CS 341: ALGORITHMS

Lecture 22: intractability IV - poly transformations, NP completeness Readings: see website

POLYNOMIAL TRANSFORMATIONS

Trevor Brown
commonly used for NP-completeness and impossibility results
https://student.cs.uwaterloo.ca/~cs341
trevor:brown@uwaterloo.ca

POLYNOMIAL IRANSFORMATIONS

POLYNOMIAL IRANSFORMATIONS (CONT.)
A polynomial transformation can be thought of as a (simple) special case of a polynomial-time Turing reduction, i.e., if $\Pi_{1} \leq P \Pi_{2}$, then $\Pi_{1} \leq_{P}^{T} \Pi_{2}$ Given a polynomial transformation f from Π_{1} to Π_{2}, the corresponding Turing reduction is as follows:

Given $I \in \mathcal{I}\left(\Pi_{1}\right)$, construct $f(I) \in \mathcal{I}\left(\Pi_{2}\right)$.
Given an oracle for Π_{2}, say A, run $A(f(I))$.
We transform the instance, and then make a single call to the oracle. polynomial transformation from Π_{1} to Π_{2} (denoted $\Pi_{1} \leq p \Pi_{2}$) if there exists a function $f: \mathcal{I}\left(\mathrm{I}_{1}\right) \rightarrow \mathcal{I}\left(\mathrm{I}_{2}\right)$ such that the following properties are satisfied:
$f(I)$ is computable in polynomial time (as a function of size (I).
where $\left.I \in \mathcal{I}\left(\Pi_{1}\right)\right)$
if $I \in \mathcal{I}_{\text {yes }}\left(\Pi_{1}\right)$, then $f(I) \in \mathcal{I}_{\text {yes }}\left(\Pi_{2}\right)$
[Mechanics] to give a polynomial transformation, you must: 1. specify $f(I)$,
if $I \in \mathcal{I}_{\mathrm{no}}\left(\mathrm{I}_{1}\right)$, then $f(I) \in \mathcal{I}_{\mathrm{no}}\left(\mathrm{\Pi}_{2}\right)$
For a decision problem Π, let $\mathcal{I}(\Pi)$ denote the set of all instances of Π. and many-one

Let $\mathcal{I}_{\text {yes }}(\mathrm{II})$ and $\mathcal{I}_{\text {no }}$ (II) denote the set of all yes-instances and
no-instances (respectively) of II. no-instance of H_{1} when we transform it to an instance $f(I)$ of H_{2}.
To prove the implication "if $I \in \mathcal{I}_{\mathrm{no}}\left(\Pi_{1}\right)$, then $f(I) \in \mathcal{I}_{\mathrm{no}}\left(\Pi_{2}\right)$ ", we usually prove the contrapositive statement "if $f(I) \in \mathcal{I}_{\text {yes }}\left(\Pi_{2}\right)$, then $I \in \mathcal{I}_{\text {yes }}\left(\Pi_{1}\right)$.
The contrapositive can help when it is hard to
precisely characterize certificates for no-instances
(or when such certificates don't prove much)

We saw one We saw one
instance where a instance where a
contrapositive was easier to prove when we discussed Hamiltonian cycles -precisely characterize certificares for no-instances (or when such cerlificates don't prove much)

SUMMARIZING

THE MORE CONVENIENT DEFINITION

- Let Π_{1} and Π_{2} be decision problems
- $\Pi_{1} \leq_{P} \Pi_{2}$ iff there exists $f: \mathcal{J}\left(\Pi_{1}\right) \rightarrow \mathcal{J}\left(\Pi_{2}\right)$ such that:
- $f(I)$ is computable in poly-time, for all $I \in J\left(\Pi_{1}\right)$
- If $I \in J_{\text {yes }}\left(\Pi_{1}\right)$ then $f(I) \in J_{y e s}\left(\Pi_{2}\right)$ _
- If $f(I) \in J_{\text {yes }}\left(\Pi_{2}\right)$ then $\left.I \in J_{\text {yes }}\left(\Pi_{1}\right)\right]$

Note: this is the same as saying
$(\boldsymbol{I} \in \boldsymbol{J}$) $\left(I \in \mathcal{I}_{\text {yes }}\left(\Pi_{1}\right)\right) \Leftrightarrow\left(f(I) \in \boldsymbol{J}_{\text {yes }}\left(\Pi_{2}\right)\right)$

This is the contrapositive. Was previously (2 slides ago): If $I \in J_{n o}\left(\Pi_{1}\right)$ then $f(I) \in J_{n o}\left(\Pi_{2}\right)$

This property justifies correctness for the following generic poly-time Karp reduction:
P1 toP2KarpReduction (I) $\mathrm{fI}=\mathrm{f}$ (I) return OracleForP2 (fi)

EXAMPLE POLYNOMIAL TRANSFORMATION

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by $C L$ and Vertex-Cover by VC
- $C L \leq_{P} V C$ iff there exists $f: J(C L) \rightarrow J(V C)$ such that:
- $f(I)$ is computable in poly-time, for all $I \in J(C L)$
- If $I \in I_{\text {yes }}(C L)$ then $f(I) \in J_{\text {yes }}(V C)$
- If $f(I) \in J_{y e s}(V C)$ then $I \in J_{y e s}(C L)$

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by $C L$ and Vertex-Cover by VC
- $C L \leq_{P} V C$ iff there exists $f: \mathcal{J}(C L) \rightarrow \mathcal{J}(V C)$ such that:
- $f(I)$ is computable in poly-time, for all $I \in J(C L)$
- If $I \in J_{y e s}(C L)$ then $f(I) \in J_{y e s}(V C)<\begin{gathered}\text { Now let's show this, i.e., } \\ \text { if } G \text { contains a } k \text {-clique the }\end{gathered}$ $\overline{\boldsymbol{G}}$ contains an ($\boldsymbol{n}-\boldsymbol{k}$) vertex cover.
- Construct instance $\boldsymbol{f}(I)=(\bar{G}, n-k)$ of $V \in=$
where $\overline{\boldsymbol{G}}=(V, \bar{E})$ and $v_{i} v_{j} \in \bar{E} \Leftrightarrow v_{i} v_{j} \notin E$

$$
\text { - If } f(I) \in J_{y e s}(V C) \text { then } I \in J_{y e s}(C L)
$$

PROVING THIS IS A POLYNOMIAL TRANSFORMATION

- We denote Clique by CL and Vertex-Cover by VC
- $C L \leq_{P} V C$ iff there exists $f: J(C L) \rightarrow J(V C)$ such that:
- $f(I)$ is computable in poly-time, for all $I \in J(C L)$
- If $I \in J_{\text {yes }}(C L)$ then $f(I) \in J_{\text {yes }}(V C)$
- If $f(I) \in J_{\text {yes }}(V C)$ then $I \in J_{y e s}(C L) \quad$ Now let's show this, i.e., if \bar{G} contains an $(\boldsymbol{n}-\boldsymbol{k})$ vertex cover,
then \boldsymbol{G} contains a \boldsymbol{k}-clique

COMPLEXITY CLASS NP-COMPLETE (NPC)

The complexity class NPC denotes the set of all decision problems II that satisfy the following two properties:

$$
\begin{aligned}
& \Pi \in \mathbf{N P} \\
& \text { For all } \Pi^{\prime} \in \mathbf{N P}, \Pi^{\prime} \leq_{P} \Pi \text {. }
\end{aligned}
$$

NPC is an abbreviation for NP-complete.
Note that the definition does not imply that NP-complete problems exist!

Satisfiability and the Cook-Levin Theorem

We will just call it the SAT problem Problem 7.13	Challenging and powerful result! How to prove any NP problem anyone will ever come up with is solved by a reduction to SAT?
CNF-Satisfiability	Example: $(p \vee q) \wedge(\neg p \vee r) \wedge(\neg r \vee \neg p \vee s \vee \neg s)$
Instance: A boolean formula F in n bo that F is the conjunction (logical "and") clause is the disjunction (logical "or") variable or its negation.) Question: Is there a truth assignment	lean variables x_{1}, \ldots, x_{n}, such of m clauses, where each literals. (A literal is a boolean ch that F evaluates to true? Variable: p, q Literal: $\quad p, \neg q$ Clause: $(p \vee q)$
Theorem 7.14 (Cook-Levin Theorem)	Real-world problem people care about! For example, used extensively to argue correctness for new processor designs.
SAT \in NPC.	
	16

Correctness of the Transformation

Suppose I is a yes-instance of SAT. We show that $f(I)$ is a
yes-instance of 3-SAT. Fix a truth assignment for X in which every
clause contains a true literal. We consider each clause C_{j} of the instance
$\{z, a, b\},\{z, a, \bar{b}\},\{z, \bar{a}, b\},\{z, \overline{,}, \bar{b}\}$
If $C_{j}=\{z\}$, then z must be true. The corresponding four clauses in $f(I)$ each contain z, so they are all satisfied.
$\left\{z_{1}, z_{2}, c\right\},\left\{z_{1}, z_{2}, \bar{c}\right\}$
$f C_{3}=\left\{z_{1}, z_{2}\right\}$, then at least one of the z_{1} or z_{2} is true. The corresponding two clauses in $f(I)$ each contain z_{1}, z_{2}, so they are

If $C_{j}=\left\{z_{1}, z_{2}, z_{3}\right\}$, then C_{j} occurs unchanged in $f(I)$ \qquad Suppose $C_{j}=\left\{z_{1}, z_{2}, z_{3}, \ldots, z_{k}\right\}$ where $k>3$ and suppose $z_{t} \in C_{j}$ is a true literal. Define $d_{i}=$ true for $1 \leq i \leq t-2$ and define $d_{i}=$ false
for $t-1 \leq i \leq k$. It is straightforward to verify that the $k-2\left[\varepsilon_{1}, \Sigma_{2}, d_{1}\right\},\left\{d_{1}, z_{3}, d_{2}\right\},\left\{d_{2}, z_{4}, d_{3}\right\}, \ldots$ corresponding clauses in $f(I)$ each contain a true literal.

CORRECTNESS

- Want to prove: SAT $\leq_{P} 3$ SAT
- I.e., our transformation function f satisfies:
- $f(I)$ is computable in poly-time, for all $l \in J\left(\Pi_{1}\right)$
- If $I \in J_{y \text { es }}($ SAT $)$ then $f(I) \in J_{y e s}($ 3SAT $)$ We just showed this
- If $f(I) \in J_{\text {yes }}(3 S A T)$ then $I \in J_{\text {yes }}(S A T) \quad$ Now let's show this

CORRECTNESS

- Want to prove: SAT \leq_{P} 3SAT

Sketch: let \boldsymbol{L} be the number of literals in input I. In our transformed input, we construct at most $4 L$ clauses. Clearly this can be done in time poly $(4 L)$, which is in

- I.e., our transformation function f satisfies:
- $f(I)$ is computable in poly-time, for all $I \in J\left(\Pi_{1}\right)$
- If $I \in J_{y e s}(S A T)$ then $f(I) \in J_{y e s}(3 S A T) \sim$ Let's do this direction
- If $f(I) \in J_{\text {yes }}(3 S A T)$ then $I \in J_{\text {yes }}(S A T)$

Conversely, suppose $f(I)$ is a yes-instance of 3-SAT. We show that

 I is a yes-instance of SAT.Consider each clause C in the SAT input I. We identify a corresponding set S of clauses in $f(I)$, and we show C must be satisfied because of the clauses in S.
(1) Four clauses in $f(I)$ having the form $\{z, a, b\},\{z, a, \bar{b}\},\{z, \bar{a}, b\}$ $\{z, \bar{a}, \bar{b}\}$ are all satisfied if and only if $z=$ true. Then the corresponding clause $\{z\}$ in I is satisfied.
(2) Two clauses in $f(I)$ having the form $\left\{z_{1}, z_{2}, c\right\},\left\{z_{1}, z_{2}, \bar{c}\right\}$ are both satisfied if and only if at least one of $z_{1}, z_{2}=$ true. Then the corresponding clause $\left\{z_{1}, z_{2}\right\}$ in I is satisfied.
(3) If $C_{j}=\left\{z_{1}, z_{2}, z_{3}\right\}$ is a clause in $f(I)$, then C_{j} occurs unchanged in I.

PROVING 3SAT IS IN NP

Each clause clases, and the number n of variables. Each clause contiable $\{1, n\}$ a (var, neg): a variable $\in\{1 . . n\}$ \& a negation bit

1 2 3 4 5 6 7 8 9 10 11	verify3SAT(I=(Clauses $[1 . \mathrm{m}], \mathrm{n}), \mathrm{C})$ if C is not an array of n bits return false numSat $=0$ for each c in Clauses for each literal (var, neg) in c if (C[var] es Ineg) or (IC[var] 66 neg numSat+ break return (numSat =ㅡn)	
	This takes 0 (\|Clauses) time, which is polynomial in Size(l)

1. Define desired YES-certificate
2. Design a poly-time verify (I, C) algorithm per variable in $\{1 . . n\}$ representing a
3. Correctness proof

- Case 1: Let I be any yes-instance; Find C such that verify $(I, C)=$ true
- Case 2: Let I be any no-instance, and C be any certificate; Prove verify $(I, C)=$ false
- Contrapositive of case 2 : Suppose verify $(I, C)=$ true Prove I is a yes-instance

MECHANICS OF SHOWING A PROBLEM IS IN NP

1. Define desired YES-certificate
2. Design a poly-time verify (I, C) algorithm
3. Correctness proof

- Case 1: Let I be any yes-instance; Find C such that verify $(I, C)=$ true
- Case 2: Let I be any no-instance, and C be any certificate; Prove verify $(I, C)=$ false
- Contrapositive of case 2 : Suppose verify $(I, C)=$ true Prove I is a yes-instance

Let I be a yes-instance of 3SAT. Then it has a satisfying assignment A_{s}. And, verify $\left(I, A_{s}\right)$ will see that each clause contains a literal satisfied by this assignment, so verify will see numSat $=\mid$ Clauses \mid and return true.
Suppose verify (I, C) returns true. Then numSat $=\mid$ Clauses \mid, so numSat was over clauses so each clause contains a satisfied literal so the 3SAT formula in I is satisfied by C, so I is a yessatisfied by C, so I is a yes-instance.

It follows that 3SAT is in NP since we have already shown $\mathrm{SAT} \leq_{P} 3 S A T$ we now know that 3 SAT is NP-COMPLETE.

RECAP

- To prove a problem Π is NP-COMPLETE
- Show Π is in NP, and
- Give a polynomial transformation from some NP-COMPLETE problem to II
- This involves an IFF correctness argument, and a polytime complexity argument
- When showing a problem is in NP, or proving correctness for a polynomial transformation,
- Instead of proving statements about no-instances,
it is usually easier to prove the contrapositive

2-SAT EXAMPLES

- $(p \vee q) \wedge(\neg p \vee r) \wedge(\neg r \vee \neg p)$
- Satisfiable: $p=0, q=1, r \in\{0,1\}$
- $(p \vee q) \wedge(\neg p \vee r) \wedge(\neg r \vee \neg p) \wedge(p \vee \neg q)$

Edges (implications of clauses) \begin{tabular}{l|l|l|l}
$\neg p \Rightarrow q$ \& $p \Rightarrow r$ \& $r \Rightarrow \neg p$ \& $\neg p \Rightarrow \neg q$

\hline$\neg q$ \& \&

\hline

$\neg \neg q \Rightarrow p$ \& $\neg r \Rightarrow \neg p$ \& $p \Rightarrow \neg r$ \& $q \Rightarrow p$

\hline
\end{tabular} $q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow \neg q \ldots$ so q cannot be true $\neg q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow q \ldots$ so q cannot be false Therefore the formula cannot be satisfied!

HOMEWORK SLIDES

THE P=NP QUESTION

TWO POSSIBLE REALITIES.

