
CS 341: ALGORITHMS
Lecture 22: intractability IV – poly transformations, NP completeness

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

POLYNOMIAL TRANSFORMATIONS
commonly used for NP-completeness and impossibility results

2

POLYNOMIAL TRANSFORMATIONS

[Mechanics] to give a polynomial

transformation, you must:

1. specify 𝑓(𝐼),

2. show it runs in poly-time, and

3. show 𝐼 is a yes-instance of Π1 IFF
𝑓(𝐼) is a yes-instance of Π2.

3

POLYNOMIAL TRANSFORMATIONS (CONT.) Also known as

Karp reductions

and many-one

reductions

We saw one

instance where a

contrapositive was

easier to prove

when we discussed
Hamiltonian cyclesThe contrapositive can help when it is hard to

precisely characterize certificates for no-instances
(or when such certificates don’t prove much) 4

SUMMARIZING
THE MORE CONVENIENT DEFINITION

• Let Π1 and Π2 be decision problems

• 𝚷𝟏 ≤𝑷 𝚷𝟐 iff there exists 𝑓 ∶ ℐ Π1 → ℐ(Π2) such that:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(Π1)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(Π1) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(Π2)

• If 𝒇(𝑰) ∈ 𝓘𝒚𝒆𝒔(𝚷𝟐) then 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝚷𝟏)

This is the contrapositive. Was previously (2 slides ago):
If 𝐼 ∈ ℐ𝑛𝑜(Π1) then 𝑓 𝐼 ∈ ℐ𝑛𝑜 Π2

Note: this is the same as saying
(𝑰 ∈ 𝓘𝒚𝒆𝒔 𝚷𝟏) ⇔ (𝒇 𝑰 ∈ 𝓘𝒚𝒆𝒔 𝚷𝟐)

This property justifies correctness

for the following generic

poly-time Karp reduction:

P1toP2KarpReduction(I)

fI = f(I)

return OracleForP2(fI)
5

EXAMPLE POLYNOMIAL TRANSFORMATION

4-clique

3-vertex

cover

2-vertex

cover

6

CLIQUE ≤𝑃 VERTEX-COVER
• Suppose 𝐼 = (𝐺, 𝑘) is an instance of Clique

where 𝐺 = 𝑉, 𝐸 , 𝑉 = {𝑣1, … , 𝑣𝑛} and 1 ≤ 𝑘 ≤ 𝑛

• Construct instance 𝑓 𝐼 = (ഥ𝑮, 𝑛 − 𝑘) of Vertex-Cover,
where 𝐻 = (𝑉, ത𝐸) and 𝑣𝑖𝑣𝑗 ∈ ത𝐸 ⇔ 𝑣𝑖𝑣𝑗 ∉ 𝐸

Consider the complement graph ഥ𝑮 of 𝐺

Every edge of 𝐺
is a non-edge of ഥ𝑮.

Every non-edge of 𝐺

is an edge of ഥ𝑮.

Want to solve

𝐶𝑙𝑖𝑞𝑢𝑒(𝐺, 𝑘)

Idea: reduce to

𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(ഥ𝑮, 𝑛 − 𝑘)

Claim: there is a 𝑘-clique in 𝐺 iff

there is an 𝑛 − 𝑘 Vertex-Cover in ഥ𝑮

Given an adjacency

matrix for 𝐺, get ഥ𝑮 by

flipping 0’s and 1’s.

7

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

• We denote Clique by 𝐶𝐿 and Vertex-Cover by 𝑉𝐶

• 𝐶𝐿 ≤𝑃 𝑉𝐶 iff there exists 𝑓 ∶ ℐ 𝐶𝐿 → ℐ(𝑉𝐶) such that:

• 𝒇(𝑰) is computable in poly-time, for all 𝑰 ∈ 𝓘(𝑪𝑳)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(𝑉𝐶)

• If 𝑓(𝐼) ∈ ℐ𝑦𝑒𝑠(𝑉𝐶) then 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿)

First let’s

show this

8

COMPLEXITY OF THE TRANSFORMATION
• Suppose 𝑰 = (𝑮, 𝒌) is an instance of Clique

where 𝐺 = 𝑉, 𝐸 , 𝑉 = {𝑣1, … , 𝑣𝑛} and 1 ≤ 𝑘 ≤ 𝑛

• Construct instance 𝒇 𝑰 = (ഥ𝑮, 𝒏 − 𝒌) of Vertex-Cover,
where ഥ𝑮 = (𝑉, ത𝐸) and 𝑣𝑖𝑣𝑗 ∈ ത𝐸 ⇔ 𝑣𝑖𝑣𝑗 ∉ 𝐸

Assuming adjacency matrix,

𝑆𝑖𝑧𝑒 𝐼 = Θ(𝑛2 + log2 𝑘)

Constructing ഥ𝑮 takes O(𝑛2) time, and

computing 𝑛 − 𝑘 takes O(log 𝑛) time.

So computing 𝑓(𝐼) takes O(𝑛2) time,

which is polynomial in 𝑆𝑖𝑧𝑒 𝐼 .

Want to solve

𝐶𝑙𝑖𝑞𝑢𝑒(𝐺, 𝑘)

Idea: reduce to

𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑣𝑒𝑟(ഥ𝑮, 𝑛 − 𝑘)

Time to compute 𝒇(𝑰)?

9

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

• We denote Clique by 𝐶𝐿 and Vertex-Cover by 𝑉𝐶

• 𝐶𝐿 ≤𝑃 𝑉𝐶 iff there exists 𝑓 ∶ ℐ 𝐶𝐿 → ℐ(𝑉𝐶) such that:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(𝐶𝐿)

• If 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝑪𝑳) then 𝒇 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝑽𝑪)

• If 𝑓(𝐼) ∈ ℐ𝑦𝑒𝑠(𝑉𝐶) then 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿)

Now let’s show this, i.e.,

if 𝑮 contains a 𝒌-clique then
ഥ𝑮 contains an 𝒏 − 𝒌 vertex cover.

10

PROVING: 𝐼 ∈ ℐ𝑦𝑒𝑠 𝐶𝐿 ⇒ 𝑓(𝐼) ∈ ℐ𝑦𝑒𝑠(𝑉𝐶)
• Suppose 𝐼 = (𝐺, 𝑘) is a yes-instance of Clique

• Then there is a set 𝑊 of 𝑘 vertices

in a clique (with all-to-all edges)

• Define 𝑾 = 𝑉 ∖ 𝑊. Clearly 𝑾 = 𝑛 − 𝑘.

• We claim 𝑾 is a vertex cover of ഥ𝑮

• Consider any edge 𝑢, 𝑣 ∈ ഥ𝑮

• If either 𝑢 or 𝑣 is in 𝑾, then we are done,

so assume 𝑢, 𝑣 ∉ 𝑾 to obtain a contradiction

• Then 𝑢, 𝑣 ∈ 𝑊, and 𝑊 is a clique in 𝐺, so 𝒖, 𝒗 ∈ 𝑮

• But 𝑢, 𝑣 ∈ ഥ𝑮 implies 𝑢, 𝑣 ∉ 𝐺. Contradiction!

Example:

𝐶𝑙𝑖𝑞𝑢𝑒(𝐺, 4) 𝑾

𝑾

Graph ഥ𝑮

Graph 𝑮

11

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

• We denote Clique by 𝐶𝐿 and Vertex-Cover by 𝑉𝐶

• 𝐶𝐿 ≤𝑃 𝑉𝐶 iff there exists 𝑓 ∶ ℐ 𝐶𝐿 → ℐ(𝑉𝐶) such that:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(𝐶𝐿)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(𝑉𝐶)

• If 𝒇(𝑰) ∈ 𝓘𝒚𝒆𝒔(𝑽𝑪) then 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝑪𝑳) Now let’s show this, i.e.,

if ഥ𝑮 contains an 𝒏 − 𝒌 vertex cover,

then 𝑮 contains a 𝒌-clique

12

PROVING: 𝑓(𝐼) ∈ ℐ𝑦𝑒𝑠 𝑉𝐶 ⇒ 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐶𝐿)
• Suppose 𝑓(𝐼) = (ഥ𝑮, 𝑛 − 𝑘) is a yes-instance of 𝑉𝐶

• Then there is a set of 𝑛 − 𝑘 vertices 𝑾
that is a vertex cover of ഥ𝑮

• Define 𝑊 = 𝑉 ∖ 𝑾. Clearly 𝑊 = 𝑘.

• We claim 𝑊 is a clique in 𝐺

• Since 𝑾 is a vertex cover of ഥ𝑮,

every edge in ഥ𝑮 has at least one endpoint in 𝑾

• Therefore, no edge in ഥ𝑮 has two endpoints in 𝑊

• So, in 𝑮, there are edges between all pairs

of nodes in 𝑊. So, 𝑊 is a clique in 𝐺.

𝑾

𝑾

Graph ഥ𝑮

Graph 𝑮

So, we have demonstrated a polynomial transformation

from CLIQUE to VERTEX-COVER 13

COMPLEXITY CLASS NP-COMPLETE

14

COMPLEXITY CLASS NP-COMPLETE (NPC)

15

Real-world problem people care about!

For example, used extensively to argue

correctness for new processor designs.

Challenging and powerful result!

How to prove any NP problem anyone will ever

come up with is solved by a reduction to SAT?

Example: 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑟 ∨ ¬𝑝 ∨ 𝑠 ∨ ¬𝑠

We will just call it

the SAT problem

SAT

Variable: 𝑝, 𝑞
Literal: 𝑝, ¬𝑞
Clause: (𝑝 ∨ 𝑞)

16

Now that we have one NP-complete problem…

Every 𝚷 ∈ 𝑵𝑷 can be polynomially transformed to Π1

And Π1 can be polynomially transformed to Π2

So, every 𝚷 ∈ 𝑵𝑷 can be polynomially transformed to 𝚷𝟐

(Everything in NP can be poly-transformed to Π2) +

(Π2 in NP) = definition of NPC

17

3-SAT

2-SAT

Example: 𝑝 ∨ 𝑞 ∨ 𝑟 ∧ ¬𝑝 ∨ 𝑟 ∨ 𝑞 ∧ ¬𝑟 ∨ ¬𝑝 ∨ 𝑠

Example: 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑟 ∨ ¬𝑝

18

Satisfiable: 𝑝 = 0, 𝑞 = 1, 𝑟 ∈ {0,1}

IS SAT HARDER THAN 3-SAT? ONLY POLYNOMIALLY…

Let’s prove this is a correct polynomial transformation

We add a new variable c as padding

To satisfy both of these clauses,

one of 𝑧1, 𝑧2 must be true!

𝑧1 ∨ 𝑧2 ∨ 𝑐 ∧ (𝑧1 ∨ 𝑧2 ∨ ¬𝑐) is satisfiable

IFF (𝑧1 ∨ 𝑧2) is satisfiable!

So, the new clauses, together,

are “equivalent” to the old one

Same trick, but padding the

clause with two new variables

Satisfying all 4 clauses

is possible IFF 𝒛 = 𝒕𝒓𝒖𝒆

Here it gets trickier, because

we aren’t just “padding,” but

“linking” many clauses

New variables

𝑑1 … 𝑑𝑘−3 “link”

the clauses

Key idea: satisfying all clauses

is possible IFF some 𝒛𝒊 = 𝒕𝒓𝒖𝒆
19

CORRECTNESS

• Want to prove: 𝐒𝐀𝐓 ≤𝑷 𝟑𝐒𝐀𝐓

• I.e., our transformation function 𝒇 satisfies:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(Π1)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐒𝐀𝐓) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(𝟑𝐒𝐀𝐓)

• If 𝒇(𝑰) ∈ 𝓘𝒚𝒆𝒔(𝟑𝐒𝐀𝐓) then 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝐒𝐀𝐓)

Sketch: let 𝑳 be the number of literals in

input 𝐼. In our transformed input, we

construct at most 𝟒𝑳 clauses. Clearly this

can be done in time 𝑝𝑜𝑙𝑦(4𝐿), which is in

𝑝𝑜𝑙𝑦(𝐿), which is in 𝑝𝑜𝑙𝑦(𝑆𝑖𝑧𝑒(𝐼)).

Let’s do this direction

20

SAT
3-SAT

21

CORRECTNESS

• Want to prove: 𝐒𝐀𝐓 ≤𝑷 𝟑𝐒𝐀𝐓

• I.e., our transformation function 𝒇 satisfies:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(Π1)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(𝐒𝐀𝐓) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(𝟑𝐒𝐀𝐓)

• If 𝒇(𝑰) ∈ 𝓘𝒚𝒆𝒔(𝟑𝐒𝐀𝐓) then 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝐒𝐀𝐓) Now let’s show this

We just showed this

22

Consider each clause 𝑪 in the SAT input 𝑰. We identify a corresponding set 𝑆 of

clauses in 𝑓(𝐼), and we show 𝑪 must be satisfied because of the clauses in 𝑆.

23

So, we have given a

correct polynomial

transformation from

SAT to 3SAT.

So, if a problem Π can

be transformed into

SAT in polytime, it can

also be transformed

into 3SAT in polytime.

But wait… SAT is NP-

COMPLETE.

So every problem in NP can be transformed

into 3SAT in polytime!

Have we shown 3SAT is NP-COMPLETE?

Still need to show 3SAT ∈ NP!
24

PROVING 3SAT IS IN NP

1. Define desired YES-certificate

2. Design a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) algorithm

3. Correctness proof

• Case 1: Let 𝐼 be any yes-instance;

Find 𝐶 such that 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒

• Case 2: Let 𝐼 be any no-instance,

and 𝐶 be any certificate;

Prove 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑓𝑎𝑙𝑠𝑒

• Contrapositive of case 2:

Suppose 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒;

Prove 𝐼 is a yes-instance

3SAT input 𝑰 = (𝑪𝒍𝒂𝒖𝒔𝒆𝒔[𝟏. . 𝒎], 𝒏):

a list of 𝒎 clauses, and the number 𝒏 of variables.

Each clause contains literals. Each literal is a pair

(var, neg): a variable ∈ {1. . 𝑛} & a negation bit

YES-certificate 𝐶 = array with one bit

per variable in {1. . 𝑛} representing a

satisfying assignment

This takes O(Clauses) time, which is

polynomial in Size(𝐼)

25

MECHANICS OF SHOWING A PROBLEM IS IN NP

1. Define desired YES-certificate

2. Design a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) algorithm

3. Correctness proof

• Case 1: Let 𝐼 be any yes-instance;

Find 𝐶 such that 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒

• Case 2: Let 𝐼 be any no-instance,

and 𝐶 be any certificate;

Prove 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑓𝑎𝑙𝑠𝑒

• Contrapositive of case 2:

Suppose 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒;

Prove 𝐼 is a yes-instance

Let 𝐼 be a yes-instance of 3SAT. Then

it has a satisfying assignment 𝑨𝒔.

And, 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐴𝑠) will see that each
clause contains a literal satisfied by

this assignment, so 𝑣𝑒𝑟𝑖𝑓𝑦 will see

𝑛𝑢𝑚𝑆𝑎𝑡 = |𝐶𝑙𝑎𝑢𝑠𝑒𝑠| and return true.

Suppose 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) returns true.

Then 𝑛𝑢𝑚𝑆𝑎𝑡 = |𝐶𝑙𝑎𝑢𝑠𝑒𝑠|, so 𝑛𝑢𝑚𝑆𝑎𝑡 was

incremented in each iteration of the loop

over clauses, so each clause contains a

satisfied literal, so the 3SAT formula in 𝐼 is

satisfied by 𝐶, so 𝐼 is a yes-instance.

It follows that 3SAT is in NP.

Since we have already shown SAT ≤𝑃 3SAT,

we now know that 3SAT is NP-COMPLETE.

26

RECAP

• To prove a problem Π is NP-COMPLETE

• Show Π is in NP, and

• Give a polynomial transformation

from some NP-COMPLETE problem to 𝚷

• This involves an IFF correctness argument,

and a polytime complexity argument

• When showing a problem is in NP,

or proving correctness for a polynomial transformation,

• Instead of proving statements about no-instances,

it is usually easier to prove the contrapositive

27

IS 2-SAT ALSO HARD?

28

2-SAT EXAMPLES

• 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑟 ∨ ¬𝑝

• Satisfiable: 𝑝 = 0, 𝑞 = 1, 𝑟 ∈ {0,1}

• 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑟 ∨ ¬𝑝 ∧ 𝑝 ∨ ¬𝑞

¬𝑝 ⇒ 𝑞

¬𝑞 ⇒ 𝑝

𝑝 ⇒ 𝑟

¬𝑟 ⇒ ¬𝑝

𝑟 ⇒ ¬𝑝

𝑝 ⇒ ¬𝑟

¬𝑝 ⇒ ¬𝑞

𝑞 ⇒ 𝑝

𝑝

¬𝑝

𝑞

¬𝑞

𝑟

¬𝑟

Edges (implications of clauses)…
𝒑

¬𝒑

𝒒

¬𝒒 ¬𝒓

𝑞 ⇒ 𝑝 ⇒ ¬𝑟 ⇒ ¬𝑝 ⇒ ¬𝑞 … so 𝑞 cannot be 𝑡𝑟𝑢𝑒

Therefore the formula cannot be satisfied!

𝒑

¬𝒑

𝒒

¬𝒒 ¬𝒓 ¬𝑞 ⇒ 𝑝 ⇒ ¬𝑟 ⇒ ¬𝑝 ⇒ 𝑞 … so 𝑞 cannot be 𝑓𝑎𝑙𝑠𝑒

Logical refresher:

𝑝 ⇒ 𝑞 is equivalent to

¬𝑝 ∨ 𝑞.

Therefore, 𝑝 ∨ 𝑞 is

equivalent to ¬𝑝 ⇒ 𝑞 and

equivalent to ¬𝑞 ⇒ 𝑝

29

2-SAT
2-SAT 𝑿 = {𝟏. . 𝑿 }

(variable names are

integers in 1..|X|)

Suppose no variable 𝑥 is in the same SCC as ҧ𝑥, then to get a satisfying

assignment do the following:

For each 𝑥, if ∃ path from 𝑥 to ҧ𝑥, then set 𝑥 = 𝑓𝑎𝑙𝑠𝑒 else set 𝑥 = 𝑡𝑟𝑢𝑒.

30

HOMEWORK SLIDES

31

RETURNING TO ANOTHER FAMILIAR PROBLEM

32

Turns out Hamiltonian Cycle

is NP complete as well
Compare to Euler tour/circuit: a cycle that

passes through each edge exactly once

can be found in polytime!

THE P=NP QUESTION

So, to win $1,000,000 just need to

find one problem in 𝑁𝑃𝐶 that can

be reduced to a problem in 𝑃

(see last lecture)

33

34

TWO POSSIBLE REALITIES…

PROPERTIES OF

POLYNOMIAL

TRANSFORMATIONS

35

PROPERTIES OF

POLYNOMIAL

TRANSFORMATIONS

36

