
CS 341: ALGORITHMS
Lecture 21: intractability III – complexity class NP, poly transformations

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

THIS TIME

• Complexity class NP

• Oracles, certificates, polytime verification algorithms

• Two problems in NP

• Subset sum

• Hamiltonian Cycle

• Relationship between P and NP

• Polynomial transformations

2

COMPLEXITY CLASS NP
NP: Non-deterministic polynomial time

3

EXAMPLE: SUBSET-SUM PROBLEM
• Suppose we are given some integers, -7, -3, -2, 5, 8

• Does some subset of these sum to zero?

• In this case, yes: (-3) + (-2) + 5 = 0

Suppose I give you a certificate

consisting of an array of numbers,

and claim it represents such a subset

Of course, I might lie and give you a

subset that does not sum to zero…

If I’m telling the truth, then we call

this a yes-certificate. It is is

essentially a proof that

“yes” is the correct output.

I could even give you numbers that

are not in the input…

Finding such a subset can

be extremely difficult

Can you use a yes-certificate to

solve the problem efficiently?

Can you determine whether I am

lying in polynomial time?

4

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

• Suppose there is a non-deterministic oracle,

which returns a subset that sums to 0 if one exists

and otherwise can return anything (even garbage)

• We call the oracle’s output a certificate

• Given a certificate, can you verify in polytime

whether it describes a solution to the problem?

Given such an oracle,

this algorithm would

solve subset-sum

If there exists a subset that

sums to 0, then C is one such

subset, and we return true

Otherwise, either C is not a

subset of the input (return

false), or C sums to a non-

zero value (return false)

Here “non-deterministic” just means

the oracle is magically guaranteed to

return a yes-certificate if one exists

“Non-deterministic” is the

N in NP, and it is so named

because of oracles

5

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

• Suppose there is a non-deterministic oracle,

which returns a subset that sums to 0 if one exists

and otherwise can return anything (even garbage)

• We call the oracle’s output a certificate

• Given a certificate, can you verify in polytime

whether it describes a solution to the problem?

Given a certificate from the

oracle, would verify solve

the problem in poly-time?

6

Test whether C sums to 0

For loop with |𝐶| time…

Input to verify is 𝐼, 𝐶 .

Runtime is 𝑂(𝐶 |𝐼|), which is in

𝑂(𝑆𝑖𝑧𝑒 𝐼 2) = 𝑂(𝐶 + 𝐼 2)

Test whether C is a subset of I

For loop with 𝐶 |𝐼| time…

DUMB SUBSET-SUM ALGORITHM:

PRETEND YOU’RE AN ORACLE AND MAKE CERTS.
Generate every

subset certificate S

Verify certificate S

(valid + sums to zero)

Generating these certificates is

expensive; exponential time! But verifying one certificate is fast;

runtime is 𝑝𝑜𝑙𝑦(𝑆)

If any certificate S sums to zero,

it is a yes-certificate (a proof that the answer to the

decision problem is “true”), and we return true

A certificates that does not sum to zero

doesn’t really prove anything (would need to

know that all certificates sum to non-zero)

7

If there was such a thing as a no-certificate,

what would it look like?

How long would it take to verify it?

8

9

GENERALIZING BEYOND SUBSET-SUM
• You can solve any decision problem in

non-deterministic poly-time, given:

1. a poly-time non-deterministic oracle, and

2. a poly-time 𝒗𝒆𝒓𝒊𝒇𝒚 algorithm

• Such that:

• If 𝐼 is a yes-instance, then the oracle returns a yes-certificate 𝐶
(i.e., a “proof” the answer is “yes”) and 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) returns 𝑡𝑟𝑢𝑒

• If 𝐼 is a no-instance, then 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) returns 𝑓𝑎𝑙𝑠𝑒 for all 𝑪
(i.e., it must be impossible to fool 𝑣𝑒𝑟𝑖𝑓𝑦 into returning true)

• The algorithm: Could you “fool”

the subset-sum

verify function?

10

Our definition of NP will
not explicitly involve non-

deterministic oracles. But it

is based on certificate

verification, which makes
more sense if you think of

such oracles…

Oracle

Oracle

Guesses solution in

O(1) time

Verifies solution

in poly-time

As we are about to see:

existence of a poly-time verifier for

a problem means problem is in NP

verify

verify

11

DEFINING NP

• A decision problem Π is solved by a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦 alg. iff:

• for every yes-instance 𝐼, there exists a certificate 𝐶
such that 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) returns true, and

• for every no-instance 𝐼, 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) returns 𝑓𝑎𝑙𝑠𝑒 for every 𝑪

• The complexity class NP denotes the set of all decision

problems that can be solved by poly-time 𝑣𝑒𝑟𝑖𝑓𝑦 algorithms

• No oracle needed! Note it is not necessary for an oracle to

actually exist for a problem to be in NP.

We can simply assume certificates come from an oracle,

and show a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦 algorithm exists.

Intuition: For a yes-instance, there must exist some certificate that

verify would accept (and, if one exists, the oracle would find it,
solving the problem). For a no-instance, verify must always reject.

Crucial

definition!

12

MECHANICS OF SHOWING A PROBLEM IS IN NP
• How to show Π ∈ 𝑁𝑃

1. Define a yes-certificate

2. Design a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) algorithm

3. Correctness proof

• Case 1: Let 𝐼 be any yes-instance;

Find 𝐶 such that 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒

• Case 2: Let 𝐼 be any no-instance,

 and 𝐶 be any certificate;

Prove 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑓𝑎𝑙𝑠𝑒

Subset-sum as an example:

A yes-certificate is a list of

indices in the input array where

the elements should sum to 0

How to verify a certificate 𝐶 is a

subset of input 𝑰 with sum zero?

∀𝑐 ∈ 𝐶, add 𝐼[𝑐] to sum,

and return true iff sum=0

𝑶(𝑪)
time

This is certainly

polytime…

Case 1: Let 𝐼 be a yes-instance.

There is a subset in 𝑰 that sums to 0.

For any such subset 𝐶, verify(I,C) will return true.

Case 2: Let 𝐼 be a no-instance & 𝐶 be any certificate.

No subset of 𝑰 sums to 0.

So,Σ𝑐∈𝐶 𝐼 𝑐 ≠ 0 and verify returns false.

So, subset-sum ∈ 𝑵𝑷
13

ANOTHER EXAMPLE:

HAMILTONIAN CYCLE PROBLEM

Let’s show that this

problem is in NP!

Have to find a poly-time

𝑣𝑒𝑟𝑖𝑓𝑦 algorithm…

Defining a yes-certificate:

array of nodes representing a

Hamiltonian cycle

How to verify that a

given array of nodes

represents a cycle?

How about a

Hamiltonian cycle?

14

EXAMPLE: SHOWING “HAMILTONIAN CYCLE” IS IN NP

This is a 𝒗𝒆𝒓𝒊𝒇𝒚 algorithm that

we imagine being called on

the certificate 𝑋 produced

by 𝑜𝑟𝑎𝑐𝑙𝑒(𝐺)

If 𝐺 is a yes-instance of the problem, then must show there exists

some possible certificate 𝑿 for which this procedure returns will true

What would such a

certificate look like?

A certificate X consists of an

array of node names (1…n),

which might represent a

Hamiltonian cycle

Yes-instance implies there is a Hamiltonian cycle.

Suppose 𝑋 is a sequence of 𝑛 consecutive nodes on that cycle.
Then we return true!

15

EXAMPLE: SHOWING “HAMILTONIAN CYCLE” IS IN NP

If 𝐺 is a no-instance of the problem, then
“every possible certificate should cause verify to return false”

So, Hamiltonian Cycle is in NP

Easier to prove the contrapositive:
“if verify returns true, then 𝐺 is a yes-instance.”

If we return true, then the graph

contains a cycle with 𝑛 distinct nodes…

So 𝐺 is a yes-instance

16

This is a 𝒗𝒆𝒓𝒊𝒇𝒚 algorithm that

we imagine being called on

the certificate 𝑋 produced

by 𝑜𝑟𝑎𝑐𝑙𝑒(𝐺)

A certificate X consists of an

array of node names (1…n),

which might represent a

Hamiltonian cycle

HOW ARE P AND NP RELATED?

• 𝑃 ⊆ 𝑁𝑃

• Consider a problem Π ∈ 𝑃

• We show there exists a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) such that:

• For every yes-instance 𝐼 of Π, 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒 for some 𝐶

• For every no-instance 𝐼 of Π, 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑓𝑎𝑙𝑠𝑒 for all 𝐶

• By definition, there is a poly-time algorithm 𝐴 to solve Π

• Implement 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) by simply running 𝐴(𝐼) [ignoring 𝑪]

• Regardless of what 𝐶 is, 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) satisfies the above

• How about 𝑁𝑃 ⊆ 𝑃 ? Million dollar question. We think not.

17

POLYNOMIAL TRANSFORMATIONS
A subclass of poly-time reductions

commonly used for NP-completeness and impossibility results

18

POLYNOMIAL TRANSFORMATIONS

[Mechanics] to give a polynomial

transformation, you must:

1. specify 𝑓(𝐼),

2. show it runs in poly-time, and

3. show 𝐼 is a yes-instance of Π1 IFF
𝑓(𝐼) is a yes-instance of Π2.

19

POLYNOMIAL TRANSFORMATIONS (CONT.) Also known as

Karp reductions

and many-one

reductions

We saw one

instance where a

contrapositive was

easier to prove

when we discussed
Hamiltonian cyclesThe contrapositive can help when it is hard to

precisely characterize certificates for no-instances
(or when such certificates don’t prove much) 20

SUMMARIZING
THE MORE CONVENIENT DEFINITION

• Let Π1 and Π2 be decision problems

• 𝚷𝟏 ≤𝑷 𝚷𝟐 iff there exists 𝑓 ∶ ℐ Π1 → ℐ(Π2) such that:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(Π1)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(Π1) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(Π2)

• If 𝒇(𝑰) ∈ 𝓘𝒚𝒆𝒔(𝚷𝟐) then 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝚷𝟏)

This is the contrapositive. Was previously (2 slides ago):
If 𝐼 ∈ ℐ𝑛𝑜(Π1) then 𝑓 𝐼 ∈ ℐ𝑛𝑜 Π2

Note: this is the same as saying
(𝑰 ∈ 𝓘𝒚𝒆𝒔 𝚷𝟏) ⇔ (𝒇 𝑰 ∈ 𝓘𝒚𝒆𝒔 𝚷𝟐)

This property justifies correctness

for the following generic

poly-time Karp reduction:

P1toP2KarpReduction(I)

fI = f(I)

return OracleForP2(fI)
21

EXAMPLE POLYNOMIAL TRANSFORMATION

4-clique

3-vertex

cover

2-vertex

cover

22

CLIQUE ≤𝑃 VERTEX-COVER
• Suppose 𝐼 = (𝐺, 𝑘) is an instance of Clique

where 𝐺 = 𝑉, 𝐸 , 𝑉 = {𝑣1, … , 𝑣𝑛} and 1 ≤ 𝑘 ≤ 𝑛

• Construct instance 𝑓 𝐼 = (ഥ𝑮, 𝑛 − 𝑘) of Vertex-Cover,
where 𝐻 = (𝑉, ത𝐸) and 𝑣𝑖𝑣𝑗 ∈ ത𝐸 ⇔ 𝑣𝑖𝑣𝑗 ∉ 𝐸

Consider the complement graph ഥ𝑮 of 𝐺

Every edge of 𝐺
is a non-edge of ഥ𝑮.

Every non-edge of 𝐺

is an edge of ഥ𝑮.

Want to solve

𝐶𝑙𝑖𝑞𝑢𝑒(𝐺, 𝑘)

Idea: reduce to

𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(ഥ𝑮, 𝑛 − 𝑘)

Claim: there is a 𝑘-clique in 𝐺 iff

there is an 𝑛 − 𝑘 Vertex-Cover in ഥ𝑮

Given an adjacency

matrix for 𝐺, get ഥ𝑮 by

flipping 0’s and 1’s.

23

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

• We denote Clique by 𝐶𝐿 and Vertex-Cover by 𝑉𝐶

• 𝐶𝐿 ≤𝑃 𝑉𝐶 iff there exists 𝑓 ∶ ℐ 𝐶𝐿 → ℐ(𝑉𝐶) such that:

• 𝒇(𝑰) is computable in poly-time, for all 𝑰 ∈ 𝓘(𝑪𝑳)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(𝑉𝐶)

• If 𝑓(𝐼) ∈ ℐ𝑦𝑒𝑠(𝑉𝐶) then 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿)

First let’s

show this

24

COMPLEXITY OF THE TRANSFORMATION
• Suppose 𝑰 = (𝑮, 𝒌) is an instance of Clique

where 𝐺 = 𝑉, 𝐸 , 𝑉 = {𝑣1, … , 𝑣𝑛} and 1 ≤ 𝑘 ≤ 𝑛

• Construct instance 𝒇 𝑰 = (ഥ𝑮, 𝒏 − 𝒌) of Vertex-Cover,
where ഥ𝑮 = (𝑉, ത𝐸) and 𝑣𝑖𝑣𝑗 ∈ ത𝐸 ⇔ 𝑣𝑖𝑣𝑗 ∉ 𝐸

Assuming adjacency matrix,

𝑆𝑖𝑧𝑒 𝐼 = Θ(𝑛2 + log2 𝑘)

Constructing ഥ𝑮 takes O(𝑛2) time, and

computing 𝑛 − 𝑘 takes O(log 𝑛) time.

So computing 𝑓(𝐼) takes O(𝑛2) time,

which is polynomial in 𝑆𝑖𝑧𝑒 𝐼 .

Want to solve

𝐶𝑙𝑖𝑞𝑢𝑒(𝐺, 𝑘)

Idea: reduce to

𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(ഥ𝑮, 𝑛 − 𝑘)

Time to compute 𝒇(𝑰)?

25

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

• We denote Clique by 𝐶𝐿 and Vertex-Cover by 𝑉𝐶

• 𝐶𝐿 ≤𝑃 𝑉𝐶 iff there exists 𝑓 ∶ ℐ 𝐶𝐿 → ℐ(𝑉𝐶) such that:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(𝐶𝐿)

• If 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝑪𝑳) then 𝒇 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝑽𝑪)

• If 𝑓(𝐼) ∈ ℐ𝑦𝑒𝑠(𝑉𝐶) then 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿)

Now let’s show this, i.e.,

if 𝑮 contains a 𝒌-clique then
ഥ𝑮 contains an 𝒏 − 𝒌 vertex cover.

26

PROVING: 𝐼 ∈ ℐ𝑦𝑒𝑠 𝐶𝐿 ⇒ 𝑓(𝐼) ∈ ℐ𝑦𝑒𝑠(𝑉𝐶)
• Suppose 𝐼 = (𝐺, 𝑘) is a yes-instance of Clique

• Then there is a set 𝑊 of 𝑘 vertices

in a clique (with all-to-all edges)

• Define 𝑾 = 𝑉 ∖ 𝑊. Clearly 𝑾 = 𝑛 − 𝑘.

• We claim 𝑾 is a vertex cover of ഥ𝑮

• Consider any edge 𝑢, 𝑣 ∈ ഥ𝑮

• If either 𝑢 or 𝑣 is in 𝑾, then we are done,

so assume 𝑢, 𝑣 ∉ 𝑾 to obtain a contradiction

• Then 𝑢, 𝑣 ∈ 𝑊, and 𝑊 is a clique in 𝐺, so 𝒖, 𝒗 ∈ 𝑮

• But 𝑢, 𝑣 ∈ ഥ𝑮 implies 𝑢, 𝑣 ∉ 𝐺. Contradiction!

Example:

𝐶𝑙𝑖𝑞𝑢𝑒(𝐺, 4) 𝑾

𝑾

Graph ഥ𝑮

Graph 𝑮

27

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

• We denote Clique by 𝐶𝐿 and Vertex-Cover by 𝑉𝐶

• 𝐶𝐿 ≤𝑃 𝑉𝐶 iff there exists 𝑓 ∶ ℐ 𝐶𝐿 → ℐ(𝑉𝐶) such that:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(𝐶𝐿)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(𝑉𝐶)

• If 𝒇(𝑰) ∈ 𝓘𝒚𝒆𝒔(𝑽𝑪) then 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝑪𝑳) Now let’s show this, i.e.,

if ഥ𝑮 contains an 𝒏 − 𝒌 vertex cover,

then 𝑮 contains a 𝒌-clique

28

PROVING: 𝑓(𝐼) ∈ ℐ𝑦𝑒𝑠 𝑉𝐶 ⇒ 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿)
• Suppose 𝑓(𝐼) = (ഥ𝑮, 𝑛 − 𝑘) is a yes-instance of 𝑉𝐶

• Then there is a set of 𝑛 − 𝑘 vertices 𝑾
that is a vertex cover of ഥ𝑮

• Define 𝑊 = 𝑉 ∖ 𝑾. Clearly 𝑊 = 𝑘.

• We claim 𝑊 is a clique in 𝐺

• Since 𝑾 is a vertex cover of ഥ𝑮,

every edge in ഥ𝑮 has at least one endpoint in 𝑾

• Therefore, no edge in ഥ𝑮 has two endpoints in 𝑊

• So, in 𝑮, there are edges between all pairs

of nodes in 𝑊. So, 𝑊 is a clique in 𝐺.

𝑾

𝑾

Graph ഥ𝑮

Graph 𝑮

So, we have demonstrated a polynomial transformation

from CLIQUE to VERTEX-COVER 29

