CS 341: ALGORITHMS

Lecture 22: intractability \mathbf{V} - More NPC transformations
 Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

LAST TIME

- Polynomial transformations
- Poly transformation from Clique to Vertex Cover
- NP Completeness
- SAT is NP complete (NPC)
- Got part way through showing 3SAT is NPC
- Did poly transformation from SAT to 3SAT
- Need to also show 3SAT is in NP

LET'S DO A BRIEF REVIEW

of NPC, poly transformations, and showing a problem is in NP

COMPLEXITY CLASS NP-COMPLETE (NPC)

The complexity class NPC denotes the set of all decision problems Π that satisfy the following two properties:

$$
\Pi \in \mathbf{N P}
$$

Mechanics of proving $\Pi \in$ NPC

$$
\text { For all } \Pi^{\prime} \in \mathbf{N P}, \Pi^{\prime} \leq_{P} \Pi \text {. }
$$

1. Show Π is in NP
2. Show a poly transformation from some NPC problem to Π
NPC is an abbreviation for NP-complete.
Note that the definition does not imply that NP-complete problems exist!

MECHANICS OF SHOWING A PROBLEM IS IN NP

- How to show II ENP

1. Define a yes-certificate
2. Design a poly-time verify (I, C) algorithm
3. Correctness proof

- Case 1: Let I be any yes-instance; Find C such that verify $(I, C)=$ true
- Case 2: Let I be any no-instance, and C be any certificate;
Prove verify $(I, C)=$ false

POLYNOMIAL TRANSFORMATION FOR PROVING Π_{2} IS IN NPC

Known NPC problem

Problem you want show is NPC

- Let Π_{1} and Π_{2} be decision problems
- $\Pi_{1} \leq_{P} \Pi_{2}$ iff there exists $f: \rho\left(\Pi_{1}\right) \rightarrow J\left(\Pi_{2}\right)$ such that:
- $f(I)$ is computable in poly-time, for all $I \in J\left(\Pi_{1}\right)$
- If $I \in J_{\text {yes }}\left(\Pi_{1}\right)$ then $f(I) \in J_{\text {yes }}\left(\Pi_{2}\right)$
- If $f(I) \in J_{y e s}\left(\Pi_{2}\right)$ then $I \in J_{\text {yes }}\left(\Pi_{1}\right)$

LET'S FINISH SHOWING 3SAT E NPC

- Already poly transformed SAT to 3SAT
- Need to show 3SAT in NP

1. Define desired YES-certificate
2. Design a poly-time verify (I, C) algorithm
3. Correctness proof

- Case 1: Let I be any yes-instance; Find C such that verify $(I, C)=$ true
- Case 2: Let I be any no-instance, and C be any certificate; Prove verify $(I, C)=$ false
- Contrapositive of case 2: Suppose verify $(I, C)=$ true; Prove I is a yes-instance

3SAT input $I=($ Clauses $[1 . . m], n)$: a list of \boldsymbol{m} clauses, and the number \boldsymbol{n} of variables. Each clause contains literals. Each literal is a pair (var, neg): a variable $\in\{1 . . n\}$ \& a negation bit

YES-certificate $C=$ array with one bit per variable in $\{1 . . n\}$ representing a satisfying assignment

```
l verify3SAT(I=(Clauses[1..m], n), C)
2 if C is not an array of n bits return false
3
4 numSat = 0
5 for each c in Clauses
            for each literal (var, neg) in c
                if (C[var] && !neg) or (!C[var] && neg)
                numSat++
                break
    return (numSat == m)
```

This takes $0(\mid$ Clauses $\mid)$ time, which is polynomial in Size(I)

MECHANICS OF SHOWING A PROBLEM IS IN NP

1. Define desired YES-certificate
2. Design a poly-time verify (I, C) algorithm
3. Correctness proof

- Case 1: Let I be any yes-instance; Find C such that verify $(I, C)=$ true
- Case 2: Let I be any no-instance, and C be any certificate; Prove verify $(I, C)=$ false
- Contrapositive of case 2: Suppose verify $(I, C)=$ true; Prove I is a yes-instance

Let I be a yes-instance of 3SAT. Then it has a satisfying assignment A_{s}. And, verify $\left(I, A_{s}\right)$ will see that each clause contains a literal satisfied by this assignment, so verify will see numSat $=\mid$ Clauses \mid and return true.

Suppose verify (I, C) returns true. Then numSat $=\mid$ Clauses \mid, so numSat was incremented in each iteration of the loop over clauses, so each clause contains a satisfied literal, so the 3SAT formula in I is satisfied by C, so I is a yes-instance.

It follows that 3SAT is in NP.
Since we have already shown SAT $\leq_{P} 3 S A T$, we now know that 3SAT is NP-COMPLETE.

Summary of Polynomial Transformations
Every problem in NP
SAT can be poly transformed to
\downarrow can be poly transformed to
Since SAT is NP-complete, so is 3-SAT!

Today and next time let's start filling out a hierarchy of reductions that prove several problems are NP complete

But first, since you need to know NP hardness for your assignment...

NP-HARDNESS

Intuitively: problems that are af least as hard as NP-complete (but are not necessarily decision problems)

A problem Π is NP-hard if there exists a problem $\Pi^{\prime} \in$ NPC such that $\Pi^{\prime} \leq_{P}^{T} \Pi$.
Every NP-complete problem is automatically NP-hard, but there exist NP-hard problems that are not NP-complete.
Typical examples of NP-hard problems are optimization problems corresponding to NP-complete decision problems. Reduction from lecture 19/20
For example, TSP-Decision \leq_{p}^{T} TSP-Optimization and TSP-Decision \in NPC, so TSP-Optimization is NP-hard.

Returns an optimal Hamiltonian cycle

COMPARING NPC AND NP HARD

- $\Pi \in$ NPC
- Must be a decision problem
- Must poly transform some NPC problem to II
- Must show I in NP
- $\Pi \in$ NPHard
- Does not need to be a decision problem
- Can use either poly transform or poly Turing reduction
- Does not need to be in NP (and can't be if not decision)

TWO POSSIBLE REALITIES

SOME PROBLEMS IN EACH

ESTABLISHING ANOTHER NPC PROBLEM

 ... BY TRANSFORMING 3-SAT TO CLIQUE(Proving $3-$ SAT \leq_{P} Clique)

SHOWING 3-SAT S_{P} CIIQUE

- Let I be an instance of $3-S A T$ with n variables $x_{1} . . x_{n}$ and m clauses $C_{1} . C_{m}$
- E.g. $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5}\right) \quad[n=5, m=4]$
- We construct Clique input $f(I)=(G, k)$:
- Node v_{l}^{c} for each literal $1 \leq \ell \leq 3$ in each clause $1 \leq c \leq m(\mathrm{so}|\mathrm{V}|=3 m)$
- Edges between all non contradictory pairs of nodes (no $x_{i} \wedge \bar{x}_{i}$) in different clauses
- $k=m$ (can we find an m-clique?)
- Must prove this is a polynomial transformation

Reasonable 3-SAT representation: array [1.. m] of clauses $\left\langle l_{1}, l_{2}, l_{3}>\right.$ of literals $\langle v, n e g>$ where $v \in\{1 . . n\}$.

$$
\text { Note } O(m) \subseteq O(\text { Size }(I))
$$

Runtime: create $3 m$ nodes, $\mathrm{O}\left(\mathrm{m}^{2}\right)$ edges, at $O(1)$ time each

SHOWING 3-SAT \leq_{P} CIIQUE

- Let I be an instance of 3 -SAT with n variables $x_{1} \ldots x_{n}$ and m clauses $C_{1} \ldots C_{m}$
- E.g. $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{5}\right) \wedge\left(\overline{x_{3}} \vee \vee x_{4} \vee \overline{x_{5}}\right)$
- Case 1: Suppose I is a yes-instance of 3-SAT. and show $f(I)$ is a yes-instance of m-clique
- Since l is a yes-instance, \exists a satisfying assignment
- E.g., $x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=0, x_{5}=0$
- For each clause C_{i}, let s_{i} be a salisfied literal in C_{i}
- E.g., $s_{1}=x_{1}, s_{2}=x_{2}, s_{3}=x_{3}, s_{4}=\overline{x_{5}}$
- Claim: the corresponding nodes form an m-clique

- There are m of these nodes, each in a different clause
- None of them represent contradictory truth assignments
- So, there are edges between all pairs of them \rightarrow they form an m-clique

SHOWING 3-SAT S_{P} CIIQUE

- Let l be an instance of 3 -SAT with n variables $x_{1}, \ldots x_{n}$ and m clauses $C_{1} \ldots C_{m}$
- E.g. $\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x x_{5}\right) \wedge\left(x_{3} \vee \vee x_{4} \vee \bar{x}_{5}\right)$
- Case 2: Suppose $f(I)$ is a yes-instance of m-clique, and show l is a yes-instance of 3 -SAT
- Since $f(I)$ is a yes-instance, it contains an m-clique
- Clique contains edges between all pairs of nodes
- There are no edges between nodes in same clause, so clique contains one node from each clause
- Set the corresponding literals to be satisfied
- Clique contains no edges between contradictory literals (i.e., no edge connects x_{i} and $\overline{x_{i}}$ for any i)
- So, truth assignment is consistent and satisfies each clause (and the formula)

LAST STEP: SHOW CLIQUE IS IN NP

- YES-certificate: array of k nodes forming a clique
- Verify (I,C):
- Check certificate is array of length k, containing vertex IDs
- Check all-to-all edges to verify these vertices form a clique
- $O\left(k^{2}\right) \subseteq O\left(|V|^{2}\right)$ runtime \rightarrow polytime
- Correctness: exercise! Need to prove:
- if l is a yes instance, verify returns yes, and
- if verify returns yes then lis a yes instance

Summary of Polynomial Transformations

Every problem in NP

Summary of Polynomial Transformations
Every problem in NP

SAT can be poly transformed to
\downarrow

3-SAT
\downarrow
Clique
\downarrow
Vertex Cover

This addilional poly transformation was proved last class (CL to VC)!
We also need to show Vertex Cover is in NP. Exercise. ©

REDUCING VERTEX-COVER TO SUBSET-SUM

(Proving Vertex-Cover \leq_{P} Subset-Sum)
(if we have fime)

SUBSET-SUM (SLIGHTL Y DIFEERENT FROM BEFORE)

Problem 7.18

Subset Sum

Instance: A list of sizes $S=\left[s_{1}, \ldots, s_{n}\right]$; and a target sum, W. These are all positive integers.
Question: Does there exist a subset $J \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in J} s_{i}=W ?$

- Earlier, we defined Subset-Sum with a target sum of 0
- Here we add a target sum 1 and take positive integers as input

Goal: transform instance I of VC into instance
$f(I)$ of SS (in poly time) such that I is a
yes-instance of VC iff $f(I)$ is a yes-instance of SS

Idea: turn nodes and edges into a list of integers and a target sum W. Sum W should be achievable IFF there is a k -vertex cover.

Somehow want the array of integers to encode which edges are covered by various nodes, and target sum to encode that every edge is covered if W is achieved

Vertex Cover \leq_{P} Subset Sum

Suppose $I=(G, k)$, where $G=(V, E),|V|=n,|E|=m$ and $1 \leq k \leq n$.
Suppose $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$. For $1 \leq i \leq n$,
$0 \leq j \leq m-1$, let $C=\left(c_{i j}\right)$, where

$$
c_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is incident with } v_{i} \\ 0 & \text { otherwise. }\end{cases}
$$

$c_{i j}=$ is edge j covered by node i?

Sort of like an adjacency matrix, but instead of storing
which node-pairs are adjacent, store which edges are incident to each node

Vertex Cover \leq_{P} Subset Sum

Suppose $I=(G, k)$, where $G=(V, E),|V|=n,|E|=m$ and $1 \leq k \leq n$. Suppose $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$. For $1 \leq i \leq n$, $0 \leq j \leq m-1$, let $C=\left(c_{i j}\right)$, where

$$
c_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is incident with } v_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Define $n+m$ ints and a target sum W as follows:

$$
b_{j}=10^{j} \quad(0 \leq j \leq m-1)
$$

	$b_{0}=1$
	$b_{1}=10$
E.g.,	$b_{2}=100$
	$b_{3}=1000$
	$b_{4}=10000$

Vertex Cover \leq_{P} Subset Sum

Suppose $I=(G, k)$, where $G=(V, E),|V|=n,|E|=m$ and $1 \leq k \leq n$.
Suppose $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$. For $1 \leq i \leq n$,
$0 \leq j \leq m-1$, let $C=\left(c_{i j}\right)$, where

$$
c_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is incident with } v_{i} \\ 0 & \text { otherwise. }\end{cases}
$$

Define $n+m$ ints and a target sum W as follows:

Each node becomes a number in the array:
$10^{m}+$ the integers for all edges incident to the node

$$
\begin{aligned}
& a_{i}=10^{m}+\sum_{j=0}^{m-1} c_{i j} 10^{j} \quad(1 \leq i \leq n) \\
& b_{j}=10^{j} \quad(0 \leq j \leq m-1)
\end{aligned}
$$

Each edge becomes a unique integer in the array: edge e_{j} becomes 10^{j}

$$
\begin{aligned}
& b_{0}=1 \\
& b_{1}=10 \\
& b_{2}=100 \\
& b_{3}=1000 \\
& b_{4}=10000
\end{aligned}
$$

$+10^{m}$ means the integer for a node is at least one digit longer than the integers for all edges

Vertex Cover \leq_{P} Subset Sum

Suppose $I=(G, k)$, where $G=(V, E),|V|=n,|E|=m$ and $1 \leq k \leq n$.
Suppose $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$. For $1 \leq i \leq n$,
$0 \leq j \leq m-1$, let $C=\left(c_{i j}\right)$, where

Why twice? If both endpoints of e_{j} are in the vertex cover, it is counted twice. Otherwise once, and can add b_{j}.

This target weight asks for k nodes and for all edges to be included twice

$$
c_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is incident with } v_{i} \\ 0 & \text { otherwise } .\end{cases}
$$

ints and a target sum W as follows:

$$
\begin{aligned}
a_{i} & =10^{m}+\sum_{j=0}^{m-1} c_{i j} 10^{j} \quad(1 \leq i \leq n) \\
b_{j} & =10^{j} \quad(0 \leq j \leq m-1) \\
W & =k \cdot 10^{m}+\sum_{j=0}^{m-1} 2 \cdot 10^{j}
\end{aligned}
$$

Then define $f(I)=\left(a_{1}, \ldots, a_{n}, b_{0}, \ldots, b_{m-1}, W\right)$.

Sum of edge sizes
incident to v_{1}, plus 10^{m}

All 5 edges counted twice

Is there a 2-VC? Use ubset sum
to search for $W=222222$
Subset sum looks for a subset of
$\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{0}, b_{1}, b_{2}, b_{3}, b_{4}\right\}$ that sums to W

It finds $W=\boldsymbol{a}_{\mathbf{2}}+\boldsymbol{a}_{\mathbf{3}}+b_{0}+b_{1}+b_{3}+b_{4}$
Note: no "carrying" can occur even if we sum everything

Most significant digit(s) of W
accurately capture \# of nodes
$\begin{array}{ll}a_{1}=100011 & b_{0}=1 \\ a_{2}=110110 & b_{1}=10 \\ a_{3}=101101 & b_{2}=100 \\ a_{4}=101000 & b_{3}=1000 \\ a_{5}=110000 & b_{4}=10000\end{array}$

$$
a_{2}+a_{3}=211211
$$

Other digits are in $[0,3]$. An edge is definitely covered by

$$
W=222222=a_{2}+a_{3}+b_{0}+b_{1}+b_{3}+b_{4}
$$

a node if its digit is 2 .

Correctness of the Transformation

Case 1: Suppose I is a yes-instance of Vertex-Cover. There is a vertex cover $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right|=k$. For $i=1,2$, let E^{i} denote the edges having exactly i vertices in V^{\prime}. Then $E=E^{1} \cup E^{2}$ because V^{\prime} is a vertex cover.

Contains node ints $A^{\prime}=\left\{a_{i}: v_{i} \in V^{\prime}\right\} \quad$ and $\quad B^{\prime}=\left\{b_{j}: e_{j} \in E^{1}\right\}$. Contains edge ints
The sum of the ints in A^{\prime} is
$\begin{array}{lll}e_{j} \text { has one endpoint in } V^{\prime}, \\ \text { so nodes in } V^{\prime} \text { contribute }\end{array} \quad k \cdot 10^{m}+\sum 10^{j}+\sum 2 \times 10^{j} . e_{e_{j} \text { has both endpoints in } V^{\prime}}$
$\mathbf{1} \times \mathbf{1 0}^{j}$ to W
The sum of the ints in B^{\prime} is

$$
\sum_{\left\{j: e_{j} \in E^{1}\right\}} 10^{j} .
$$

Therefore the sum of all the chosen ints is

$$
k \cdot 10^{m}+\sum_{\left\{j: e_{j} \in E\right\}} 2 \cdot 10^{j}=k \cdot 10^{m}+\sum_{j=1}^{m} 2 \cdot 10^{j}=W .
$$

all e_{j}, plus 10^{m} for each node

Case 2: Suppose $f(I)$ is a yes-instance of Subset Sum.

- We show I is a yes-instance of Vertex-Cover
- Since $f(I)$ is a yes-instance, there exists $A^{\prime} \cup B^{\prime}$ that sums to W
- where A^{\prime} contains node ints and B^{\prime} contains edge ints
- Define $V^{\prime}=\left\{v_{i} * a_{i} \in A^{\prime}\right\}$. We claim V^{\prime} is a vertex cover of size k.
- We must have $\left|V^{\prime}\right|=k$ for the coefficient of 10^{m} to be k (no carrying)
- Suppose (for contra.) V^{\prime} does not cover some edge $e_{j}=(u, v)$
- Then the coefficient of 10^{j} is zero for every $a_{i} \in A^{\prime}$
- But the coefficient of 10^{j} is 2 , so a subset of B^{\prime} must sum to 2×10^{j}
- But this is impossible (so e_{j} is covered, so all edges are covered)

Vertex Cover \leq_{p} Subset Sum

Complexity of the transformation: Easy! Included for your notes.

Suppose $I=(G, k)$, where $G=(V, E),|V|=n,|E|=m$ and $1 \leq k \leq n$.

Suppose $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{0}, \ldots, e_{m-1}\right\}$. For $1 \leq i \leq n$, $0 \leq j \leq m-1$, let $C=\left(c_{i j}\right)$, where

Assume adjacency matrix and unit cost model for simplicity

$$
c_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is incident with } v_{i} \\ 0 & \text { otherwise } .\end{cases}
$$

Compute C with trivial algorithm in $O(\mathrm{~nm})$ time
Define $n+m$ sizes and a target sum W as follows:

$$
\begin{aligned}
a_{i} & =10^{m}+\sum_{j=0}^{m-1} c_{i j} 10^{j} \quad(1 \leq i \leq n) \\
b_{j} & =10^{j} \quad(0 \leq j \leq m-1) \\
W & =k \cdot 10^{m}+\sum_{j=0}^{m-1} 2 \cdot 10^{j}
\end{aligned}
$$

Compute a_{i} by visiting all incident edges. Trivial algorithm yields $O(m)$ time for each a_{i}, totaling $O(\mathrm{~nm})$ over all i

Trivial to compute all b_{j} in $O(\mathrm{~m})$ time

Then define $f(I)=\left(a_{1}, \ldots, a_{n}, b_{0}, \ldots, b_{m-1}, W\right)$.

Total $O(\mathrm{~nm})$ time. This is polynomial in the input graph size!

Summary of Polynomial Transformations

CNF-SAT can be poly transformed to
\downarrow can be poly transformed to 3-CNF-SAT
\downarrow
Clique
\downarrow
Vertex Cover
Subset Sum
Technically need to also show SubsetSum with target T is in NP (exercise) to know it is in NPC

IS 2-SAT ALSO HARD?
 (IF WE HAVE TIME - VERY UNLIKELY)

2-SAT EXAMPLES

- $(p \vee q) \wedge(\neg p \vee r) \wedge(\neg r \vee \neg-p)$
- Satisfiable: $p=0, q=1, r \in\{0,1\}$
- $(p \vee q) \wedge(\neg p \vee r) \wedge(\neg r \vee \neg p) \wedge(p \vee \neg q)$

Logical refresher: $p \Rightarrow q$ is equivalent to $\neg p \vee q$.

Therefore, $p \vee q$ is equivalent to $\neg p \Rightarrow q$ and equivalent to $\neg q \Rightarrow p$
 Edges (implications of clauses)...
$\neg p \Rightarrow q \quad p \Rightarrow r \quad r \Rightarrow \neg p, \neg p \Rightarrow \neg q$

$$
q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow \neg q \ldots \text { so } q \text { cannot be true }
$$

$$
\neg q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow q \ldots \text { so } q \text { cannot be false }
$$

Therefore the formula cannot be satisfied!

2-SAT can be solved in polynomial time. Suppose we are given an instance I of \quad 2-SAT on a set of boolean variables $X=\{1 . .|X|\}$
(1) For every clause $x \vee y$ (where x and y are literals), construct two directed edges $\bar{x} y$ and $\bar{y} x$. We get a directed graph on vertex set $X \cup \bar{X}$.
(2) Determine the strongly connected components of this directed graph.
(3) I is a yes-instance if and only if there is no strongly connected component containing x and \bar{x}, for any $x \in X$.

Suppose no variable x is in the same SCC as \bar{x}, then to get a satisfying assignment do the following:
For each x, if \exists path from x to \bar{x}, then set $x=$ false else set $x=$ true.

BONUS SLIDES

SUMMARY OF COMPLEXITY CLASSES

OP (Poly-time) E.g., (decision problem variants of:) BFS, Dijkstra's, some DP algorithms

- Decision problems that can be solved by algorithms with runtime poly(input size)
- NP (Non-deterministic poly-time) All of P, and e.g... vertex cover, clique, SAT, subset sum
- Decision problems for which cerificates can be verified in time poly (input size)
- Equivalently: decision problems that can be solved in poly-time if you have access to a non-deterministic oracle that returns a yes-certificate if one exists
- NPC (NP-complete)
E.g., vertex cover, clique, SAT, subset sum, TSP-decision
- Decision problems $\Pi \in N P$ s.t. every $\Pi^{\prime} \in N P$ can be transformed to Π in poly-time
- NP-hard (at least as hard as NPC) All of NPC, and e.g., TSP-optimization, TSP-optimal value - \quad problems $\Pi \quad$ s.t. every $\Pi^{\prime} \in N P$ can be reduced to Π in poly-time
- Note: P, NP and NPC problems are decidable

Computability Complexity Theory
Found this neat

