CS 341: ALGORITHMS

Lecture 22: intractability IV – poly transformations, NP completeness

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

POLYNOMIAL TRANSFORMATIONS

commonly used for NP-completeness and impossibility results

POLYNOMIAL <u>TRANSFORMATIONS</u>

For a decision problem Π , let $\mathcal{I}(\Pi)$ denote the set of all instances of Π . Let $\mathcal{I}_{yes}(\Pi)$ and $\mathcal{I}_{no}(\Pi)$ denote the set of all yes-instances and no-instances (respectively) of Π .

Suppose that Π_1 and Π_2 are decision problems. We say that there is a **polynomial transformation** from Π_1 to Π_2 (denoted $\Pi_1 \leq_P \Pi_2$) if there exists a function $f: \mathcal{I}(\Pi_1) \to \mathcal{I}(\Pi_2)$ such that the following properties are satisfied:

f(I) is computable in polynomial time (as a function of size(I), where $I \in \mathcal{I}(\Pi_1)$)

if
$$I \in \mathcal{I}_{yes}(\Pi_1)$$
, then $f(I) \in \mathcal{I}_{yes}(\Pi_2)$

if $I \in \mathcal{I}_{\mathbf{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\mathbf{no}}(\Pi_2)$

[Mechanics] to give a polynomial transformation, you must:

1. specify f(I),

- 2. **show** it runs in poly-time, and
- 3. **show** I is a yes-instance of Π_1 **IFF** f(I) is a yes-instance of Π_2 .

POLYNOMIAL TRANSFORMATIONS (CONT.)

A polynomial transformation can be thought of as a (simple) special case of a polynomial-time Turing reduction, i.e., if $\Pi_1 \leq_P \Pi_2$, then $\Pi_1 \leq_P^T \Pi_2$.

Also known as

Karp reductions
and many-one
reductions

Given a polynomial transformation f from Π_1 to Π_2 , the corresponding Turing reduction is as follows:

Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.

Given an oracle for Π_2 , say A, run A(f(I)).

We transform the instance, and then make a single call to the oracle.

Very important point: We do not know whether I is a yes-instance or a no-instance of Π_1 when we transform it to an instance f(I) of Π_2 .

To prove the implication "if $I \in \mathcal{I}_{\mathbf{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\mathbf{no}}(\Pi_2)$ ", we usually prove the contrapositive statement "if $f(I) \in \mathcal{I}_{\mathbf{yes}}(\Pi_2)$, then $I \in \mathcal{I}_{\mathbf{yes}}(\Pi_1)$.

The contrapositive can help when it is hard to precisely characterize certificates for no-instances (or when such certificates don't prove much)

We saw one instance where a contrapositive was easier to prove when we discussed Hamiltonian cycles

SUMMARIZING

THE MORE CONVENIENT DEFINITION

- Let Π_1 and Π_2 be decision problems
- $\Pi_1 \leq_P \Pi_2$ iff there exists $f: \mathcal{I}(\Pi_1) \to \mathcal{I}(\Pi_2)$ such that:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(\Pi_1)$
 - If $I \in \mathcal{I}_{yes}(\Pi_1)$ then $f(I) \in \mathcal{I}_{yes}(\Pi_2)$
 - If $f(I) \in \mathcal{I}_{yes}(\Pi_2)$ then $I \in \mathcal{I}_{yes}(\Pi_1)$

This is the contrapositive. Was previously (2 slides ago): If $I \in \mathcal{I}_{no}(\Pi_1)$ then $f(I) \in \mathcal{I}_{no}(\Pi_2)$

Note: this is the same as saying $(I \in \mathcal{I}_{yes}(\Pi_1)) \Leftrightarrow (f(I) \in \mathcal{I}_{yes}(\Pi_2))$

This property justifies correctness for the following generic poly-time Karp reduction:

P1toP2KarpReduction(I)
 fI = f(I)
 return OracleForP2(fI)

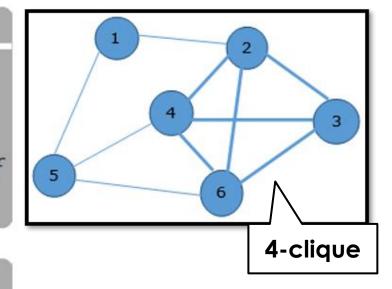
EXAMPLE POLYNOMIAL TRANSFORMATION

Problem 7.8

Clique

Instance: An undirected graph G = (V, E) and an integer k, where $1 \le k \le |V|$.

Question: Does G contain a clique of size $\geq k$? (A clique is a subset of vertices $W \subseteq V$ such that $uv \in E$ for all $u, v \in W$, $u \neq v$.)

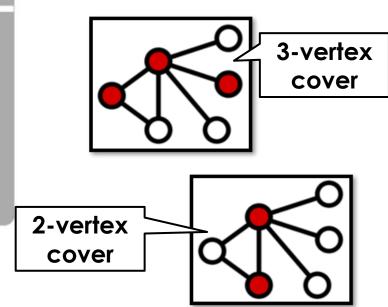


Problem 7.9

Vertex Cover

Instance: An undirected graph G = (V, E) and an integer k, where $1 \le k \le |V|$.

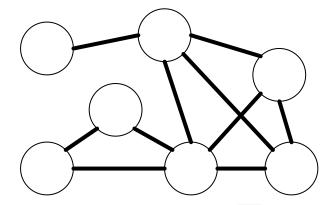
Question: Does G contain a vertex cover of size $\leq k$? (A vertex cover is a subset of vertices $W \subseteq V$ such that $\{u,v\} \cap W \neq \emptyset$ for all edges $uv \in E$.)



CLIQUE \leq_P VERTEX-COVER

Suppose I=(G,k) is an instance of Clique where $G=(V,E), V=\{v_1,...,v_n\}$ and $1\leq k\leq n$

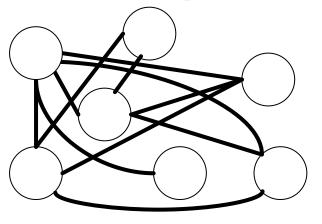
Want to solve Clique(G, k)



Claim: there is a k-clique in G iff there is an (n - k) Vertex-Cover in \overline{G}

• Construct instance $f(I) = (\overline{G}, n - k)$ of Vertex-Cover, where $H = (V, \overline{E})$ and $v_i v_j \in \overline{E} \Leftrightarrow v_i v_j \notin E$

Idea: reduce to $VertexCover(\overline{\textbf{\textit{G}}}, n-k)$



Consider the complement graph \overline{G} of G

Every edge of G is a non-edge of \overline{G} . Every non-edge of G is an edge of \overline{G} .

Given an adjacency matrix for G, get \overline{G} by flipping 0's and 1's.

PROVING THIS IS A **POLYNOMIAL TRANSFORMATION**

- We denote Clique by CL and Vertex-Cover by VC
- $CL \leq_P VC$ iff there exists $f: \mathcal{I}(CL) \to \mathcal{I}(VC)$ such that:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(CL)$ -
 - If $I \in \mathcal{I}_{ves}(CL)$ then $f(I) \in \mathcal{I}_{ves}(VC)$
 - If $f(I) \in \mathcal{I}_{yes}(VC)$ then $I \in \mathcal{I}_{yes}(CL)$

First let's show this

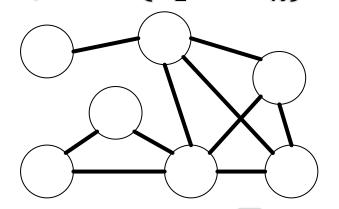
COMPLEXITY OF THE TRANSFORMATION

Assuming adjacency matrix, $Size(I) = \Theta(n^2 + \log_2 k)$

Suppose I = (G, k) is an instance of Clique where $G = (V, E), V = \{v_1, ..., v_n\}$ and $1 \le k \le n$

Time to compute f(I)?

Want to solve Clique(G, k)

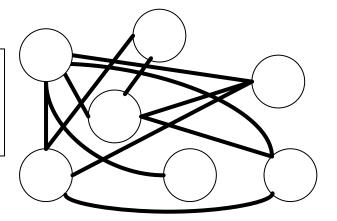


Constructing $\overline{\mathbf{G}}$ takes $O(n^2)$ time, and computing n-k takes $O(\log n)$ time.

So computing f(I) takes $O(n^2)$ time, which is polynomial in Size(I).

• Construct instance $f(I) = (\overline{G}, n - k)$ of Vertex-Cover, where $\overline{G} = (V, \overline{E})$ and $v_i v_j \in \overline{E} \Leftrightarrow v_i v_j \notin E$

Idea: reduce to $VertexCover(\overline{\textbf{\textit{G}}}, n-k)$



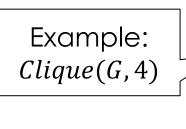
PROVING THIS IS A **POLYNOMIAL TRANSFORMATION**

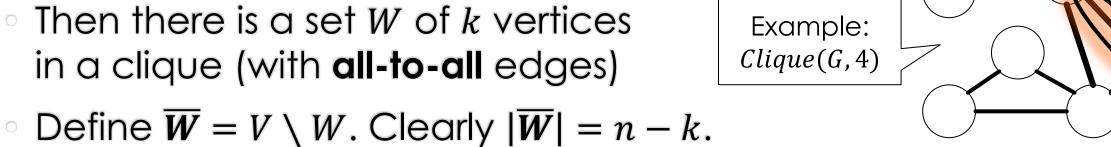
- We denote Clique by CL and Vertex-Cover by VC
- $CL \leq_P VC$ iff there exists $f: \mathcal{I}(CL) \to \mathcal{I}(VC)$ such that:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(CL)$
 - If $I \in \mathcal{I}_{yes}(CL)$ then $f(I) \in \mathcal{I}_{yes}(VC)$
 - If $f(I) \in \mathcal{I}_{yes}(VC)$ then $I \in \mathcal{I}_{yes}(CL)$

Now let's show this, i.e., if G contains a k-clique then \overline{G} contains an (n-k) vertex cover.

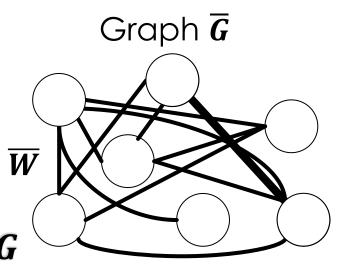
PROVING: $I \in \mathcal{I}_{yes}(CL) \Rightarrow f(I) \in \mathcal{I}_{ves}(VC)$

- Suppose I = (G, k) is a **yes**-instance of Clique
- in a clique (with all-to-all edges)





- We **claim** \overline{W} is a vertex cover of \overline{G}
- Consider any edge $(u,v) \in \overline{G}$
- If either u or v is in \overline{W} , then we are done, so assume $u, v \notin \overline{W}$ to obtain a contradiction
- Then $u, v \in W$, and W is a clique in G, so $(u, v) \in G$
- But $(u,v) \in \overline{G}$ implies $(u,v) \notin G$. Contradiction!



Graph G

PROVING THIS IS A **POLYNOMIAL TRANSFORMATION**

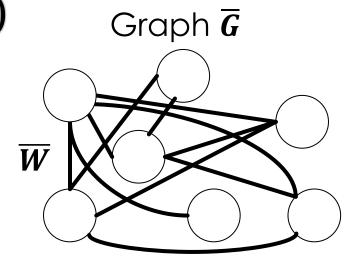
- We denote Clique by CL and Vertex-Cover by VC
- $CL \leq_P VC$ iff there exists $f: \mathcal{I}(CL) \to \mathcal{I}(VC)$ such that:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(CL)$
 - If $I \in \mathcal{I}_{yes}(CL)$ then $f(I) \in \mathcal{I}_{yes}(VC)$
 - If $f(I) \in \mathcal{I}_{yes}(VC)$ then $I \in \mathcal{I}_{yes}(CL)$

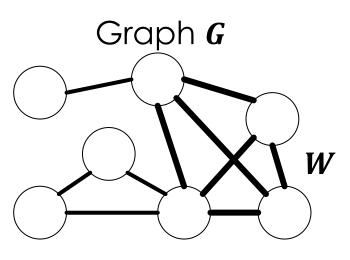
Now let's show this, i.e.,

if \overline{G} contains an (n-k) vertex cover, then G contains a k-clique

PROVING: $f(I) \in \mathcal{I}_{yes}(VC) \Rightarrow I \in \mathcal{I}_{yes}(CL)$

- Suppose $f(I) = (\overline{\mathbf{G}}, n k)$ is a **yes**-instance of VC
- Then there is a set of n-k vertices $\overline{\boldsymbol{W}}$ that is a vertex cover of $\overline{\boldsymbol{G}}$
- Define $W = V \setminus \overline{W}$. Clearly |W| = k.
- We claim W is a clique in G
- Since \overline{W} is a vertex cover of \overline{G} , every edge in \overline{G} has at least one endpoint in \overline{W}
- \circ Therefore, **no edge** in $\overline{\textbf{\textit{G}}}$ has two endpoints in W
- \circ So, in G, there are edges between all pairs of nodes in W. So, W is a clique in G.





So, we have demonstrated a polynomial transformation from CLIQUE to VERTEX-COVER 13

COMPLEXITY CLASS NP-COMPLETE

COMPLEXITY CLASS NP-COMPLETE (NPC)

The complexity class **NPC** denotes the set of all decision problems Π that satisfy the following two properties:

$$\Pi \in \mathsf{NP}$$

For all $\Pi' \in \mathbf{NP}$, $\Pi' \leq_P \Pi$.

NPC is an abbreviation for **NP-complete**.

Note that the definition does not imply that NP-complete problems exist!

Satisfiability and the Cook-Levin Theorem

We will just call it the **SAT** problem

Challenging and powerful result!

How to prove **any NP problem** anyone will **ever** come up with is **solved** by a reduction to SAT?

Problem 7.13

CNF-Satisfiability

Instance: A boolean formula F in n boolean variables x_1, \ldots, x_n , such that F is the **conjunction** (logical "and") of m **clauses**, where each clause is the **disjunction** (logical "or") of literals. (A **literal** is a boolean variable or its negation.)

Question: Is there a truth assignment such that F evaluates to true?

Example: $(p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p \lor s \lor \neg s)$

Variable: p,qLiteral: $p, \neg q$ Clause: $(p \lor q)$

Theorem 7.14 (Cook-Levin Theorem)

SAT ∈ NPC.

Real-world problem people care about! For example, used **extensively** to argue correctness for new processor designs.

Proving Problems NP-complete

Now that we have one NP-complete problem...

given any NP-complete problem, say Π_1 , other problems in **NP** can be proven to be NP-complete via polynomial transformations from Π_1 , as stated in the following theorem:

Theorem 7.15

Suppose that the following conditions are satisfied:

 $\Pi_1 \in \mathsf{NPC}$, ___

Every \Pi \in NP can be polynomially transformed to Π_1

 $\Pi_1 \leq_P \Pi_2$, and ____

And Π_1 can be polynomially transformed to Π_2

 $\Pi_2 \in \mathsf{NP}$.

So, every $\Pi \in \mathit{NP}$ can be polynomially transformed to Π_2

Then $\Pi_2 \in \mathsf{NPC}$.

(Everything in NP can be poly-transformed to Π_2) + $(\Pi_2 \text{ in NP})$ = definition of NPC

More Satisfiability Problems

Problem 7.16

3-SAT

Example: $(p \lor q \lor r) \land (\neg p \lor r \lor q) \land (\neg r \lor \neg p \lor s)$

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly **three** literals.

Question: Is there a truth assignment such that F evaluates to true?

Problem 7.17

2-SAT

Example: $(p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p)$

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly **two** literals.

Question: Is there a truth assignment such that F evaluates to true?

Satisfiable: $p = 0, q = 1, r \in \{0,1\}$

IS **SAT HARDER** THAN 3-SAT? ONLY POLYNOMIALLY...

Proving SAT $\leq_P 3SAT$

Suppose that (X, \mathcal{C}) is an instance of **SAT**, where $X = \{x_1, \dots, x_n\}$ and $\mathcal{C} = \{C_1, \dots, C_m\}$. For each C_j , do the following:

Satisfying all 4 clauses is possible IFF z = true

case 1 If $|C_j| = 1$, say $C_j = \{z\}$, construct four clauses

Same trick, but padding the clause with **two** new variables

 $\{z,a,b\},\{z,a,\overline{b}\},\{z,\overline{a},b\},\{z,\overline{a},\overline{b}\}.$

We add a **new** variable c as padding

case 2 If $|C_j| = 2$, say $C_j = \{z_1, z_2\}$, construct two clauses

To satisfy **both** of these clauses, one of z_1, z_2 must be true!

 $\{z_1, z_2, c\}, \{z_1, z_2, \overline{c}\}.$

case 3 If $|C_i| = 3$, then leave C_i unchanged.

 $(z_1 \lor z_2 \lor c) \land (z_1 \lor z_2 \lor \neg c)$ is satisfiable **IFF** $(z_1 \lor z_2)$ is satisfiable!

case 4 If $|C_j| \ge 4$, say $C_j = \{z_1, z_2, \dots, z_k\}$, then construct k-2 new clauses

So, the new clauses, together, are "equivalent" to the old one

New variables $d_1 \dots d_{k-3}$ "link" the clauses

$$\{z_1, z_2, d_1\}, \{\overline{d_1}, z_3, d_2\}, \{\overline{d_2}, z_4, d_3\}, \dots, \{\overline{d_{k-4}}, z_{k-2}, d_{k-3}\}, \{\overline{d_{k-3}}, z_{k-1}, z_k\}.$$

Here it gets trickier, because we aren't just "padding," but "linking" many clauses

Key idea: satisfying <u>all</u> clauses is possible **IFF some** $z_i = true$

Let's prove this is a correct polynomial transformation

CORRECTNESS

- Want to prove: $SAT \leq_P 3SAT$
- Sketch: let L be the number of **literals** in input I. In our transformed input, we construct at most 4L clauses. Clearly this can be done in time poly(4L), which is in poly(L), which is in poly(Size(I)).
- I.e., our transformation function f satisfies:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(\Pi_1)$
 - If $I \in \mathcal{I}_{yes}(\mathbf{SAT})$ then $f(I) \in \mathcal{I}_{yes}(\mathbf{3SAT})$ Let's do this direction
 - If $f(I) \in \mathcal{I}_{ves}(3SAT)$ then $I \in \mathcal{I}_{ves}(SAT)$

Correctness of the Transformation

Suppose I is a yes-instance of SAT. We show that f(I) is a yes-instance of 3-SAT. Fix a truth assignment for X in which every clause contains a true literal. We consider each clause C_i of the instance

 $\{z, a, b\}, \{z, a, \overline{b}\}, \{z, \overline{a}, b\}, \{z, \overline{a}, \overline{b}\}$

 $\{z_1, z_2, c\}, \{z_1, z_2, \overline{c}\}$

If $C_i = \{z\}$, then z must be true. The corresponding four clauses in f(I) each contain z, so they are all satisfied.

If $C_i = \{z_1, z_2\}$, then at least one of the z_1 or z_2 is true. The corresponding two clauses in f(I) each contain z_1, z_2 , so they are both satisfied.

If $C_i = \{z_1, z_2, z_3\}$, then C_i occurs unchanged in f(I).

Suppose $C_j = \{z_1, z_2, z_3, \dots, z_k\}$ where k > 3 and suppose $z_t \in C_j$ is a true literal. Define $d_i =$ true for $1 \le i \le t-2$ and define $d_i =$ false

for $t-1 \le i \le k$. It is straightforward to verify that the k-2 $\{z_1, z_2, d_1\}, \{\overline{d_1}, z_3, d_2\}, \{\overline{d_2}, z_4, d_3\}, \ldots$ corresponding clauses in f(I) each contain a true literal. $\{\overline{d_{k-4}}, z_{k-2}, d_{k-3}\}, \{\overline{d_{k-3}}, z_{k-1}, z_k\}.$

CORRECTNESS

- Want to prove: $SAT \leq_P 3SAT$
- \circ I.e., our transformation function f satisfies:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(\Pi_1)$
 - If $I \in \mathcal{I}_{yes}(\mathbf{SAT})$ then $f(I) \in \mathcal{I}_{yes}(\mathbf{3SAT})$ We just showed this
 - If $f(I) \in \mathcal{I}_{yes}(3SAT)$ then $I \in \mathcal{I}_{yes}(SAT)$ Now let's show this

Conversely, suppose f(I) is a yes-instance of **3-SAT**. We show that I is a yes-instance of **SAT**.

Consider each clause C in the SAT input I. We identify a corresponding set S of clauses in f(I), and we show C must be satisfied because of the clauses in S.

- (1) Four clauses in f(I) having the form $\{z,a,b\}$, $\{z,a,\overline{b}\}$, $\{z,\overline{a},b\}$ $\{z,\overline{a},\overline{b}\}$ are all satisfied if and only if z= **true**. Then the corresponding clause $\{z\}$ in I is satisfied.
- (2) Two clauses in f(I) having the form $\{z_1, z_2, c\}$, $\{z_1, z_2, \overline{c}\}$ are both satisfied if and only if at least one of $z_1, z_2 = \mathbf{true}$. Then the corresponding clause $\{z_1, z_2\}$ in I is satisfied.
- (3) If $C_j = \{z_1, z_2, z_3\}$ is a clause in f(I), then C_j occurs unchanged in I.

Correctness of the Transformation ($\{z_1, z_2, d_1\}, \{\overline{d_1}, z_3, d_2\}, \{\overline{d_2}, z_4, d_3\}, \ldots, \{\overline{d_{k-4}}, z_{k-2}, d_{k-3}\}, \{\overline{d_{k-3}}, z_{k-1}, z_k\}.$

(4) Finally, consider the k-2 clauses in f(I) arising from a clause $C_j = \{z_1, z_2, z_3, \dots, z_k\}$ in I, where k > 3. We show that at least one of $z_1, z_2, \dots, z_k =$ true if all k-2 of these clauses contain a true literal.

Assume all of $z_1, z_2, \ldots, z_k =$ **false**. In order for the first clause to contain a true literal, $d_1 =$ **true**. Then, in order for the second clause to contain a true literal, $d_2 =$ **true**. This pattern continues, and in order for the second last clause to contain a true literal, $d_{k-3} =$ **true**.

But then the last clause contains no true literal, which is a contradiction. We have shown that at least one of $z_1, z_2, \ldots, z_k =$ true, which says that the clause $\{z_1, z_2, z_3, \ldots, z_k\}$ contains a true literal, as required.

So, we have given a correct polynomial transformation from SAT to 3SAT.

So, if a problem II can be transformed into SAT in polytime, it can also be transformed into 3SAT in polytime.

But wait... SAT is NP-COMPLETE.

Have we shown 3SAT is NP-COMPLETE?

Still need to show 3SAT ∈ NP!

So every problem in NP can be transformed into 3SAT in polytime! 24

PROVING 3SAT IS IN NP

- Define desired YES-certificate
- 2. Design a poly-time verify(I,C) algorithm
- 3. Correctness proof
 - Case 1: Let I be any yes-instance; Find C such that verify(I,C) = true
 - Case 2: Let I be any no-instance, and C be any certificate;
 Prove verify(I,C) = false
 - Contrapositive of case 2: Suppose verify(I,C) = true; Prove I is a yes-instance

```
a list of m clauses, and the number n of variables. Each clause contains literals. Each literal is a pair
```

(var, neg): a variable $\in \{1..n\}$ & a negation bit

YES-certificate C = array with one bit per variable in $\{1..n\}$ representing a satisfying assignment

```
verify3SAT(I=(Clauses[1..m], n), C)
if C is not an array of n bits return false

numSat = 0
for each c in Clauses
for each literal (var, neg) in c
    if (C[var] && !neg) or (!C[var] && neg)
    numSat++
    break

return (numSat == m)
```

This takes O(|Clauses|) time, which is polynomial in Size(I)

MECHANICS OF SHOWING A PROBLEM IS IN NP

- Define desired YES-certificate
- 2. Design a poly-time verify(I,C) algorithm
- 3. Correctness proof
 - Case 1: Let I be any yes-instance; Find C such that verify(I,C) = true
 - Case 2: Let I be any no-instance, and C be any certificate;
 Prove verify(I,C) = false
 - Contrapositive of case 2: Suppose verify(I,C) = true; Prove I is a yes-instance

Let I be a yes-instance of 3SAT. Then it has a satisfying assignment A_s . And, $verify(I, A_s)$ will see that each clause contains a literal satisfied by this assignment, so verify will see numSat = |Clauses| and return true.

Suppose verify(I,C) returns true. Then numSat = |Clauses|, so numSat was incremented in each iteration of the loop over clauses, so each clause contains a satisfied literal, so the 3SAT formula in I is satisfied by C, so I is a yes-instance.

It follows that **3SAT is in NP.** Since we have already shown SAT \leq_P 3SAT, we now know that **3SAT is NP-COMPLETE**.

RECAP

- To prove a problem Π is NP-COMPLETE
 - Show Π is in NP, and
 - $^{\circ}$ Give a polynomial transformation from some NP-COMPLETE problem to Π
 - This involves an IFF correctness argument,
 and a polytime complexity argument
- When showing a problem is in NP,
 or proving correctness for a polynomial transformation,
 - Instead of proving statements about no-instances,
 it is usually easier to prove the contrapositive

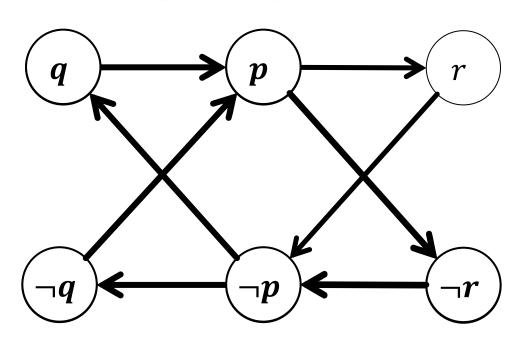
IS 2-SAT ALSO HARD?

2-SAT EXAMPLES

- $\circ (p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p)$
 - Satisfiable: $p = 0, q = 1, r \in \{0,1\}$
- $(p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p) \land (p \lor \neg q)$

Logical refresher: $p \Rightarrow q$ is **equivalent** to $\neg p \lor q$.

Therefore, $p \lor q$ is equivalent to $\neg p \Rightarrow q$ and equivalent to $\neg q \Rightarrow p$



Edges (implications of clauses)...

$$\begin{array}{|c|c|c|c|c|c|}
\hline \neg p \Rightarrow q & p \Rightarrow r & r \Rightarrow \neg p & \neg p \Rightarrow \neg q \\
\hline \neg q \Rightarrow p & \neg r \Rightarrow \neg p & p \Rightarrow \neg r & q \Rightarrow p \\
\hline
\end{array}$$

 $q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow \neg q \dots$ so q cannot be true

 $\neg q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow q \dots$ so q cannot be false

Therefore the formula **cannot** be satisfied!

(variable names are integers in 1.. | X |)

- 2-SAT can be solved in polynomial time. Suppose we are given an instance I of 2-SAT on a set of boolean variables $X = \{1 . |X|\}$
- (1) For every clause $x \vee y$ (where x and y are literals), construct two directed edges $\overline{x}y$ and $\overline{y}x$. We get a directed graph on vertex set $X \cup \overline{X}$.
- (2) Determine the strongly connected components of this directed graph.
- (3) I is a yes-instance if and only if there is no strongly connected component containing x and \overline{x} , for any $x \in X$.

Suppose no variable x is in the same SCC as \bar{x} , then to get a satisfying assignment do the following:

For each x, if \exists path from x to \bar{x} , then set x = false else set x = true.

HOMEWORK SLIDES

RETURNING TO ANOTHER FAMILIAR PROBLEM

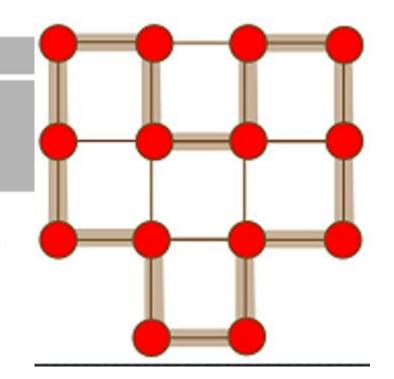
Problem 7.2

Hamiltonian Cycle

Instance: An undirected graph G = (V, E).

Question: Does G contain a hamiltonian cycle?

A **hamiltonian cycle** is a cycle that passes through every vertex in V exactly once.



Turns out **Hamiltonian Cycle**is NP complete as well

Compare to **Euler tour/circuit**: a cycle that passes through each <u>edge</u> exactly once can be found in **polytime**!

THE P=NP QUESTION

Theorem 7.12

If $P \cap NPC \neq \emptyset$, then P = NP.

So, to win \$1,000,000 just need to find one problem in *NPC* that can be reduced to a problem in *P*

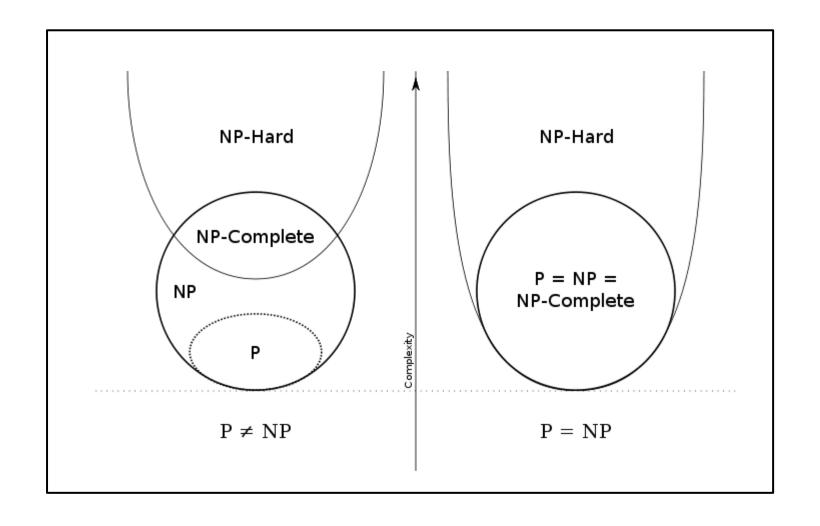
Proof.

We know that $P \subseteq NP$, so it suffices to show that $NP \subseteq P$. Suppose $\Pi \in P \cap NPC$ and let $\Pi' \in NP$. We will show that $\Pi' \in P$.

- Since $\Pi' \in \mathbf{NP}$ and $\Pi \in \mathbf{NPC}$, it follows that $\Pi' \leq_P \Pi$ (definition of NP-completeness).
- ² Since $\Pi' \leq_P \Pi$ and $\Pi \in \mathbf{P}$, it follows that $\Pi' \in \mathbf{P}$

(see last lecture)

TWO POSSIBLE REALITIES...



Theorem 7.10

If Π_1 and Π_2 are decision problems, $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \in \mathbf{P}$, then $\Pi_1 \in \mathbf{P}$.

Proof.

Suppose A is a poly-time algorithm for Π_2 , having complexity $O(m^{\ell})$ on an instance of size m. Suppose f is a transformation from Π_1 to Π_2 having complexity $O(n^k)$ on an instance of size n. We solve Π_1 as follows:

- Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.
- ² Run A(f(I)).

It is clear that this yields the correct answer. We need to show that these two steps can be carried out in polynomial time as a function of n=Size(I). Step (1) can be executed in time $O(n^k)$ and it yields an instance f(I) having size $m\in O(n^k)$. Step (2) takes time $O(m^\ell)$. Since $m\in O(n^k)$, the time for step (2) is $O(n^{k\ell})$, as is the total time to execute both steps.

PROPERTIES OF POLYNOMIAL TRANSFORMATIONS

Theorem 7.11

Suppose that Π_1, Π_2 and Π_3 are decision problems. If $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \leq_P \Pi_3$, then $\Pi_1 \leq_P \Pi_3$.

PROPERTIES OF POLYNOMIAL TRANSFORMATIONS

Proof.

We have a polynomial transformation f from Π_1 to Π_2 , and another polynomial transformation g from Π_2 to Π_3 . We define $h=f\circ g$, i.e., h(I)=g(f(I)) for all instances I of Π_1 . (Exercise: fill in the details.)