity class NP

Readings: see website

Trevor Brown https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

RECALL

- So far we know
- TSP-Dec \leq_P^T TSP-Optimal Value
- TSP-Dec \leq_P^T TSP-Optimization

In progress

TSP-Optimal Value $\leq_P^T \text{TSP-Dec}$

Travelling Salesperson Problems

Problem 7.5 $\label{eq:starting} \begin{array}{l} \textbf{TSP-Optimization} \\ \textbf{Instance:} \quad A \mbox{ graph } G \mbox{ and edge weights } w: E \rightarrow \mathbb{Z}^+. \\ \textbf{Find:} \quad A \mbox{ hamiltonian cycle } H \mbox{ in } G \mbox{ such that } w(H) = \sum_{e \in H} w(e) \mbox{ is } e \in H \mbox{ or } e \in H \mbox$

Problem 7.6 $\label{eq:constraint} \begin{array}{l} \textbf{Fix} \textbf{Proprimit} \ \textbf{Value} \\ \textbf{Instance:} \ A \ graph \ G \ and \ edge \ weights \ w: E \rightarrow \mathbb{Z}^+. \\ \textbf{Find:} \ The \ minimum \ T \ such \ that \ there \ exists \ a \ hamiltonian \ cycle \ H \end{array}$

with w(H) = T.

Problem 7.7

TSP-Decision Instance: A graph G, edge weights $w : E \to \mathbb{Z}^+$, and a target T. Question: Does there exist a hamiltonian cycle H in G with $w(H) \leq T$ is

3

5

COMPARING T(I) AND Size(I)

- T(I) $\in O(|E| + \log \sum_{e \in E} w(e))$
- $Size(I) = |V| + \sum_{e \in E} (\log w(e) + 1 + \log|V| + 1)$
 - $= |V| + \Sigma_{e \in E} (\log w(e) + 1) + \Sigma_{e \in E} (\log |V| + 1)$
 - $= |V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} (\log |V|) + |E|$
- Want to show $T(I) \in O(Size(I)^c)$ for some constant c (we show c=1)
- $O(|\mathbf{E}| + \log \sum_{e \in E} w(e)) \subseteq^{?} O(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log|V| + |\mathbf{E}|)$ $\Leftrightarrow \mathcal{O}(\log \sum_{e \in E} w(e)) \subseteq^{?} \mathcal{O}(|V| + \sum_{e \in E} (\log w(e) + 1) + \sum_{e \in E} \log |V|)$ How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?

1

4

10

COMPARING T(I) AND Size(I)

- How to compare $\log \sum_{e \in E} w(e)$ and $\sum_{e \in E} (\log w(e) + 1)$?
- $\Sigma_{e \in E}(\log w(e) + 1) = (\log w(e_1) + 1) + (\log w(e_2) + 1) + \dots + (\log (w(e_{|E|})) + 1)$
- Can we combine these terms into one log using $\log x + \log y = \log xy$?
- $\Sigma_{e \in E}(\log w(e) + 1) = (\log w(e_1) + \log 2) + \dots + (\log (w(e_{|E|})) + \log 2)$
- $\Sigma_{e \in E}(\log w(e) + 1) = \log 2w(e_1) 2w(e_2) \dots 2w(e_{|E|}) = \log \prod_{e \in E} 2w(e)$
- So how to compare $\log \prod_{e \in E} 2w(e)$ and $\log \sum_{e \in E} w(e)$?
- $\begin{aligned} \quad & \text{All } w(e) \text{ are positive integers, so } \prod_{e \in E} 2w(e) \geq \sum_{e \in E} w(e) \\ \quad & \text{Since log is increasing on } \mathbb{Z}^*, \log \prod_{e \in E} 2w(e) \geq \log \sum_{e \in E} w(e) \end{aligned}$

COMPARING T(I) AND Size(I)

We in fact show $T(I) \in O(Size(I))$

$$\begin{split} & O(\log \sum_{e \in E} w(e)) \subseteq^? O(|V| + \Sigma_{e \in E}(\log w(e) + 1) + \Sigma_{e \in E} \log|V|) \\ & \text{How to compare } \log \sum_{e \in E} w(e) \text{ and } \Sigma_{e \in E}(\log w(e) + 1)? \end{split}$$

We just saw $\Sigma_{e \in E}(\log w(e) + 1) = \log \prod_{e \in E} 2w(e) \geq \log \sum_{e \in E} w(e)$

So $T(I) \in O(Size(I)^c)$ where c = 1So this reduction has runtime that is polynomial in the input size!

7

9

PROVING REDUCTIONS CORRECT

- In more complex reductions where we transform the input before calling the oracle, we will need a more complex proof:
- (A) If there is a (n optimal) solution in the input, our transformation will preserve that solution so the oracle can find it, and
- (B) Our transformation doesn't introduce new solutions that are **not** present in the original input
- (i.e., if we find a solution in the transformed input, there was a corresponding solution in the original input)

More on this later...

INPUT SIZE CHEAT SHEET Exponentially larger than

		Opi	indirepresentation	12
Input I	Perfectly fine choices of Size(1)	o write down x=1.	Input /	Examples of BAD choices of Size(1)
int x	1 or n	eed log(1)+1=1 bit.	int x	x
	$\log(x) + 1$ (can simplify to $\log(x) + 1$ or $\log x$)	or x=2 this is 2 bits. For x=4, 3 bits.	Graph (V, E)	$2^{ V }$ or $ V ^{ E }$ or $\sum_{e \in E} w(e)$
Graph (V, E)		y expression that rour analysis easy	A[1n] of int	$\sum_{e \in E} w(e)$ 2^{n} or $\sum_{i} A[i]$
with weights W:	$ \begin{array}{l} V + E \text{ or } \\ \sum_{e \in E} (\log(w(e)) + 1) \text{ or } \\ \sum_{u, v \in V} (\log(w(u, v)) + 1) \\ \text{ any sum of terms above } \end{array} $	or		~= no exponentiation Instant terms
A[1n] of int	$n \text{ or } \sum_{i} (\log(A[i]) + 1)$	Technically any pseudo-polynomial combination of these terms is fine. For example, the following is fine: $(E ^{160} + V ^2) \cdot \sum_{e \in \mathcal{B}} (\log(w(e)) + 1)$		
$n \ge n$ matrix m	n^2 or $\sum_{i,j} (\log(m_{ij}) + 1)$			

So far we know

- TSP-Dec \leq_{P}^{T} TSP-Optimal Value
- TSP-Dec \leq_P^T TSP-Optimization
- TSP-Optimal Value \leq_P^T TSP-Dec

Let's show

TSP-Optimization \leq_P^T TSP-Dec

WHAT ABOUT REDUCING **TSP-OPTIMIZATION TO TSP-DEC?**

13

16

14

RECAP

- Showed three flavours of TSP are polytime-equivalent (i.e., if you can solve one flavour in polytime, you can solve all three flavours in polytime)
- One of these was a decision problem (yes/no), and the other two were not (total weight, actual cycle)

Decision and non-decision flavours

of a problem are often polytime-equivalent

- Proofs for a polytime Turing reduction
 - Correctness (return value is correct for every possible input)
 - (runtime is polynomial in the input size) Polytime [or poly(some lower bound on the input size)] 18

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

v	uppose there is a non-deterministic oracle , vhich returns a subset that sums to 0 <u>if one ex</u> and otherwise can return anything (even gark	
· V	Ve call the oracle's output a certificate	
	Given a certificate , can you verify in polytime whether it describes a solution to the problem	
1 2 3	SubsetSumWithOracle(I) C = Oracle(I) return verify(I, C) Solve subs	nm would
5 6 7	<pre>verify(I, C) if C not subset of I then return fal return (sum(C) == 0)</pre>	"Non-deterministic" is the N in NP, and it is so named because of oracles
	the	ere " non-deterministic " just means e oracle is magically guaranteed to eturn a yes-certificate if one exists

BONUS SLIDES

This should not be surprising, since the same $O(\log w)$ terms are introduced into both space and time complexities...

22

24