CS 341: ALGORITHMS

Lecture 22: intractability V – More NPC transformations

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

LAST TIME

- Polynomial transformations
 - Poly transformation from Clique to Vertex Cover
- NP Completeness
 - SAT is NP complete (NPC)
 - Got part way through showing 3SAT is NPC
 - Did poly transformation from SAT to 3SAT
 - Need to also show 3SAT is in NP

LET'S DO A BRIEF REVIEW

of NPC, poly transformations, and showing a problem is in NP

COMPLEXITY CLASS NP-COMPLETE (NPC)

The complexity class **NPC** denotes the set of all decision problems Π that satisfy the following two properties:

 $\Pi \in \mathsf{NP}$

For all $\Pi' \in \mathbf{NP}$, $\Pi' \leq_P \Pi$.

NPC is an abbreviation for **NP-complete**.

Mechanics of proving $\Pi \in NPC$

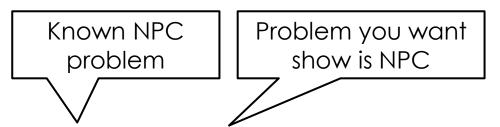
- 1. Show Π is in NP
- 2. Show a poly transformation from some NPC problem to Π

Note that the definition does not imply that NP-complete problems exist!

MECHANICS OF SHOWING A PROBLEM IS IN NP

- How to show $\Pi \in NP$
- Define a yes-certificate
- 2. Design a poly-time verify(I,C) algorithm
- 3. Correctness proof
 - Case 1: Let I be any yes-instance; Find C such that verify(I,C) = true
 - Case 2: Let I be any no-instance, and C be any certificate;
 Prove verify(I,C) = false

POLYNOMIAL TRANSFORMATION FOR PROVING Π_2 IS IN NPC



- Let Π_1 and Π_2 be decision problems
- $\Pi_1 \leq_P \Pi_2$ iff there exists $f: \mathcal{I}(\Pi_1) \to \mathcal{I}(\Pi_2)$ such that:
 - f(I) is computable in poly-time, for all $I \in \mathcal{I}(\Pi_1)$
 - If $I \in \mathcal{I}_{yes}(\Pi_1)$ then $f(I) \in \mathcal{I}_{yes}(\Pi_2)$
 - If $f(I) \in \mathcal{I}_{yes}(\Pi_2)$ then $I \in \mathcal{I}_{yes}(\Pi_1)$

LET'S FINISH SHOWING 3SAT E NPC

- Already poly transformed SAT to 3SAT

- Need to show 3SAT in NP

PROVING 3SAT IS IN NP

- Define desired YES-certificate
- Design a poly-time verify(I,C) algorithm
- 3. Correctness proof
 - Case 1: Let I be any yes-instance; Find C such that verify(I,C) = true
 - Case 2: Let I be any no-instance, and C be any certificate;
 Prove verify(I,C) = false
 - Contrapositive of case 2: Suppose verify(I,C) = true; Prove I is a yes-instance

```
a list of m clauses, and the number n of variables.
```

Each clause contains literals. Each literal is a pair (var, neg): a variable $\in \{1..n\}$ & a negation bit

YES-certificate C = array with one bit per variable in $\{1..n\}$ representing a satisfying assignment

```
verify3SAT(I=(Clauses[1..m], n), C)
if C is not an array of n bits return false

numSat = 0
for each c in Clauses
for each literal (var, neg) in c
    if (C[var] && !neg) or (!C[var] && neg)
    numSat++
    break

return (numSat == m)
```

This takes O(|Clauses|) time, which is polynomial in Size(I)

MECHANICS OF SHOWING A PROBLEM IS IN NP

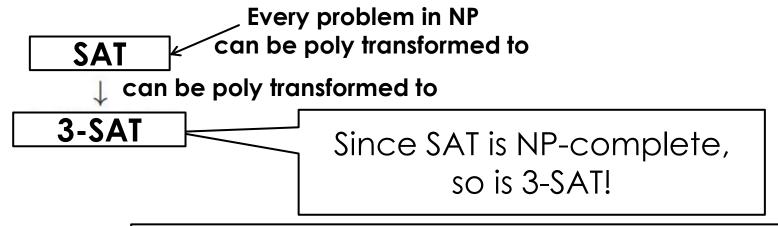
- Define desired YES-certificate
- Design a poly-time verify(I,C) algorithm
- 3. Correctness proof
 - Case 1: Let I be any yes-instance; Find C such that verify(I,C) = true
 - Case 2: Let I be any no-instance, and C be any certificate; Prove verify(I,C) = false
 - Contrapositive of case 2: Suppose verify(I,C) = true; Prove I is a yes-instance

Let I be a yes-instance of 3SAT. Then it has a satisfying assignment A_s . And, $verify(I, A_s)$ will see that each clause contains a literal satisfied by this assignment, so verify will see numSat = |Clauses| and return true.

Suppose verify(I,C) returns true. Then numSat = |Clauses|, so numSat was incremented in each iteration of the loop over clauses, so each clause contains a satisfied literal, so the 3SAT formula in I is satisfied by C, so I is a yes-instance.

It follows that **3SAT is in NP.** Since we have already shown SAT \leq_P 3SAT, we now know that **3SAT is NP-COMPLETE**.

Summary of Polynomial Transformations



Today and next time let's start filling out a hierarchy of reductions that prove several problems are NP complete

But first, since you need to know **NP hardness** for your assignment...

NP-HARDNESS

Intuitively: problems that are <u>at least as hard</u> as NP-complete (but are not necessarily decision problems)

NP-hard Problems

TSP-Optimal Value is also NP-hard (and not in NP)

This version returns the **total weight** of an optimal Hamiltonian cycle

A problem Π is **NP-hard** if there exists a problem $\Pi' \in \textbf{NPC}$ such that $\Pi' \leq_P^T \Pi$.

Every NP-complete problem is automatically NP-hard, but there exist NP-hard problems that are not NP-complete.

Typical examples of NP-hard problems are optimization problems

corresponding to NP-complete decision problems.

Reduction from lecture 19/20

For example, TSP-Decision \leq_P^T TSP-Optimization and TSP-Decision \in NPC, so TSP-Optimization is NP-hard.

Returns an **optimal Hamiltonian cycle**

COMPARING NPC AND NP HARD

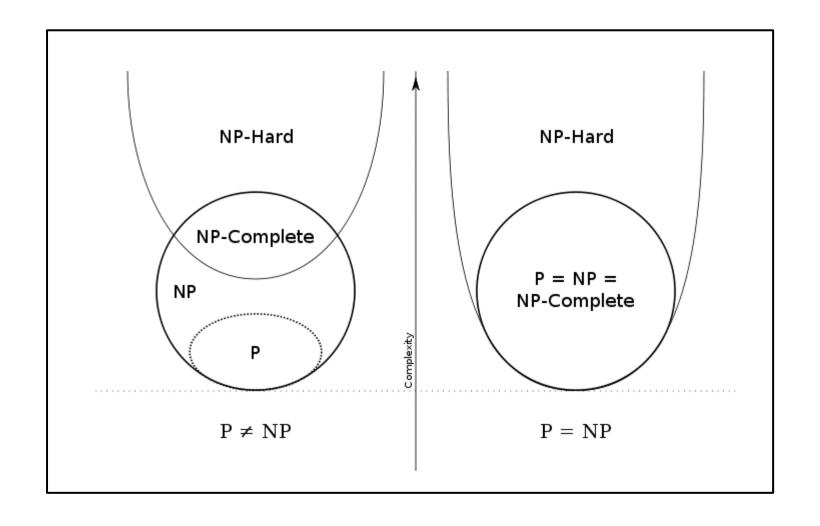
Π ∈ NPC

- Must be a decision problem
- $^{\circ}$ Must poly transform some NPC problem to Π
- Must show Π in NP

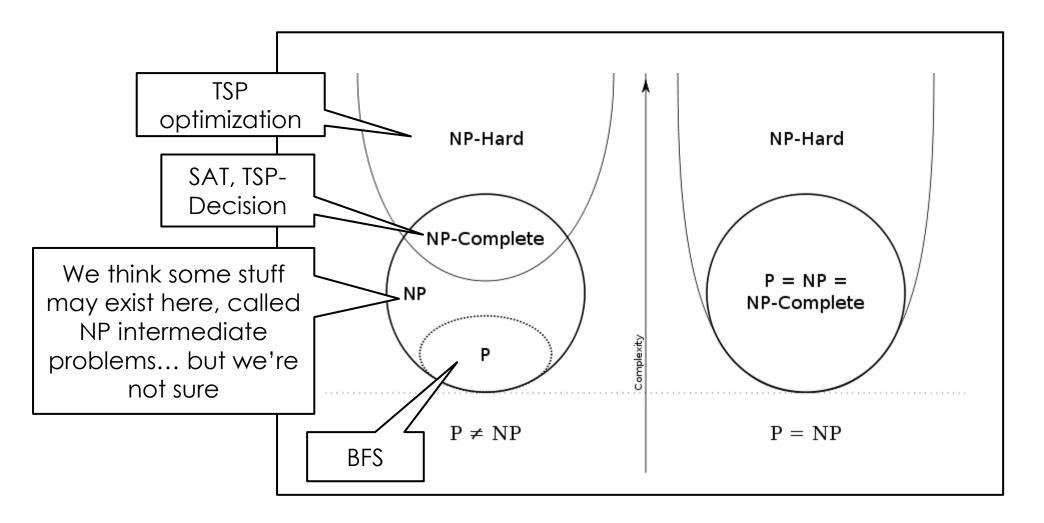
∘ Π ∈ NPHard

- Does not need to be a decision problem
- Can use either poly transform or poly Turing reduction
- Does not need to be in NP (and can't be if not decision)

TWO POSSIBLE REALITIES...



SOME PROBLEMS IN EACH



ESTABLISHING ANOTHER NPC PROBLEM ... BY TRANSFORMING 3-SAT TO CLIQUE

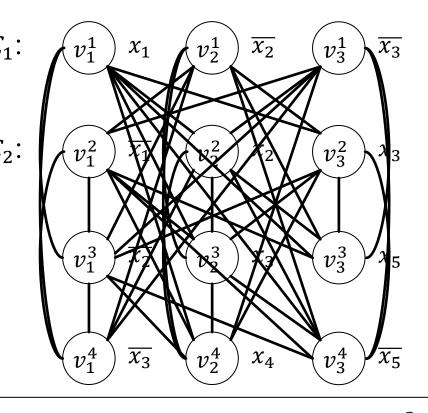
(Proving 3-SAT \leq_P Clique)

SHOWING 3-SAT \leq_P CLIQUE

- · Let I be an instance of 3-SAT with n variables $x_1 \dots x_n$ and m clauses $C_1 \dots C_m$
 - E.g., $(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_2 \vee x_3) \wedge (\overline{x_2} \vee x_3 \vee x_5) \wedge (\overline{x_3} \vee x_4 \vee \overline{x_5})$ [n = 5, m = 4]
- We construct Clique input f(I) = (G, k):
 - Node v_{ℓ}^c for each literal $1 \le \ell \le 3$ in each clause $1 \le c \le m$ (so |V| = 3m)
 - Edges between all non-contradictory pairs of nodes (no $x_i \wedge \overline{x_i}$) in different clauses
 - k = m (can we find an m-clique?)
 - Must prove this is a polynomial transformation

Reasonable 3-SAT representation: array[1..m] of clauses $< l_1, l_2, l_3 >$ of literals < v, neg > where $v \in \{1..n\}$.

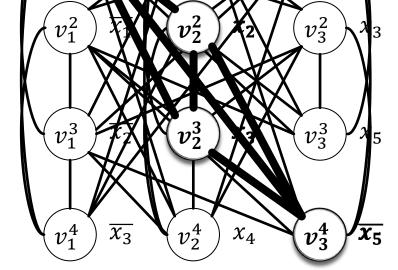
Note $O(m) \subseteq O(Size(I))$, So runtime $O(m^2) \subseteq O(Size(I)^2) \rightarrow$ polytime!



Runtime: create 3m nodes, $O(m^2)$ edges, at O(1) time each

SHOWING 3-SAT \leq_P CLIQUE

- Let I be an instance of 3-SAT with n variables $x_1 \dots x_n$ and m clauses $C_1 \dots C_m$
 - E.g., $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2} \lor x_3 \lor x_5) \land (\overline{x_3} \lor x_4 \lor \overline{x_5})$
- Case 1: Suppose I is a yes-instance of 3-SAT, and show f(I) is a yes-instance of m-clique
- Since I is a yes-instance, \exists a satisfying assignment
 - \circ E.g., $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$
- For each clause C_i , let s_i be a <u>satisfied</u> literal in C_i
 - E.g., $s_1 = x_1$, $s_2 = x_2$, $s_3 = x_3$, $s_4 = \overline{x_5}$
- \circ Claim: the corresponding nodes form an m-clique

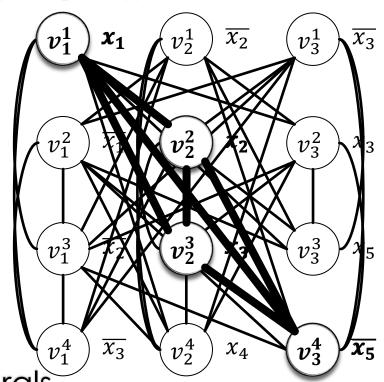


 $\boldsymbol{x_1}$

- \circ There are m of these nodes, each in a different clause
- None of them represent contradictory truth assignments
- \circ So, there are edges between all pairs of them \rightarrow they form an m-clique

SHOWING 3-SAT \leq_P CLIQUE

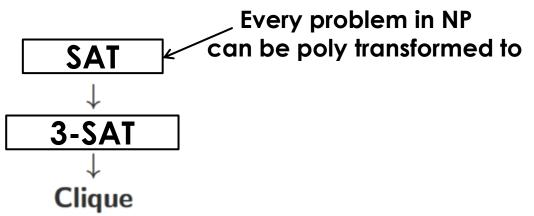
- Let I be an instance of 3-SAT with n variables $x_1 \dots x_n$ and m clauses $C_1 \dots C_m$
 - E.g., $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2} \lor x_3 \lor x_5) \land (\overline{x_3} \lor x_4 \lor \overline{x_5})$
- Case 2: Suppose f(I) is a yes-instance of m-clique, and show I is a yes-instance of 3-SAT
- \circ Since f(I) is a yes-instance, it contains an m-clique
- Clique contains edges between all pairs of nodes
- There are no edges between nodes in same clause,
 so clique contains one node from each clause
- Set the corresponding literals to be <u>satisfied</u>
- Clique contains **no edges** between contradictory literals (i.e., no edge connects x_i and $\bar{x_i}$ for any i)
- So, truth assignment is consistent and satisfies each clause (and the formula)



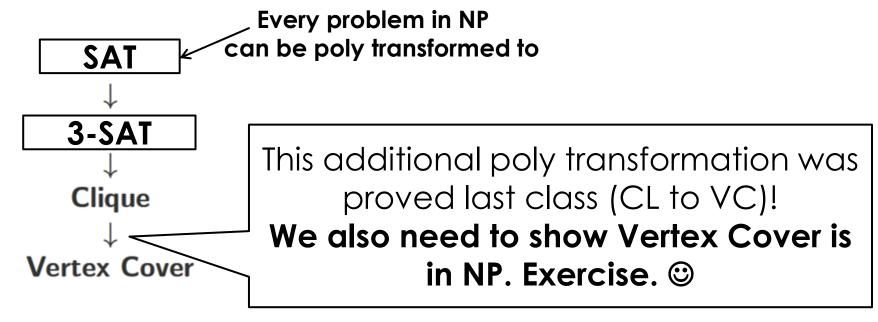
LAST STEP: SHOW **CLIQUE IS IN NP**

- YES-certificate: array of k nodes forming a clique
- Verify(I,C):
 - Check certificate is array of length k, containing vertex IDs
 - Check all-to-all edges to verify these vertices form a clique
 - $O(k^2) \subseteq O(|V|^2)$ runtime \rightarrow polytime
 - Correctness: exercise! Need to prove:
 - if I is a yes instance, verify returns yes, and
 - if verify returns yes then I is a yes instance

Summary of Polynomial Transformations



Summary of Polynomial Transformations



REDUCING VERTEX-COVER TO SUBSET-SUM

(Proving Vertex-Cover \leq_P Subset-Sum)

(if we have time)

SUBSET-SUM (SLIGHTLY **DIFFERENT** FROM BEFORE)

Problem 7.18

Subset Sum

Instance: A list of sizes $S = [s_1, ..., s_n]$; and a target sum, W. These are all positive integers.

Question: Does there exist a subset $J \subseteq \{1, ..., n\}$ such that

$$\sum_{i\in J} s_i = W?$$

- Earlier, we defined Subset-Sum with a target sum of 0
- Here we add a target sum T and take positive integers as input

Goal: transform instance I of VC into instance f(I) of SS (in poly time) **such that** I is a yes-instance of VC iff f(I) is a yes-instance of SS

Idea: turn nodes and edges into a list of integers and a target sum W. Sum W should be achievable <u>IFF</u> there is a k-vertex cover.

Somehow want the array of integers to encode which edges are covered by various nodes, and target sum to encode that every edge is covered if W is achieved

Suppose I=(G,k), where G=(V,E), |V|=n, |E|=m and $1 \le k \le n$.

Input to Vertex Cover

Suppose $V = \{v_1, \dots, v_n\}$ and $E = \{e_0, \dots, e_{m-1}\}$. For $1 \le i \le n$,

 $0 \leq j \leq m-1$, let $C=(c_{ij})$, where

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i < \\ 0 & \text{otherwise.} \end{cases}$$

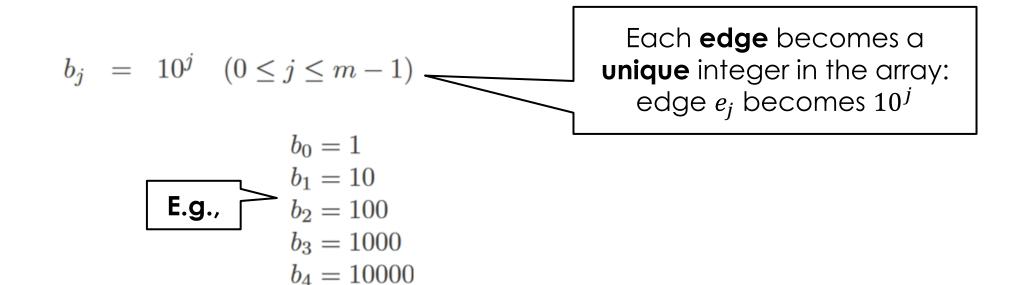
 c_{ij} = is edge j covered by node i?

Sort of like an adjacency matrix, but instead of storing which node-pairs are adjacent, store which edges are incident to each node

Suppose I=(G,k), where G=(V,E), |V|=n, |E|=m and $1\leq k\leq n$. Suppose $V=\{v_1,\ldots,v_n\}$ and $E=\{e_0,\ldots,e_{m-1}\}$. For $1\leq i\leq n$, $0\leq j\leq m-1$, let $C=(c_{ij})$, where

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}$$

Define n+m into and a target sum W as follows:



Suppose I=(G,k), where G=(V,E), |V|=n, |E|=m and $1 \le k \le n$.

Suppose $V = \{v_1, \ldots, v_n\}$ and $E = \{e_0, \ldots, e_{m-1}\}$. For $1 \le i \le n$, $0 \le j \le m-1$, let $C = (c_{ij})$, where

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}$$

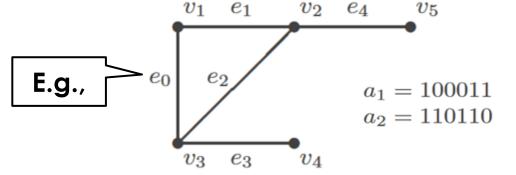
Define n+m into and a target sum W as follows:

$$a_i = 10^m + \sum_{j=0}^{m-1} c_{ij} 10^j \quad (1 \le i \le n)$$

 $b_j = 10^j \quad (0 \le j \le m-1)$

Each **node** becomes a integer in the array: 10^m + the integers for **all** edges **incident** to the node

Each **edge** becomes a **unique** integer in the array: edge e_j becomes 10^j



$$b_0 = 1$$

 $b_1 = 10$
 $b_2 = 100$
 $b_3 = 1000$
 $b_4 = 10000$

 $+10^m$ means the integer for a **node** is at least **one digit longer** than the integers for all **edges**

Suppose I=(G,k), where G=(V,E), |V|=n, |E|=m and $1 \le k \le n$.

Suppose $V = \{v_1, \ldots, v_n\}$ and $E = \{e_0, \ldots, e_{m-1}\}$. For $1 \le i \le n$,

 $0 \leq j \leq m-1$, let $C=(c_{ij})$, where

Why twice? If both endpoints of e_j are in the vertex cover, it is counted twice. Otherwise once, and can add b_j .

This target weight asks for *k* nodes and for all edges to be included twice

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}$$

ints and a target sum W as follows:

$$a_{i} = 10^{m} + \sum_{j=0}^{m-1} c_{ij} 10^{j} \quad (1 \le i \le n)$$

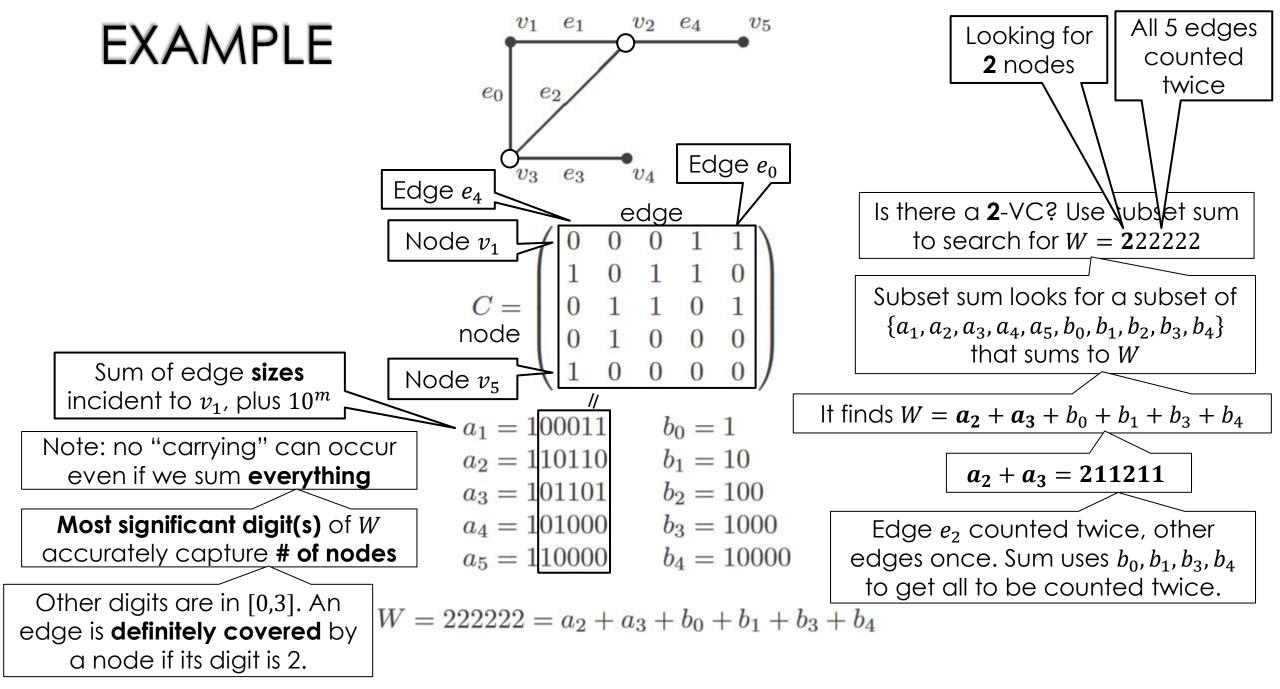
$$b_{j} = 10^{j} \quad (0 \le j \le m - 1)$$

$$W = k \cdot 10^{m} + \sum_{j=0}^{m-1} 2 \cdot 10^{j}$$

Then define $f(I) = (a_1, ..., a_n, b_0, ..., b_{m-1}, W)$.

Each **node** becomes a integer in the array: 10^m + the integers for **all** edges **incident** to the node

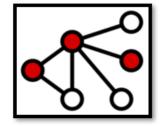
Each **edge** becomes a **unique** integer in the array: edge e_j becomes 10^j



Correctness of the Transformation

<u>Case 1:</u> Suppose I is a **yes**-instance of Vertex-Cover. There is a vertex cover

 $V' \subseteq V$ such that |V'| = k. For i = 1, 2, let E^i denote the edges having exactly i vertices in V'. Then $E = E^1 \cup E^2$ because V' is a vertex cover.



Let

one endpoint in V'

both endpoints in V'

Contains **node** ints
$$A' = \{a_i : v_i \in V'\}$$
 and $B' = \{b_j : e_j \in E^1\}$. Contains **edge** ints

The sum of the ints in A' is

$$e_j$$
 has **one endpoint** in V' , so nodes in V' contribute $\mathbf{1} \times \mathbf{10}^j$ to W

$$\frac{k \cdot 10^m + \sum_{\{j: e_j \in E^1\}} 10^j + \sum_{\{j: e_j \in E^2\}} 2 \times 10^j}{\{j: e_j \in E^2\}} 2 \times 10^j \cdot < \begin{cases} e_j \text{ has both endpoints in } V', \\ \text{so nodes in } V' \text{ contribute} \end{cases}$$

 2×10^{j} to W

The sum of the ints in B' is

$$\sum_{\{j: e_j \in E^1\}} 10^j. <$$

Add another $1 \times^{j}$ to W for each e_i with one endpoint in V'

Therefore the sum of all the chosen into is

$$k \cdot 10^m + \sum_{\{j: e_j \in E\}} 2 \cdot 10^j = k \cdot 10^m + \sum_{j=1}^m 2 \cdot 10^j = W.$$

To get 2×10^{j} for all e_i , plus 10^m for each node

<u>Case 2:</u> Suppose f(I) is a **yes**-instance of Subset Sum.

- We show I is a yes-instance of Vertex-Cover
- Since f(I) is a yes-instance, there exists $A' \cup B'$ that sums to W
 - \circ where A' contains node ints and B' contains edge ints
- Define $V' = \{v_i : a_i \in A'\}$. We claim V' is a vertex cover of size k.
 - We must have |V'| = k for the coefficient of 10^m to be k (no carrying)
 - Suppose (for contra.) V' does **not** cover some edge $e_j = (u, v)$
 - Then the coefficient of 10^j is **zero** for every $a_i \in A'$
 - But the coefficient of 10^{j} is 2, so a subset of B' must sum to 2×10^{j}
 - \circ But this is impossible (so e_i is covered, so all edges are covered)

Complexity of the transformation: Easy! Included for your notes.

Suppose
$$I=(G,k)$$
, where $G=(V,E)$, $|V|=n$, $|E|=m$ and $1 \le k \le n$.

Suppose
$$V=\{v_1,\ldots,v_n\}$$
 and $E=\{e_0,\ldots,e_{m-1}\}$. For $1\leq i\leq n$, Assume adjacency matrix and $0\leq j\leq m-1$, let $C=(c_{ij})$, where

unit cost model for simplicity

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}$$

Compute C with trivial algorithm in O(nm) time

Define n+m sizes and a target sum W as follows:

$$a_i = 10^m + \sum_{j=0}^{m-1} c_{ij} 10^j \quad (1 \le i \le n)$$

Compute a_i by visiting all incident edges. Trivial algorithm yields O(m) time for each a_i , totaling O(nm) over all i

$$b_j = 10^j \quad (0 \le j \le m - 1)$$

Trivial to compute all b_i in O(m) time

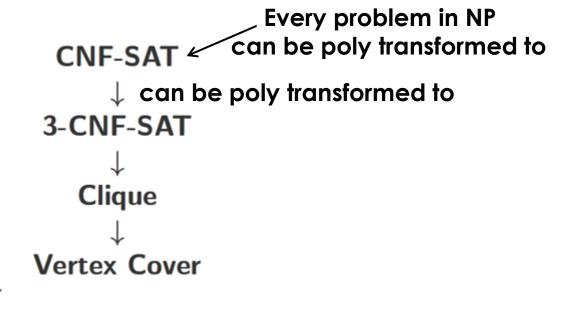
$$b_j = 10^j \quad (0 \le j \le m - 1)$$
 —
$$W = k \cdot 10^m + \sum_{j=0}^{m-1} 2 \cdot 10^j$$
 —

Trivial to compute W in O(m) time

Then define $f(I) = (a_1, \ldots, a_n, b_0, \ldots, b_{m-1}, W)$.

Total O(nm) time. This is polynomial in the input graph size!

Summary of Polynomial Transformations



Subset Sum

Technically need to also show SubsetSum with target T is in NP (exercise) to know it is in NPC

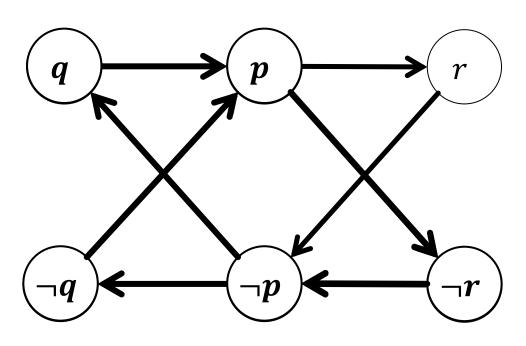
IS 2-SAT ALSO HARD? (IF WE HAVE TIME – VERY UNLIKELY)

2-SAT EXAMPLES

- $\circ (p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p)$
 - Satisfiable: $p = 0, q = 1, r \in \{0,1\}$
- $(p \lor q) \land (\neg p \lor r) \land (\neg r \lor \neg p) \land (p \lor \neg q)$

Logical refresher: $p \Rightarrow q$ is **equivalent** to $\neg p \lor q$.

Therefore, $p \lor q$ is equivalent to $\neg p \Rightarrow q$ and equivalent to $\neg q \Rightarrow p$



Edges (implications of clauses)...

 $q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow \neg q \dots$ so q cannot be true

 $\neg q \Rightarrow p \Rightarrow \neg r \Rightarrow \neg p \Rightarrow q \dots$ so q cannot be false

Therefore the formula **cannot** be satisfied!

(variable names are integers in 1.. | X |)

- 2-SAT can be solved in polynomial time. Suppose we are given an instance I of 2-SAT on a set of boolean variables $X = \{1, |X|\}$
- (1) For every clause $x \vee y$ (where x and y are literals), construct two directed edges $\overline{x}y$ and $\overline{y}x$. We get a directed graph on vertex set $X \cup \overline{X}$.
- (2) Determine the strongly connected components of this directed graph.
- (3) I is a yes-instance if and only if there is no strongly connected component containing x and \overline{x} , for any $x \in X$.

Suppose no variable x is in the same SCC as \bar{x} , then to get a satisfying assignment do the following:

For each x, if \exists path from x to \bar{x} , then set x = false else set x = true.

BONUS SLIDES

SUMMARY OF COMPLEXITY CLASSES

See this slide's notes

P (Poly-time)

- E.g., (decision problem variants of:) BFS, Dijkstra's, some DP algorithms
- **Decision** problems that can be solved by algorithms with runtime poly(input size)
- **NP** (Non-deterministic poly-time)
- All of P, and e.g.,, vertex cover, clique, SAT, subset sum
- **Decision** problems for which certificates can be verified in time poly(input size)
- Equivalently: decision problems that can be solved in poly-time if you have access to a non-deterministic oracle that returns a yes-certificate if one exists
- **NPC** (NP-complete)

E.g., vertex cover, clique, SAT, subset sum, TSP-decision

- **Decision** problems $\Pi \in NP$ s.t. every $\Pi' \in NP$ can be **transformed** to Π in poly-time

NP-hard (at least as hard as NPC) | All of NPC, and e.g., TSP-optimization, TSP-optimal value

- problems Π
- s.t. every $\Pi' \in NP$ can be **reduced** to Π in poly-time

Note: P, NP and NPC problems are **decidable**

