CS 341: ALGORITHMS

Lecture 22: intractability IV – poly transformations, NP completeness

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

POLYNOMIAL TRANSFORMATIONS

commonly used for NP-completeness and impossibility results

POLYNOMIAL TRANSFORMATIONS

For a decision problem Π , let $\mathcal{I}(\Pi)$ denote the set of all instances of Π . Let $\mathcal{I}_{yes}(\Pi)$ and $\mathcal{I}_{no}(\Pi)$ denote the set of all yes-instances and no-instances (respectively) of Π .

Suppose that Π_1 and Π_2 are decision problems. We say that there is a **polynomial transformation** from Π_1 to Π_2 (denoted $\Pi_1 \leq_P \Pi_2$) if there exists a function $f : \mathcal{I}(\Pi_1) \to \mathcal{I}(\Pi_2)$ such that the following properties are satisfied:

f(I) is computable in polynomial time (as a function of size(I), where $I \in \mathcal{I}(\Pi_1)$)

if $I \in \mathcal{I}_{yes}(\Pi_1)$, then $f(I) \in \mathcal{I}_{yes}(\Pi_2)$ if $I \in \mathcal{I}_{no}(\Pi_1)$, then $f(I) \in \mathcal{I}_{no}(\Pi_2)$

[Mechanics] to give a polynomial transformation, you must:

specify f(I),
show it runs in poly-time, and

3. show I is a yes-instance of Π₁ IFF f(I) is a yes-instance of Π₂.

POLYNOMIAL TRANSFORMATIONS (CONT.)

A polynomial transformation can be thought of as a (simple) special case of a polynomial-time Turing reduction, i.e., if $\Pi_1 \leq_P \Pi_2$, then $\Pi_1 \leq_P^T \Pi_2$.

Given a polynomial transformation f from Π_1 to Π_2 , the corresponding Turing reduction is as follows:

Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$. Given an oracle for Π_2 , say A, run A(f(I)).

We transform the instance, and then make a single call to the oracle. Very important point: We do not know whether I is a yes-instance or a no-instance of Π_1 when we transform it to an instance f(I) of Π_2 . To prove the implication "if $I \in \mathcal{I}_{no}(\Pi_1)$, then $f(I) \in \mathcal{I}_{no}(\Pi_2)$ ", we usually prove the contrapositive statement "if $f(I) \in \mathcal{I}_{yes}(\Pi_2)$, then $I \in \mathcal{I}_{yes}(\Pi_1)$.

> The contrapositive can help when it is hard to precisely characterize certificates for no-instances (or when such certificates don't prove much)

Also known as Karp reductions and many-one reductions

We saw one instance where a contrapositive was easier to prove when we discussed Hamiltonian cycles

SUMMARIZING THE MORE CONVENIENT DEFINITION • Let Π_1 and Π_2 be decision problems • $\Pi_1 \leq_P \Pi_2$ iff there exists $f : \mathcal{I}(\Pi_1) \to \mathcal{I}(\Pi_2)$ such that:

- f(I) is computable in poly-time, for all $I \in \mathcal{I}(\Pi_1)$
- If $I \in \mathcal{I}_{yes}(\Pi_1)$ then $f(I) \in \mathcal{I}_{yes}(\Pi_2)$
- If $f(I) \in \mathcal{I}_{yes}(\Pi_2)$ then $I \in \mathcal{I}_{yes}(\Pi_1)$

This is the contrapositive. Was previously (2 slides ago): If $I \in \mathcal{I}_{no}(\Pi_1)$ then $f(I) \in \mathcal{I}_{no}(\Pi_2)$ Note: this is the same as saying $(I \in \mathcal{I}_{yes}(\Pi_1)) \Leftrightarrow (f(I) \in \mathcal{I}_{yes}(\Pi_2))$

This property justifies correctness for the following generic **poly-time Karp reduction:**

P1toP2KarpReduction(I)
fI = f(I)
return OracleForP2(fI)

EXAMPLE POLYNOMIAL TRANSFORMATION

Problem 7.8

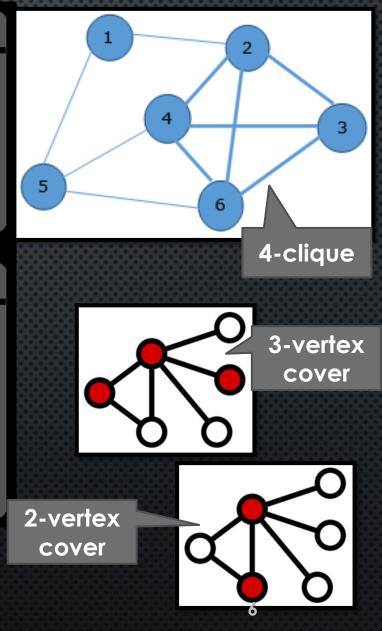
Clique

Instance: An undirected graph G = (V, E) and an integer k, where $1 \le k \le |V|$.

Question: Does G contain a clique of size $\geq k$? (A clique is a subset of vertices $W \subseteq V$ such that $uv \in E$ for all $u, v \in W$, $u \neq v$.)

Problem 7.9

Vertex Cover Instance: An undirected graph G = (V, E) and an integer k, where $1 \le k \le |V|$. **Question:** Does G contain a vertex cover of size $\le k$? (A vertex cover is a subset of vertices $W \subseteq V$ such that $\{u, v\} \cap W \ne \emptyset$ for all edges $uv \in E$.)



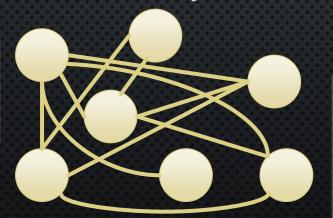
CLIQUE \leq_P VERTEX-COVER • Suppose I = (G, k) is an instance of Clique where $G = (V, E), V = \{v_1, ..., v_n\}$ and $1 \leq k \leq n$

Want to solve *Clique(G,k)*

Claim: there is a *k*-clique in *G* iff there is an (n - k) Vertex-Cover in \overline{G}

• **Construct** instance $f(I) = (\overline{G}, n - k)$ of Vertex-Cover, where $H = (V, \overline{E})$ and $v_i v_j \in \overline{E} \Leftrightarrow v_i v_j \notin E$

Idea: reduce to $VertexCover(\overline{G}, n-k)$



Consider the **complement graph** \overline{G} of G

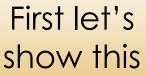
Every edge of Gis a non-edge of \overline{G} . Every non-edge of Gis an edge of \overline{G} .

Given an adjacency matrix for G, get \overline{G} by flipping 0's and 1's.

7

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by CL and Vertex-Cover by VC
- $CL \leq_P VC$ iff there exists $f : \mathcal{I}(CL) \to \mathcal{I}(VC)$ such that:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(CL)$ –
 - If $I \in \mathcal{I}_{yes}(CL)$ then $f(I) \in \mathcal{I}_{yes}(VC)$
 - If $f(I) \in \mathcal{I}_{yes}(VC)$ then $I \in \mathcal{I}_{yes}(CL)$



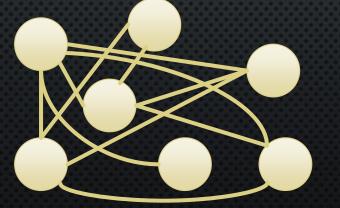
COMPLEXITY OF THE TRANSFORMATION • Suppose I = (G, k) is an instance of Clique where $G = (V, E), V = \{v_1, ..., v_n\}$ and $1 \le k \le n$ Constructing \overline{G} takes $Q(n^2)$ time, and

Want to solve *Clique(G,k)* Constructing $\overline{\mathbf{G}}$ takes $O(n^2)$ time, and computing n - k takes $O(\log n)$ time.

So computing f(I) takes $O(n^2)$ time, which is polynomial in Size(I).

• **Construct** instance $f(I) = (\overline{G}, n - k)$ of Vertex-Cover, where $\overline{G} = (V, \overline{E})$ and $v_i v_j \in \overline{E} \Leftrightarrow v_i v_j \notin E$

Idea: reduce to $VertexCover(\overline{G}, n-k)$



PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by CL and Vertex-Cover by VC
- $CL \leq_P VC$ iff there exists $f : \mathcal{I}(CL) \to \mathcal{I}(VC)$ such that:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(CL)$
 - If $I \in \mathcal{I}_{yes}(CL)$ then $f(I) \in \mathcal{I}_{yes}(VC)$
 - If $f(I) \in \mathcal{I}_{yes}(VC)$ then $I \in \mathcal{I}_{yes}(CL)$

Now let's show this, i.e., if G contains a k-clique then \overline{G} contains an (n - k) vertex cover.

- $\mathsf{PROVING}: I \in \mathcal{I}_{yes}(CL) \Rightarrow f(I) \in \mathcal{I}_{yes}(VC)$
- Suppose I = (G, k) is a **yes**-instance of Clique
- Then there is a set W of k vertices in a clique (with all-to-all edges)
- Define $\overline{W} = V \setminus W$. Clearly $|\overline{W}| = n k$.
- We claim \overline{W} is a vertex cover of \overline{G}
- Consider any edge $(u, v) \in \overline{G}$
- If either u or v is in \overline{W} , then we are done, so assume $u, v \notin \overline{W}$ to obtain a contradiction
- Then $u, v \in W$, and W is a clique in G, so $(u, v) \in G$
- But $(u, v) \in \overline{\mathbf{G}}$ implies $(u, v) \notin G$. Contradiction!

 \overline{W}

Graph \overline{G}

Graph G

W

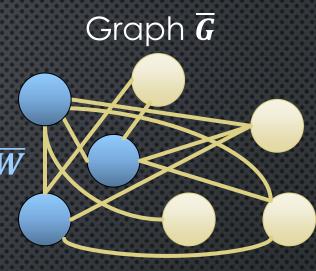
PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by CL and Vertex-Cover by VC
- $CL \leq_P VC$ iff there exists $f : \mathcal{I}(CL) \to \mathcal{I}(VC)$ such that:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(CL)$
 - If $I \in \mathcal{I}_{yes}(CL)$ then $f(I) \in \mathcal{I}_{yes}(VC)$
 - If $f(I) \in \mathcal{I}_{yes}(VC)$ then $I \in \mathcal{I}_{yes}(CL)$

Now let's show this, i.e., if \overline{G} contains an (n - k) vertex cover, then G contains a k-clique $\mathsf{PROVING}: f(I) \in \mathcal{I}_{yes}(VC) \Rightarrow I \in \mathcal{I}_{yes}(CL)$

- Suppose $f(I) = (\overline{\mathbf{G}}, n k)$ is a **yes**-instance of VC
- Then there is a set of n k vertices \overline{W} that is a vertex cover of \overline{G}
- Define $W = V \setminus \overline{W}$. Clearly |W| = k.
- We claim W is a clique in G
- Since \overline{W} is a vertex cover of \overline{G} , every edge in \overline{G} has at least one endpoint in \overline{W}
- Therefore, **no edge** in \overline{G} has two endpoints in W
- So, in *G*, there are edges between all pairs of nodes in *W*. So, *W* is a clique in *G*.

So, we have demonstrated a polynomial transformation from CLIQUE to VERTEX-COVER ¹³



Graph G

COMPLEXITY CLASS NP-COMPLETE

COMPLEXITY CLASS NP-COMPLETE (NPC)

The complexity class **NPC** denotes the set of all decision problems Π that satisfy the following two properties:

 $\Pi \in \mathbf{NP}$ For all $\Pi' \in \mathbf{NP}$, $\Pi' \leq_P \Pi$.

NPC is an abbreviation for NP-complete.

Note that the definition does not imply that NP-complete problems exist!

Satisfiability and the Cook-Levin Theorem

We will just call it the **SAT** problem

Challenging and powerful result! How to prove **any NP problem** anyone will **ever** come up with is **solved** by a reduction to SAT?

Problem 7.13

CNF-Satisfiability

Example: $(p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p \lor s \lor \neg s)$

Instance: A boolean formula F in n boolean variables x_1, \ldots, x_n , such that F is the conjunction (logical "and") of m clauses, where each clause is the disjunction (logical "or") of literals. (A literal is a boolean variable or its negation.)

Question: Is there a truth assignment such that F evaluates to **true**?

Variable:p, qLiteral: $p, \neg q$ Clause: $(p \lor q)$

Theorem 7.14 (Cook-Levin Theorem)

 $SAT \in NPC$.

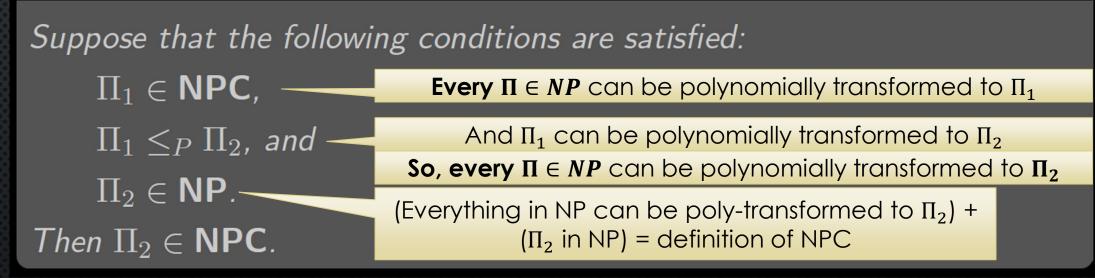
Real-world problem people care about! For example, used **extensively** to argue correctness for new processor designs.

Proving Problems NP-complete

Now that we have one NP-complete problem...

given any NP-complete problem, say Π_1 , other problems in **NP** can be proven to be NP-complete via polynomial transformations from Π_1 , as stated in the following theorem:

Theorem 7.15



More Satisfiability Problems

Problem 7.16

3-SAT

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly **three** literals.

Question: Is there a truth assignment such that F evaluates to **true**?

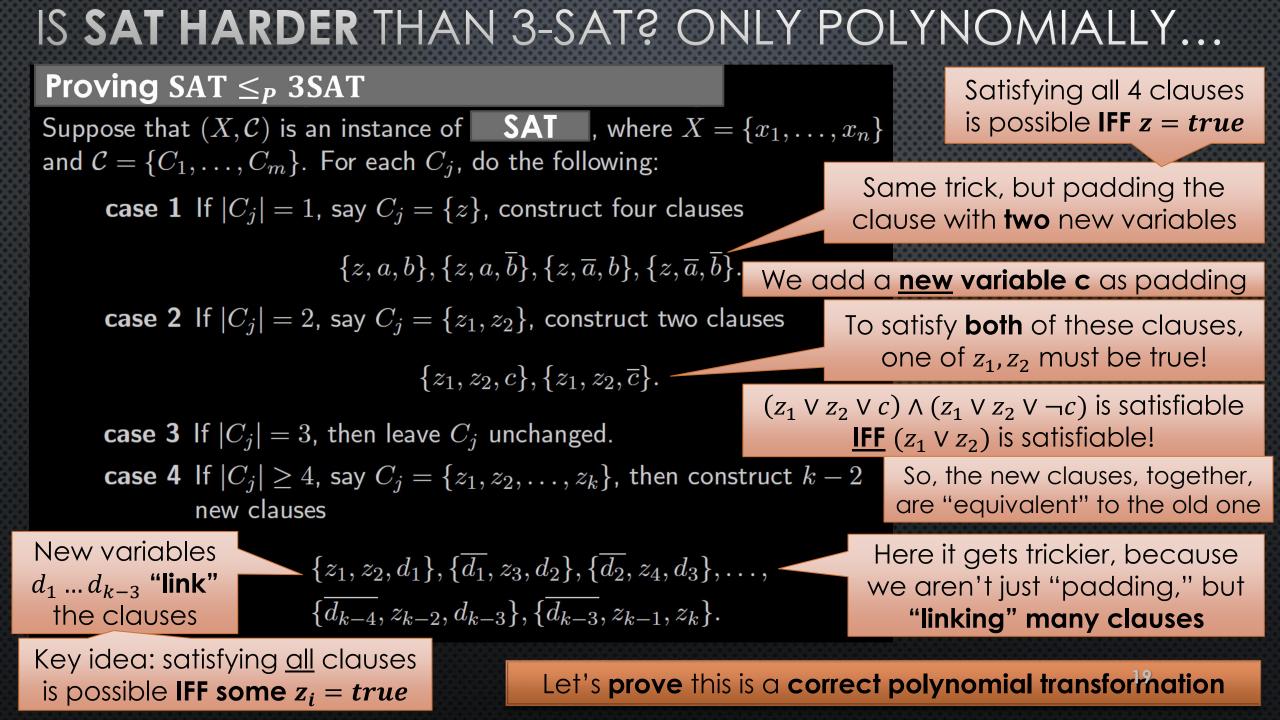
Problem 7.17

2-SAT

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly **two** literals. **Question:** Is there a truth assignment such that F evaluates to **true**?

Example: $(p \lor q \lor r) \land (\neg p \lor r \lor q) \land (\neg r \lor \neg p \lor s)$

Satisfiable: $p = 0, q = 1, r \in \{0, 1\}$



CORRECTNESS

• Want to prove: $SAT \leq_P 3SAT$

Sketch: let *L* be the number of **literals** in input *I*. In our transformed input, we construct at most *4L* clauses. Clearly this can be done in time *poly*(*4L*), which is in *poly*(*L*), which is in *poly*(*Size*(*I*)).

- I.e., our transformation function *f* satisfies:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(\Pi_1)$
 - If $I \in \mathcal{I}_{yes}(SAT)$ then $f(I) \in \mathcal{I}_{yes}(SAT)$ -
 - If $f(I) \in \mathcal{I}_{yes}(3SAT)$ then $I \in \mathcal{I}_{yes}(SAT)$

Let's do this direction

Correctness of the Transformation

Suppose I is a yes-instance of SAT. We show that f(I) is a yes-instance of **3-SAT**. Fix a truth assignment for X in which every clause contains a true literal. We consider each clause C_j of the instance I.

If $C_j = \{z\}$, then z must be true. The corresponding four clauses in f(I) each contain z, so they are all satisfied.

If $C_j = \{z_1, z_2\}$, then at least one of the z_1 or z_2 is true. The corresponding two clauses in f(I) each contain z_1, z_2 , so they are both satisfied.

If $C_j = \{z_1, z_2, z_3\}$, then C_j occurs unchanged in f(I).

Suppose $C_j = \{z_1, z_2, z_3, \dots, z_k\}$ where k > 3 and suppose $z_t \in C_j$ is a true literal. Define $d_i =$ true for $1 \le i \le t - 2$ and define $d_i =$ false

for $t-1 \leq i \leq k$. It is straightforward to verify that the k-2corresponding clauses in f(I) each contain a true literal. $\{\overline{d_1, z_2, d_1}, \{\overline{d_1, z_3, d_2}, \{\overline{d_2, z_4, d_3}, \dots, \{\overline{d_{k-4}, z_{k-2}, d_{k-3}}, \{\overline{d_{k-3}, z_{k-1}, z_k}\}.$

 $\{z, a, b\}, \{z, a, \overline{b}\}, \{z, \overline{a}, b\}, \{z, \overline{a}, \overline{b}\}$

 $\{z_1, z_2, c\}, \{z_1, z_2, \overline{c}\}$

CORRECTNESS

- Want to prove: $SAT \leq_P 3SAT$
- I.e., our transformation function *f* satisfies:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(\Pi_1)$
 - If $I \in \mathcal{I}_{yes}(SAT)$ then $f(I) \in \mathcal{I}_{yes}(3SAT)$.
 - If $f(I) \in \mathcal{I}_{yes}(\mathsf{3SAT})$ then $I \in \mathcal{I}_{yes}(\mathsf{SAT})$ -

We just showed this

Now let's show this

Conversely, suppose f(I) is a yes-instance of **3-SAT**. We show that I is a yes-instance of **SAT**.

Consider each clause C **in the SAT input** I**.** We identify a corresponding set S of clauses in f(I), and we show C must be satisfied because of the clauses in S.

(1) Four clauses in f(I) having the form $\{z, a, b\}$, $\{z, a, \overline{b}\}$, $\{z, \overline{a}, b\}$ $\{z, \overline{a}, \overline{b}\}$ are all satisfied if and only if z =**true**. Then the corresponding clause $\{z\}$ in I is satisfied.

(2) Two clauses in f(I) having the form $\{z_1, z_2, c\}$, $\{z_1, z_2, \overline{c}\}$ are both satisfied if and only if at least one of $z_1, z_2 =$ **true**. Then the

corresponding clause $\{z_1, z_2\}$ in I is satisfied.

(3) If $C_j = \{z_1, z_2, z_3\}$ is a clause in f(I), then C_j occurs unchanged in I.

Correctness of the Transformation

 $\{z_1, z_2, d_1\}, \{\overline{d_1}, z_3, d_2\}, \{\overline{d_2}, z_4, d_3\}, \dots, \\\{\overline{d_{k-4}}, z_{k-2}, d_{k-3}\}, \{\overline{d_{k-3}}, z_{k-1}, z_k\}.$

(4) Finally, consider the k - 2 clauses in f(I) arising from a clause $C_j = \{z_1, z_2, z_3, \dots, z_k\}$ in I, where k > 3. We show that at least one of $z_1, z_2, \dots, z_k =$ true if all k - 2 of these clauses contain a true literal.

Assume all of $z_1, z_2, \ldots, z_k =$ **false**. In order for the first clause to contain a true literal, $d_1 =$ **true**. Then, in order for the second clause to contain a true literal, $d_2 =$ **true**. This pattern continues, and in order for the second last clause to contain a true literal, $d_{k-3} =$ **true**.

But then the last clause contains no true literal, which is a contradiction. We have shown that at least one of $z_1, z_2, \ldots, z_k =$ **true**, which says that the clause $\{z_1, z_2, z_3, \ldots, z_k\}$ contains a true literal, as required.

So, we have given a correct polynomial transformation from SAT to 3SAT.

So, if a problem II can be transformed into SAT in polytime, it can also be transformed into 3SAT in polytime.

But wait... SAT is NP-COMPLETE.

Have we shown 3SAT is NP-COMPLETE?

Still need to show $3SAT \in NP!$

So every problem in NP can be transformed into 3SAT in polytime!

PROVING 3SAT IS IN NP

- 1. Define desired YES-certificate
- 2. Design a poly-time verify(I,C) algorithm

3. Correctness proof

- Case 1: Let I be any yes-instance;
 Find C such that verify(I,C) = true
- Case 2: Let I be any no-instance, and C be any certificate;
 Prove verify(I,C) = false
- <u>Contrapositive</u> of case 2:
 Suppose verify(I,C) = true;
 Prove I is a yes-instance

3SAT input I = (Clauses[1..m], n): a list of *m* clauses, and the number *n* of variables. Each clause contains literals. Each literal is a pair (var, neg): a variable $\in \{1..n\}$ & a negation bit

> 2 3

> > 4

5

6

7

8

9

10 11 YES-certificate *C* = array with one bit per variable in {1..*n*} representing a **satisfying assignment**

```
verify3SAT(I=(Clauses[1..m], n), C)
if C is not an array of n bits return false
numSat = 0
for each c in Clauses
for each literal (var, neg) in c
if (C[var] && !neg) or (!C[var] && neg)
numSat++
break
return (numSat == m)
```

This takes O(|Clauses|) time, which is polynomial in Size(*I*)

MECHANICS OF SHOWING A PROBLEM IS IN NP

- 1. Define desired YES-certificate
- 2. Design a poly-time verify(I,C) algorithm

3. Correctness proof

- Case 1: Let I be any yes-instance;
 Find C such that verify(I,C) = true
- Case 2: Let I be any no-instance, and C be any certificate; Prove verify(I,C) = false
- <u>Contrapositive</u> of case 2:
 Suppose verify(I,C) = true;
 Prove I is a yes-instance

Let I be a yes-instance of 3SAT. Then it has a satisfying assignment A_s . And, $verify(I, A_s)$ will see that each clause contains a literal satisfied by this assignment, so verify will see numSat = |Clauses| and return true.

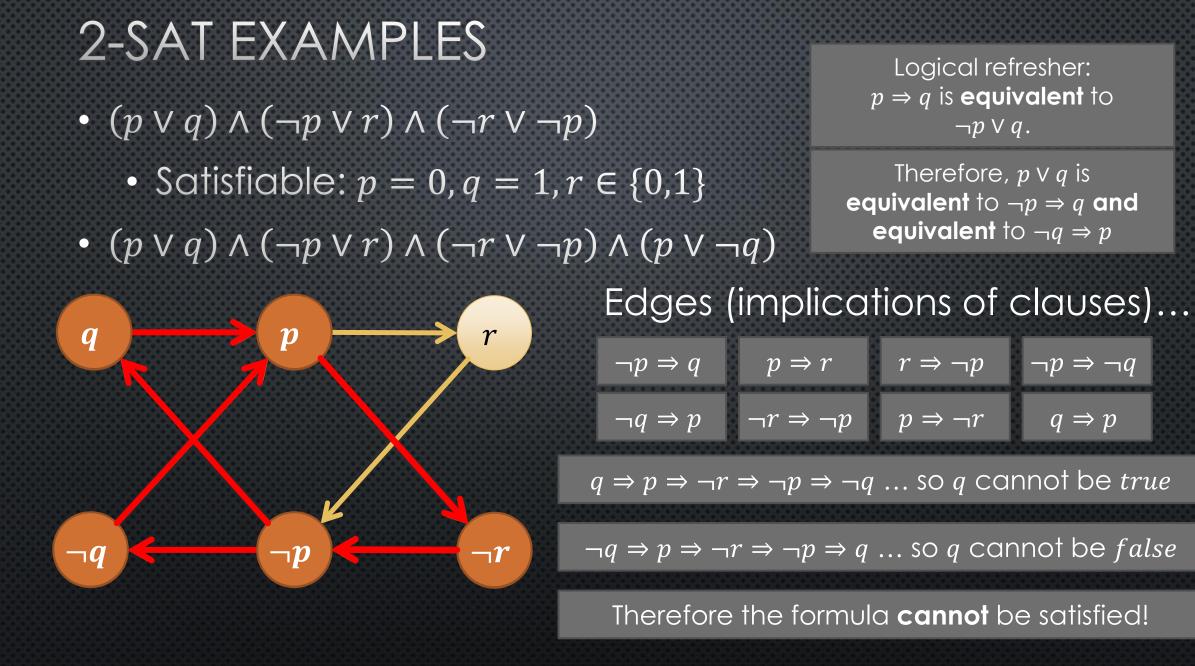
Suppose verify(I, C) returns true. Then numSat = |Clauses|, so numSat was incremented in each iteration of the loop over clauses, so each clause contains a satisfied literal, so the 3SAT formula in I is satisfied by C, so I is a yes-instance.

It follows that **3SAT is in NP.** Since we have already shown $SAT \leq_P 3SAT$, we now know that **3SAT is NP-COMPLETE**.

RECAP

- To prove a problem Π is NP-COMPLETE
 - Show П is in NP, and
 - Give a polynomial transformation from some NP-COMPLETE problem to Π
 - This involves an IFF correctness argument, and a polytime complexity argument
- When showing a problem is in NP,
 <u>or</u> proving correctness for a polynomial transformation,
 - Instead of proving statements about **no-instances**, it is usually easier to prove the **contrapositive**

IS 2-SAT ALSO HARD?



(variable names are integers in 1.. | X |)

2-SAT can be solved in polynomial time. Suppose we are given an instance I of **2-SAT** on a set of boolean variables $X = \{1, |X|\}$

(1) For every clause $x \lor y$ (where x and y are literals), construct two directed edges $\overline{x}y$ and $\overline{y}x$. We get a directed graph on vertex set $X \cup \overline{X}$.

(2) Determine the strongly connected components of this directed graph.

(3) I is a yes-instance if and only if there is no strongly connected component containing x and \overline{x} , for any $x \in X$.

Suppose no variable x is in the same SCC as \bar{x} , then to get a satisfying assignment do the following: For each x, if \exists path from x to \bar{x} , then set x = false else set x = true.

HOMEWORK SLIDES

RETURNING TO ANOTHER FAMILIAR PROBLEM

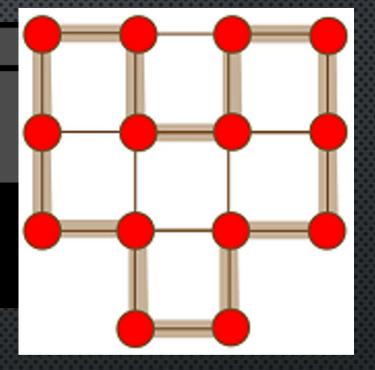
Problem 7.2

Hamiltonian Cycle Instance: An undirected graph G = (V, E). Question: Does G contain a hamiltonian cycle?

A hamiltonian cycle is a cycle that passes through every vertex in V exactly once.

Turns out Hamiltonian Cycle is NP complete as well

> Compare to **Euler tour/circuit**: a cycle that passes through each <u>edge</u> exactly once can be found in **polytime**!



THE P=NP QUESTION

Theorem 7.12

If $\mathbf{P} \cap \mathbf{NPC} \neq \emptyset$, then $\mathbf{P} = \mathbf{NP}$.

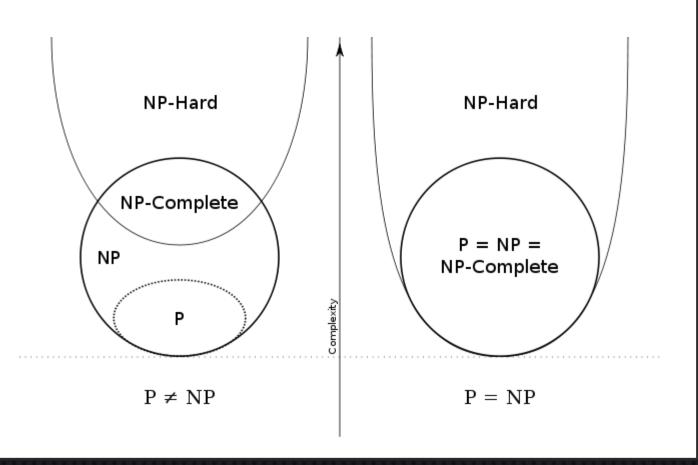
So, to win \$1,000,000 just need to find one problem in *NPC* that can be reduced to a problem in *P*

Proof.

We know that $\mathbf{P} \subseteq \mathbf{NP}$, so it suffices to show that $\mathbf{NP} \subseteq \mathbf{P}$. Suppose $\Pi \in \mathbf{P} \cap \mathbf{NPC}$ and let $\Pi' \in \mathbf{NP}$. We will show that $\Pi' \in \mathbf{P}$.

- ¹ Since $\Pi' \in \mathbf{NP}$ and $\Pi \in \mathbf{NPC}$, it follows that $\Pi' \leq_P \Pi$ (definition of NP-completeness).
- ² Since $\Pi' \leq_P \Pi$ and $\Pi \in \mathbf{P}$, it follows that $\Pi' \in \mathbf{P}$ (see last lecture)

TWO POSSIBLE REALITIES...



If Π_1 and Π_2 are decision problems, $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \in \mathbf{P}$, then $\Pi_1 \in \mathbf{P}$.

Proof.

Suppose A is a poly-time algorithm for Π_2 , having complexity $O(m^{\ell})$ on an instance of size m. Suppose f is a transformation from Π_1 to Π_2 having complexity $O(n^k)$ on an instance of size n. We solve Π_1 as follows:

- ¹ Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.
- ² Run A(f(I)).

It is clear that this yields the correct answer. We need to show that these two steps can be carried out in polynomial time as a function of n = Size(I). Step (1) can be executed in time $O(n^k)$ and it yields an instance f(I) having size $m \in O(n^k)$. Step (2) takes time $O(m^\ell)$. Since $m \in O(n^k)$, the time for step (2) is $O(n^{k\ell})$, as is the total time to execute both steps.

PROPERTIES OF POLYNOMIAL TRANSFORMATIONS

Theorem 7.11

Suppose that Π_1, Π_2 and Π_3 are decision problems. If $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \leq_P \Pi_3$, then $\Pi_1 \leq_P \Pi_3$.

Proof.

We have a polynomial transformation f from Π_1 to Π_2 , and another polynomial transformation g from Π_2 to Π_3 . We define $h = f \circ g$, i.e., h(I) = g(f(I)) for all instances I of Π_1 . (Exercise: fill in the details.)

PROPERTIES OF POLYNOMIAL TRANSFORMATIONS