
2023-12-04

1

CS 341: ALGORITHMS
Lecture 24: intractability VI – Decidability, more NPC transformations

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

COMPLEXITY CLASS EXPTIME
A very brief overview

(Non-core material)

EXPTIME is the set of all decision problems that can be solved in exponential time.

I.e., in time 𝑂(2𝑝𝑜𝑙𝑦 𝑛) where 𝑝𝑜𝑙𝑦(𝑛) is a polynomial in the input size.

Observe that 𝑵𝑷 ⊆ 𝑬𝑿𝑷𝑻𝑰𝑴𝑬

𝑂 𝑛! ⊆ 𝑂 𝑛𝑛 = O 2𝑛 log 𝑛 time

𝒕 is exponential in 𝐥𝐨𝐠 𝒕.
(And 𝐥𝐨𝐠 𝒕 might be the largest term in the input size,

in which case 𝑂(𝑡) would be exponential in the input size.)

UNDECIDABILITY
Problems that are impossible to solve

5

DECIDABLE VS UNDECIDABLE PROBLEMS
We say an algorithm 𝑨 “solves” a decision problem if, for every instance 𝐼,

𝑨(𝑰) has finite runtime and returns the correct answer

If an algorithm 𝐴 solves decision problem Π,

then we say Π is decidable.

Formally, Π is decidable IFF there exists some algorithm 𝐴 such that,

for every instance 𝐼, 𝐴(𝐼) returns the correct answer in finite time.

Formally, Π is undecidable IFF there cannot exist an algorithm 𝐴 such that,

for every instance 𝐼, 𝐴(𝐼) returns the correct answer in finite time.

If it is not possible to design an algorithm 𝐴 that solves decision problem Π,

then we say Π is undecidable.

Equivalently, Π is undecidable IFF, for every algorithm 𝐴, there exists some input 𝐼
such that 𝐴(𝐼) does not return the correct answer in finite time.

I.e., for some input, 𝐴(𝐼) either runs forever or returns the wrong answer
6

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-12-04

2

HALTING: AN UNDECIDABLE PROBLEM

The Halting problem is decidable IFF

there exists an algorithm 𝑯𝒂𝒍𝒕(𝑰) that,

for every instance 𝐼 = (𝐴, 𝑥),

𝐻𝑎𝑙𝑡(𝐼) has finite runtime and correctly answers the question:

“would a call to 𝐴(𝑥) halt in finite time?”

7

For example, you could run 𝐻𝑎𝑙𝑡(𝐵𝐹𝑆, 𝐺) to determine whether,

𝐵𝐹𝑆(𝐺) will halt in finite time, which it will,

so 𝐻𝑎𝑙𝑡(𝐵𝐹𝑆, 𝐺) returns yes.

UNDECIDABILITY OF THE HALTING PROBLEM

We suppose Halt exists, to obtain a contradiction…

Since 𝑨 is a string (of code), and its input 𝒙 is also a string…
we could pass 𝐴 as an argument to itself: 𝐴(𝐴)

Then we could ask if 𝑨(𝑨) halts, by running 𝐻𝑎𝑙𝑡(𝐴, 𝐴)…

Weird… Let’s try to obtain a
contradiction by doing this…

8

Halt runs in finite time, and:

If 𝐧𝐨𝐭 𝑯𝒂𝒍𝒕(𝑨, 𝑨), then 𝑨(𝑨) will run forever

Else if 𝑯𝒂𝒍𝒕(𝑨, 𝑨), then 𝑨(𝑨) will terminate in finite time

Both cases lead to a contradiction.
So, our only assumption, that Halt exists,

must be false!

Therefore, the Halting
problem is undecidable.

but 𝑆𝑡𝑟𝑎𝑛𝑔𝑒(𝐴) terminates in finite time

But 𝑆𝑡𝑟𝑎𝑛𝑔𝑒(𝐴) will run forever

Suppose 𝑺𝒕𝒓𝒂𝒏𝒈𝒆 𝑺𝒕𝒓𝒂𝒏𝒈𝒆 halts. Then, it must return.
This means it sees 𝑛𝑜𝑡 𝐻𝑎𝑙𝑡(𝐴, 𝐴) just before returning.

Two cases: 𝑆𝑡𝑟𝑎𝑛𝑔𝑒 𝑆𝑡𝑟𝑎𝑛𝑔𝑒 either halts or does not halt

But 𝐴 = 𝑆𝑡𝑟𝑎𝑛𝑔𝑒, so it sees 𝑛𝑜𝑡 𝐻𝑎𝑙𝑡(𝑆𝑡𝑟𝑎𝑛𝑔𝑒, 𝑆𝑡𝑟𝑎𝑛𝑔𝑒).

So, 𝑺𝒕𝒓𝒂𝒏𝒈𝒆 𝑺𝒕𝒓𝒂𝒏𝒈𝒆 does not halt --- contradiction!

Suppose 𝑺𝒕𝒓𝒂𝒏𝒈𝒆 𝑺𝒕𝒓𝒂𝒏𝒈𝒆 does not halt. Then, it must
spin in the while loop forever. This means 𝐻𝑎𝑙𝑡 𝐴, 𝐴 = 𝑡𝑟𝑢𝑒.

But 𝐴 = 𝑆𝑡𝑟𝑎𝑛𝑔𝑒, so 𝐻𝑎𝑙𝑡 𝑆𝑡𝑟𝑎𝑛𝑔𝑒, 𝑆𝑡𝑟𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒.

So, 𝑺𝒕𝒓𝒂𝒏𝒈𝒆 𝑺𝒕𝒓𝒂𝒏𝒈𝒆 halts --- contradiction! 9

If we have HaltAllSolver then we have Halt,

but this is impossible, so HaltAllSolver cannot exist,

so the Halt-All problem is undecidable!

10

FINISHING NPC
TRANSFORMATIONS/REDUCTIONS

11

Every problem in NP
transforms to

3-SAT

SAT

12

transforms to

2023-12-04

3

Every problem in NP
transforms to

3-SAT

SAT

13

transforms to

Let’s show this

(Target)
REDUCE TARGET SUBSET SUM

TO 0-1 KNAPSACK

14

RECALL: 0-1 KNAPSACK PROBLEM

Can I obtain profit 𝑇 (or better) by taking

(whole) items with total weight ≤ 𝑀?

15

TARGET SUBSET SUM ≤𝑃 0-1 KNAPSACK

How should we poly-transform

(Target) Subset-Sum input into

(Target) 0-1 Knapsack input

Such that: 𝐼 contains a subset that

sums to 𝑻 IFF (≥ 𝑻) profit can be
obtained in knapsack input 𝑓(𝐼)

16

17

ints

Claim: 𝐼 contains a subset that

sums to 𝑻 IFF (≥ 𝑻) profit can be
obtained in knapsack input 𝑓(𝐼)

Every problem in NP
transforms to

3-SAT

SAT

18

transforms to

2023-12-04

4

Every problem in NP
transforms to

3-SAT

SAT

19

transforms to

Erickson 12.11

Every problem in NP
transforms to

3-SAT

SAT

20

transforms to

Let’s show this

REDUCE HAMILTONIAN CYCLE TO TSP-DECISION

21

EXERCISE: GIVE A POLY-TRANSFORMATION

This exercise: Show how to transform
Hamiltonian Cycle input into

TSP-Decision input (in poly time).

Such that: 𝐼 contains a Ham Cycle

IFF 𝑓(𝐼) contains a Ham Cycle of
weight at most 𝑻

22

23

Every problem in NP
transforms to

3-SAT

SAT

24

transforms to

Any many, many more ☺…
over 300 listed in this book

2023-12-04

5

FUN AND GAMES

25

https://arxiv.org/pdf/1203.1895.pdf

3-SAT ≤𝑃
𝑇 Super Mario

(FACTUALLY INCORRECT) MEMES

• There’s also an old video meme about proving that

Super Mario Bros is NP complete

• (Long before it was legitimately proved NP hard ☺)

• Whereas the stuff on the previous slide is real math,

the stuff in this video is just a meme, and is very wrong.
but you may find it funny…

26

SUMMARY OF COMPLEXITY CLASSES
• P (Poly-time)

• Decision problems that can be solved by algorithms with runtime poly(input size)

• NP (Non-deterministic poly-time)

• Decision problems for which certificates can be verified in time poly(input size)

• Equivalently: decision problems that can be solved in poly-time if you have access
to a non-deterministic oracle that returns a yes-certificate if one exists

• NPC (NP-complete)

• Decision problems Π ∈ 𝑵𝑷 s.t. every Π′ ∈ 𝑁𝑃 can be transformed to Π in poly-time

• NP-hard (at least as hard as NPC)

• problems Π s.t. every Π′ ∈ 𝑁𝑃 can be reduced to Π in poly-time

• Note: P, NP and NPC problems are decidable

E.g., (decision problem variants of:) BFS, Dijkstra’s, some DP algorithms

E.g., vertex cover, clique, SAT, subset sum, TSP-decision

All of P, and e.g.,, vertex cover, clique, SAT, subset sum

All of NPC, and e.g., TSP-optimization, TSP-optimal value

See this slide’s notes

27

POLYTIME 2-SAT
(IF WE HAVE TIME)

28

2-SAT EXAMPLES

• 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑟 ∨ ¬𝑝

• Satisfiable: 𝑝 = 0, 𝑞 = 1, 𝑟 ∈ {0,1}

• 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑟 ∨ ¬𝑝 ∧ 𝑝 ∨ ¬𝑞

¬𝑝 ⇒ 𝑞

¬𝑞 ⇒ 𝑝

𝑝 ⇒ 𝑟

¬𝑟 ⇒ ¬𝑝

𝑟 ⇒ ¬𝑝

𝑝 ⇒ ¬𝑟

¬𝑝 ⇒ ¬𝑞

𝑞 ⇒ 𝑝

𝑝

¬𝑝

𝑞

¬𝑞

𝑟

¬𝑟

Edges (implications of clauses)…
𝒑

¬𝒑

𝒒

¬𝒒 ¬𝒓

𝑞 ⇒ 𝑝 ⇒ ¬𝑟 ⇒ ¬𝑝 ⇒ ¬𝑞 … so 𝑞 cannot be 𝑡𝑟𝑢𝑒

Therefore the formula cannot be satisfied!

𝒑

¬𝒑

𝒒

¬𝒒 ¬𝒓 ¬𝑞 ⇒ 𝑝 ⇒ ¬𝑟 ⇒ ¬𝑝 ⇒ 𝑞 … so 𝑞 cannot be 𝑓𝑎𝑙𝑠𝑒

Logical refresher:
𝑝 ⇒ 𝑞 is equivalent to

¬𝑝 ∨ 𝑞.

Therefore, 𝑝 ∨ 𝑞 is
equivalent to ¬𝑝 ⇒ 𝑞 and

equivalent to ¬𝑞 ⇒ 𝑝

29

2-SAT
2-SAT 𝑿 = {𝟏. . 𝑿 }

(variable names are
integers in 1..|X|)

Suppose no variable 𝑥 is in the same SCC as ҧ𝑥, then to get a satisfying
assignment do the following:

For each 𝑥, if ∃ path from 𝑥 to ҧ𝑥, then set 𝑥 = 𝑓𝑎𝑙𝑠𝑒 else set 𝑥 = 𝑡𝑟𝑢𝑒.

30

https://www.youtube.com/watch?v=HhGI-GqAK9c

