CS 341: ALGORITHMS

Lecture 21: intractability Il - complexity class NP, poly fransformations

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

THIS TIME

Complexity class NP
Oracles, certificates, polytime verification algorithms
Two problems in NP
Subset sum
Hamiltonian Cycle
Relationship between P and NP
Polynomial fransformations

COMPLEXITY CLASS NP

NP: Non-deterministic polynomial time

EXAMPLE: SUBSET-SUM PROBLEM

Suppose we are given some integers, -7, -3, -2, 5, 8

Finding such a subset can
be extremely difficult

Does some subset of these sum to zero? !

In This ccsw +(-2)+5=0

Suppose | give you a certificate 4= Of course, | might lie and give you o
consisting of an array of numbers, \‘ subset that does not sum to zero...
and claim it represents such a subset g
s UG S
If I'm telling the truth, then we call | could even give you numbers that
this a yes-certificate. It is is are not in the input...

essentially a proof that
‘yes' is the correct output.

Can you determine whether | am
lying in polynomial time?

Can you use a yes-certificate to
solve the problem efficiently?

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

Otherwise, either C is not a

Suppose there is a non-deterministic oracle, subset of the input (refurn

which refurns a subset that sums to 0 if one exists false), or C sums o a non-
and otherwise can return anything (even garbage) zero value (return false)
We call the oracle’s output a certificate \//

Gi tficat iy i Ivii If there exists a subset that
iven a certificate, can you verify in polytime sums 1o 0. then C is one such

whether it describes a solution to the problem®@ subset. and we return true

SubsetSumWithOracle (I) | Given such an oracle, /
C = Oracle(I) ﬁ this algorithm would

return verify (I, C) solve subset-sum

fo Y 2 T 5 BT < P T A R

verify (I, C) “Non-deterministic” is the
if C not subset of I then return false N in NP, and it is so named
return (sum(C) == 0) because of oracles

Here “non-deterministic’ just means
the oracle is magically guaranteed to
return a yes-certificate if one exists

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

Suppose there is a non-deterministic oracle,
which returns a subset that sums to 0 if one exists
and otherwise can return anything (even garbage)

We call the oracle’s output a certificate

Given a certificate, can you verify in polytime
whether it describes a solution to the problem®@

SubsetSumWithOracle (I)
C = Oracle(I)
return verify (I, C)

verify (I, C)
if C not subset of I then return false
return (sum(C) == 0)

fo Y 2 T 5 BT < P T A R

Given a certificate from the
oracle, would verify solve
the problem in poly-time?

Test whe’rh/e\r C is a subset of |

_

For loop with |C||I| time...

Test whether C sums o O

—~—
For loop with |C]| fime...

Input to verify is (I, C).
Runtime is O(|C||I]), which isin
0(Size(1)*) = 0((IC] + [I)?)

DUMB SUBSET-SUM ALGORITHM:
PRETEND YOU'RE AN ORACLE AND MAKE CERITS.

SubsetSum(X[1..n])

= W

feturn false

, 2 Generate every
for every possible subset S of X — subset certificate §

if sumsToZero (S) then return true i

If any certificate S sums to zero,
it is a yes-certificate (a proof that the answer to the
decision problem is “true”), and we return frue

Verify cerlificate S
(valid + sums to zero)

Generating these certificates is

A certificates that does not sum to zero
doesn’'t really prove anything (would need to
know that all certificates sum to non-zero)

expensive; exponential time! But verifying one certificate is fast;
runtime is poly(|S|)

If there was such a thing as a no-certificate,

what would it look likee |
How long would it take to verify ite |

Certificates

Certificate: Informally, a certificate for a yes-instance I is some “extra
information” C' which makes it easy to verify that [is a yes-instance.

Certificate Verification Algorithm: Suppose that Ver is an algorithm
that verifies certificates for yes-instances. Then Ver(I,C) outputs “yes" if
I is a yes-instance and C is a valid certificate for I. If Ver(I,C') outputs
“no", then either I is a no-instance, or [is a yes-instance and C is an
invalid certificate.

Polynomial-time Certificate Verification Algorithm: A certificate
verification algorithm Ver is a polynomial-time certificate verification
algorithm if the complexity of Ver is O(n*), where k is a positive integer
and n = Size(I).

Always keep the following in mind: finding a certificate can be much
more difficult than verifying a given certificate.

As a rough analogy, finding a proof for a theorem can be much harder
than verifying the correctness of someone else’s proof.

GENERALIZING BEYOND SUBSET-SUM

You can solve any decision problem in
non-deterministic poly-tfime, given:

a poly-time non-deterministic oracle, and

a poly-tfime verify algorithm
Such that:

Our definition of NP will
not explicitly involve non-
deterministic oracles. But it
is based on certificate
verification, which makes
more sense if you think of
such oracles...

It I 1s a yes-instance, then the oracle returns a yes-certificate C
(I.e., a “proot” the answer is “yes”) and verify(l, C) returns true

If I 1s a no-instance, then verify(l,C) returns false for all C
(I.e., It must be impossible to fool verify into returning true)

The algorithm:

C = Oracle(I)
return verifvy (I,

1 SolveAnyProblemWithOracle (I)

C)

Could you “fool”
the subset-sum
verify functione

10

THE FILES ARE ON THIS USB DRIVE

DID YOU JUST... PLUG THAT IN

CORRECTLY ON YOUR FIRST TRY?

Guesses solution in
O(1) time

Verifies solution
in poly-time

As we are about to see:
existence of a poly-time verifier for
a problem means problem is in NP

11

Intuition: For a yes-instance, there must exist some certificate that

DEFINING NP verify would accept (and, if one exists, the oracle would find it,

solving the problem). For a no-instance, verifty must always reject.

for every yes-instance I, there exists a certificate C
such that verify(l, C) returns frue, and

A decision problem I1 is solved by a poly-time verify alg. iff:

Crucial
definition!

for every no-instance I, verify(I,C) returns false for every C

The complexity class NP denotes the set of all decision

problems that can be solved by poly-time verify algorithms
No oracle needed! Note it is not necessary for an oracle to

actually exist for a problem to be in NP.

We can simply assume certificates come from an oracle,

and show a poly-time verify algorithm exists.

12

MECHANICS OF SHOWING A PROBLEM IS IN NP

How to show Il € NP

Subset-sum as an example:
A yes-certificate is a list of

Define a yes-certificate —

indices in the input array where

Design a poly-time verify(l, C) algorithm ~—

Correctness proof

Case 1: Let I be any yes-instance;
Find C such that verify(I, C) = true

Case 2: Let I be any no-instance,
and C be any certificate;
Prove verify(Il,C) = false

— the elements should sumto 0

How to verify a certificate C is a
subset of input I with sum zero?

Vc € C, add I[c] to sum, o(lc))
and return frue iff sum=0 time
This is certainly
polytime...

Case 2: Let I be a no-instance & € be any certificate.

Case 1: Let I be a yes-instance.
There is a subset in I that sums to 0.
For any such subset C, verify(l,C) will return true.

No subset of I sums to 0.
S0.2.cc Ilc] # 0 and verify returns false.

So, subset-sum € NP

13

ANOTHER EXAMPLE:
HAMILTONIAN CYCLE PROBLEM

Problem 7.2
Hamiltonian Cycle

Instance: An undirected graph G = (V, FE).
Question: Does G contain a hamiltonian cycle?

A hamiltonian cycle is a cycle that passes through every vertex in V

exactly once.

Let’'s show that this
problem is in NP!

Have o find a poly-time
verify algorithm...

*—0
|
@

® 0 ©°
o0 @

O

Defining a yes-certificate: How to verify that a
array of nodes representing o given array of nodes

Hamiltonian cycle

represents a cycle?

How about a
Hamiltonian cycle?¢

14

EXAMPLE: SHOWING “"HAMILTONIAN CYCLE" IS IN NP

W @ J4 o 0 s W N K-

[
o

HamiltonianCycleVerify (G=(V,n,E,m), X)
if size(X) is not n then return false

used|[1l..n] = array containing all false
for i1 = 1..n
if used[X[i]] then return false
used|[X[1]] = true
for & = 1.. (n—1)
1f no edge X[i] to X[i+1] then return false
if no edge X[n] to X[1] then return false

return true

This is a verify algorithm that
we imagine being called on
the certificate X produced
by oracle(G)

A cerlificate X consists of an
array of node names (1...n),
which might represent a
Hamiltonian cycle

If G is a yes-instance of the problem, then must show there exists
some possible certificate X for which this procedure returns will tfrue

What wou|d such a Yes-instance implies there is a Hamiltonian cycle.
certificate look like? Suppose X is a sequence of n consecutive nodes on that cycle.

Then we retfurn frue!

15

EXAMPLE: SHOWING “"HAMILTONIAN CYCLE" IS IN NP

1 HamiltonianCycleVerify(G=(V,n,E,m), X) This is a verify algorithm that
2 if size(X) is not n then return false we imogine being called on
Z tflcs)idl[_ :4.] — array containing all false the certificate X produced
5 if used[X[i]] then return false bY‘”Tuje(G)

6 used|[X[1]] = true ope .

g for i = 1. n-1) A cerlificate X consists of an
8 if no edge X[1] to X[i+1l] then return false array of node names (1...n),
9 if no edge X[n] to X[1] then return false which mighf repregen’r q

return true

[
o

Hamiltonian cycle

If G is a no-instance of the problem, then
“every possible certificate should cause verify to return false”

Easier to prove the contrapositive: If we return true, then the graph
“Iif verify returns true, then G is a yes-instance.” contains a cycle with n distinct nodes...
\ So G is a yes-instance

So, Hamiltonian Cycle is in NP

16

HOW ARE P AN

P € NP

D NP RELATE

Consider a problem I1 € P

D¢

We show there exists a poly-time verify(I, C) such that:

For every yes-instance I of I, verify(I,C) = true for some C

For every no-instance I of I1, verify(I,C) = false tfor all C

By definition, there is a poly-time algorithm A to solve II

Implement verify(l, C) by simply running A(I) [ignhoring C]

Regardless of what C is, verify(I, C) safisties the above

How about NP € P? ﬁ Million dollar question. We think not.

17

POLYNOMIAL TRANSFORMATIONS

A subclass of poly-time reductions

commonly used for NP-completeness and impossibility results

18

POLYNOMIAL TRANSFORMATIONS

For a decision problem II, let Z(II) denote the set of all instances of II.
Let Zyes(II) and Zyo(II) denote the set of all yes-instances and

no-instances (respectively) of 1I.

Suppose that II; and Il are decision problems. We say that there is a
polynomial transformation from II; to Il; (denoted II; <p Il3) if there
exists a function f : Z(II;) — Z(Ils) such that the following properties are

satisfied:

f(I) is computable in polynomial time (as a function of size([),

where I € Z(11;))
if I € Zyes(Il1), then f(I) € Zyes(Il2)
if I € Ino(1ly), then f(I) € Ino(Ilo)

[Mechanics] to give a polynomial
transformation, you must:
1. specify f (1),
2. show it runs in poly-time, and
3. show [is a yes-instance of I1; IFF
f () is a yes-instance of II,.

19

POLYNOMIAL TRANSFORMATIONS (CONT.) [Asoknownas

Karp reductions

A polynomial transformation can be thought of as a (simple) special case and many-one
of a polynomial-time Turing reduction, i.e., if I} <p Ils, then II; <% II;. reductions

Given a polynomial transformation f from II; to Il5, the corresponding
Turing reduction is as follows:

Given I € Z(Il,), construct f(I) € Z(1l,).
Given an oracle for Iy, say A, run A(f(1)).

We transform the instance, and then make a single call to the oracle.

Very important point: We do not know whether I is a yes-instance or a

We saw one
To prove the implication “if I € Z,,o(I1;), then f(I) € Zno(Il2)", we instance where a

usually prove the contrapositive statement “if f([) € Zyes(Il2), then contrapositive was

I € Tyes(ITy). easier to prove
when we discussed

no-instance of II; when we transform it to an instance f([/) of Ils. %

precisely characterize certificates for no-instances
(or when such certificates don't prove much)

The contrapositive can help when it is hard to |/I—’ Hamiltonian cycles

20

SUMMARIZING

THE MORE CONVENIENT DEFINITION

Let [1; and 1, be decision problems

1, <p I, iff there exists f : 7(I1;) — I(II,) such that:
f(I) is computable in poly-time, for all I € 7(I1;)

f 1 € Tyes(ITy) then F(I) € Tyes(I1) }4

If (I) € J,5(T1;) then I € 7,,.4(T1)

T

Note: this is the same as saying
(I € ~7yes(r[1)) < (f(I) € gyes(nz))

This is the contrapositive. Was previously (2 slides ago):
If I € 9,,(I1,) then £(I) € 7,,(I1,)

This property justifies correctness
for the following generic

poly-time Karp reduction:

PltoP2KarpReduction (I)
fI = £(I)
return OracleForP2 (£fI)

&1

EXAMPLE POLYNOMIAL TRANSFORMATION

e et A

3-vertex
cover

2-vertex
cover

CLIQUE <p VERTEX-COVER

Suppose I = (G, k) is an instance of Clique
where G = (V,E),V ={v,.., vy} and 1<k <n

Want to solve

Clique(G, k) Claim: there is a k-clique in G iff

there is an (n — k) Vertex-Coverin G

Construct instance f(I) = (G,n — k) of Vertex-Cover,
where H = (V, E) and ViVj €eE o ViVj ¢ E

Consider the complement graph G of G

ldeq: reduce to 2
VertexCover(G,n — k) . Every edge of G J Given an adjacency
is a non-edge of G. matrix for G, get G by

Every non-edge of G \ flipping 0's and 1's.

is an edge of G.

23

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

We denote Cligue by CL and Vertex-Cover by VC
CL <p VC iff there exists f : I(CL) - J(VC) such that:

f(I) is computable in poly-time, forall I € 7(CL) % Si']réuiiss

If I € Jyes(CL) then f(I) € Jyes(VC)
if f(I) € Jes(VC) then I € J,,,5(CL)

24

COMPLEXITY OF THE TRANSFORMATION | Assuming adiacency matrix.

Size(I) = ©(n® + log, k)

Suppose I = (G, k) is an instance of Clique Time to compute f(1)?

where G = (V,E),V ={v,.., vy} and 1<k <n

Want to solve
Clique(G, k)

Constructing G takes 0(n?) time, and
computing n — k takes O(logn) fime.

So computing f(I) takes 0(n?) time,

which is polynomial in Size(I).

Construct instance f(I) = (G,n — k) of Vertex-Cover,

where E = (V, E) and ViVj €eE o ViV;j ¢ E

ldea: reduce to
VertexCover(G,n — k)

25

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

We denote Cligue by CL and Vertex-Cover by VC
CL <p VC iff there exists f : I(CL) - J(VC) such that:
f(I) is computable in poly-time, for all I € 3(CL)

If I € Tye5(CL) then f(I) € Tyes(VC) ﬁ G contains o k.-clique then
it f(I) € T,es(VC) then I € J,,,5(CL)

G contains an (n — k) vertex cover.

26

PROVING: I € J,,5(CL) = f(I) € J,e5(VC)

Suppose I = (G, k) is a yes-instance of Clique

Then there is a set W of k vertices
iIn a cligue (with all-to-all edges)

Define W =V \ W. Clearly |W| =n — k.
We claim W is a vertex cover of G
Consider any edge (u,v) € G

Graph G

Example:
Clique(G,4) W

Graph G

If either u or visin W, then we are done, ”
SO assume u, v € W to obtain a contradiction

Thenu,veW,and W is acligue in G, so (u,v) € G

But (u,v) € G implies (u,v) € G. Contradiction!

27

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

We denote Cligue by CL and Vertex-Cover by VC

CL <p VC iff there exists f : I(CL) - J(VC) such that:
f(I) is computable in poly-time, for all I € 3(CL)
If I € Jyes(CL) then f(I) € Jyes(VC)

if G contains an (n — k) vertex cover,
then G contains a k-clique

If f(I) € 7yeS(VC) thenl € ~7yes(CL)ﬁ Now let’s show this, i.e.,

28

PROVING: f(I) € J,,es(VC) = 1 € 9,65(CL) Graph i
Suppose f(I) = (G,n — k) is a yes-instance of VC

Then there is a set of n — k vertices W o

that is a vertex cover of G w

Define W =V \ W. Clearly |W| = k.

We claim W is a clique In G Graph 6

Since W is a vertex cover of G,
every edge in G has at least one endpoint in W

Therefore, no edge in G has two endpoints in W

SO, In G, there are edges between all pairs
of nodesin W.So, Wis a cliqueinG.

So, we have demonstrated a polynomial fransformation
from CLIQUE to VERTEX-COVER 29

