CS 341: ALGORITHMS

Lecture 3: divide & conquer Il

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

PROBLEM: NON-DOMINATED POINTS

A point dominates
everything to the southwest So. 1 am a

non-dominated point

N/

+y y
No other point
dominates me

MORE FORMALLY

Given two points (x4, y,) and (x5, y,),
we say (xq,y;) dominates (x,,y,)
fx;y > xpoand y; > y,

Input: a set S of n points
with distinct x values

Output: all non-dominated points in S, |
. : : What's an easy
l.e., all points In S that are (brute force)
not dominated by any point in S algorithm for thise

BRUTE FORCE ALGORITHM

1
2
3
4
5
6
7
8

NDPoints(S)
for p in S

dominated[p] = false

for g in S

if q '= p and g.x > p.x and q.y > p.y
dominated[p] = true
if not dominated|[p]

print p

Running time?
(unit cost)

0o(n?)

Let’'s come up with a
better algorithm

Observe that the non-dominated points form a staircase and all the other
points are “under” this staircase.

The of the staircase are determined by the y-co-ordinates of the
non-dominated points. The of the staircase are determined by the

x-co-ordinates of the non-dominated points. The staircase descends from
left to right.

Ty

+Xx

PROBLEM DECOMPOSITION

Suppose we pre-sort the points in S with respect to their x-co-ordinates.
This takes time ©(nlogmn).

PROBLEM DECOMPOSITION

Let the first n /2 points be denoted S and let the last n/2 points
be denoted .55.

PROBLEM DECOMPOSITION

Recursively solve the subproblems defined by the two instances
S1 and Ss.

PROBLEM DECOMPOSITION

Given the non-dominated points in S1 and the non-dominated
points in Sy, how do we find the non-dominated points in S7?

f+y +y

+X

S

Observe that no point in S; dominates a point in 5.

Therefore we only need to eliminate the points in S that are dominated
by a point in Ss. It turns out that this can be done in time O(n).

COMBINING TO GET NON-

DOMINATED POINTS

Let Q4, Q,, ..., Q) e the non-dominated points in §4

Let Ry, R, ..., R,;,, b€ the non-dominated points in §,

Qi

\) \

Just need to find rightmost Q; that
is not dominated
(that has y-coordinate > R;.y)

10

—_—2
SCwo~NOOCULLEWN —

NN NN = @ ol cd el) ed el wd
WN-OCwOVwOO~NOOULLEWN =

NDPoints(S[1..n])
sort S by x-coord
recurse(S)

Recurse(S[1..n]) // precondition: S sorted by x

//
if
//
S1
S2

/7

Q[1..q]
R[1..r]

//
i

base case
n == 1 then return S

divide
S[1..floor(n/2)]
S[floor(n/2)+1..n]

conquer
Recurse(S1)
Recurse(S2)

combine
1

while i <= q and Q[l]y >= R[1].y

//

i++

postcondition: return sorted by x

return concat(Q[1..1-1], R)

11

coONOYOU B WN =

N N NN = el ocd omd md od ed wd ed b
WN-~OCCwVwWOooOdJOOULLPEWN-=OV

NDPoints(S[1..n]) - O(nlogn)
sort S by x-coord

recurse(S)"==ﬁ T (n)

Running time complexity?
(unit cost model)

Recurse(S[1..n]) // precondition: S sorted by x

//
if

[/
S1
S2

//

Ql
R[

//
i
wh

base ca

se ! o1
n == 1 then return S (1)

divide
ST

conquer

1..q9] =
156

combine
= 1
ile 1 <=
i++

Assume n = 2/ for simplicity

—

floor(n/2)]

©(1) or 8(n)

S[floor(n/2)+1..n]

1
Recurse(S1) -

NMELINIE
N—

Recurse(S2) <=::i :
T

d Ar- _
4 and@ qrij.y >= R[1].y—— o(n)

// postcondition: return sorted by X
return concat(Q[71..1-1], R)

T(n) = 2T (g) +0(n)

Same as merge sort
recurrence: 0(nlogn)

So total for sort & recursion is
O(nlogn + T(n)) = ©(nlogn)

®(1) or 8(n) depending on
data structures...

\| either way doesn’'t matter 1

BONUS SLIDE: WHAT IF X VALUES ARE NOT DISTINCT?

R might contain multiple points with the same x value but with
different y values

If there are points in Q with the same x as R[1], and a lower vy, then
the algorithm would say they are dominated by R[1]. Wrong!

We can find all of the points with the same x as R[1] in linear fime

If there are multiple such points, and some are in Q, then they are
not dominated by R[1], but might be dominated by the next
element R[i] of R that has a different x

So, we compare them with RJ[i].y (in linear fime) instead of R[1].y

All of the other points in Q with x different from R[1].x are compared
with R[1].y as usual (in linear time)

13

MULTIPRECISION MULTIPLICATION

Input: two k-bit positive integers X and Y

With binary representations:
X =[X[k —1],..,X][0]]
Y =[Y[k—1],..,Y[0]]

Output: The 2k-bit positive integer Z = XY

With binary representation: Z = [Z[2k — 1], ..., Z[0]]

14

BRUTE FORCE ALGORITHM

X3] X[0]
X EHENEN Y EHENENER

1o |1]0 One row per digit of Y
times [0 [ER]ER]ER For each row

DINCICIEEEEEREE COPY fhe kbits of X
EEEEEEE= Add the k rows together
o1 Jol1 ol | | 6(k) binary additions

: of 8(k) bit numbers
yd o 1 1 (o1 (1] 1]0

Total runtime is
®(k?) bit operations

15

A DIVIDE-AND-CONQUER APPROACH

Let X}, be the integer formed by the k£/2 high-order bits of X and let Xp
be the integer formed by the k/2 low-order bits of X.

Similarly for Y.
x EREEERES Y EHENERER
x, BIEN X, ENEN vy, IEN y, ENEN
k/2 bit
shift! Thus
X =22X, + X5, and Y = 2F/2Y, + Y.
2k/2x, EHIEEEEEN 2k/2y, ERIEREEER
+Xr ENEN +Y, EEER

D4 10 10 =y EHEEENER

16

EXPRESSING k-BIT MULT. AS k/2-BIT MULT.

X =2k2%, + X, and Y = 2%/2y, + Y,
So XY = (2%2X; + Xp)(2%/%Y;, + YR)
= 2KX, Y, 4+ 282(X, Yr + XRY;) + XrYx
Suggests a D&C approach...
Divide into four k/2-bit multiplication subproblems

Conquer with recursive calls
Combine with k-bit addifion and bit shifting

17

oo WK =

O

10
11
12
13
14
15
16
17
18

DnCMultiply(X, Y, k)

//
if

//
XR
XL
YR
YL

//

XLYL
XRYR
XLYR
XRYL

//

base case

k == 1 then return [[X[0]*Y[0]]]

divide

X[0..k/2-1]
X[k/2..k-1]
Y[O0..k/2-1]
Y[k/2..k-1]

conquer
DnCMultiply(XL, YL,
DnCMultiply(XR, YR,
DnCMultiply(XL, YR,
DnCMultiply(XR, YL,

combine

k/2)
k/2)
k/2)
k/2)

Runtime?
(bit complexity model)

return (XLYL<<k) + (XLYR+XRYL)<<(k/2) + XRYR

Recall: XY = 2%X,Y;, + 2%/2(X, Yr + XpY;) + XrYx

18

oo WK =

— — o e e e e e —
o~ O B WM = O W

DnCMultiply(X, Y, k) 0(1)

//
if

//
XR
XL
YR
YL

//

XLYL
XRYR
XLYR
XRYL

combine 1 0(k) |
return (XLYL<<k) + YL)<<(k/2) + XRYR

//

base case
k == 1 then return [[X[0]*Y[0]]]

divide —— O(logk) or (k)
X[0..k/2-1]
X[k/2..k-1]
Y[O..k/2-1]

Y[k/2..k-1] 4T<E>
2

conquer

DnCMultiply(XL, YL, k/2)
DnCMultiply(XR, YR, k/2)
DnCMultiply(XL, YR, k/2)
DnCMultiply(XR, YL, k/2)

(| I | | I |

Intuition: to get speedup,
must reduce the number of
subproblems or their size

Assume k = 2/ for ease
T(k) = 4T (5) + ©(k)

Master theorem says
T(k) € ©(k'°82%) = O(k?)

Same complexity as brute forcel

Expectation vs Reality 19

For millennia it was widely thought that O(n?) multiplication
was optimal.

Then in 1960, the 23-year-old Russian mathematician Anatoly
Karatsuba took a seminar led by Andrey Kolmogorov, one of the
great mathematicians of the 20th century.

Kolmogorov asserted that there was no general procedure for
doing multiplication that required fewer than n? steps.

Karatsuba thought there was—and after a week of searching, he
found it.

hitps://www.wired.com/story/mathematicians-

discover-the-perfect-way-to-multiply/ 20

KARATSUBA'S ALGORITHM

Let’s optimize from four subproblems to three

Recall: XY = 2%X, Y, + 2%/2(X Yp + XRpY,) + Xr Yz
ldea: compute X; Y + XRpY; with only one muliiplication
Note X;Yr + XpY; appears in (X; + Xg)(Y + Yg)

(X, +Xp) (Y +YR) =X, Y, + X;Yr+ XrY; + XgrYr

let X =X, + Xgand Y =Y, + Y5

Then X Yp + XY, = X7Y7 — X, Y — XpYx

And the other two terms X;Y; and XpY are already in XY

So XY = 2kX, Y, + 2K/ 2(X Y — X, Y, — XpYe) + XgYr [Only three unique

multiplications!

=1

if k == 1 then return [[X[0]*Y[0]]]

1

e(1)

o(k) *

1 KaratsubaMultiply(X, Y, k)
2 // base case

3

4 J

5 // divide ——

6 XR = X[0..k/2-1]

7 XL = X[k/2..k-1]

8 YR = Y[O0..k/2-1]

9 YL = Y[k/2..k-1]

10 XT = XL + XR

11 el

Running time complexity?

YL + YR K
i i (4
13 // conquer |

T(k) =37 (5) + 0(k)

Assume k = 27 for ease
Master theorem:
a=3,b=2,y=1

x = log, a = log, 3

14 XLYL = KaratsubaMultiply(XL, YL, k/2) log- 3
15 XRYR = KaratsubaMultiply(XR, YR, k/2) T(k) € @(k 52)
16 XTYT = KaratsubaMultiply(XT, YT, k/2) 158

17 z@(k)

18 // combine._===::4 O (k)

19 return (XLYL<<k) + ((XTYT - XLYL - XRYR)<<(k/2)) + XRYR

Input size increase by 10x
causes runtime to 38x

Compare to 0(k?) algo:

10x input causes 100x time 22

Note that X; + X and Y, + YR could be (k/2 + 1)-bit integers.
However, computation of Z3 can be accomplished by multiplying
(k/2)-bit integers and accounting for by extra additions.

Various techniques can be used to handle the case when k is not a power
of two. One possible solution is to pad with zeroes on the left. So let m
be the smallest power of two that is > k. The complexity is ©(m/!°823).
Since m < 2k the complexity is O((2k)'823) = O(3k'°823) = O(k'0823),

There are further improvements known:

e The /ocom-Cook algorithm splits X and Y into three equal parts and uses
five multipliations of (k/3)-bit integers. The recurrence is

T(k) = 5T(k/3) + ©(k), and then T'(k) € ©(k!°835) = O(k!1-47).

e The 1971 Schonhage Strassen algorithm (based on FFT) has complexity
O(nlognloglogn).
e The 2007 /Fures algorithm has complexity O(n log nQO(IOg‘ n)).

23

Quoting Fiirer, author of the 0(nlogn 2°2U°8" ™) 3igorithm:
“It was kind of a general consensus that multiplication is such an important
basic operation that, just from an aesthetic point of view, such an important

operation requires a nice complexity bound...

From general experience the mathematics of basic things at the end always
turns out to be elegant.”

24

And Harvey and van der Hoeven achieved O(n log n) in November 2020!
[https://hal.archives-ouvertes.fr/hal-02070778/document]

Their method is a refinement of the major work that came before them. It
splits up digits, uses an improved version of the fast Fourier transform, and
takes advantage of other advances made over the past 40 yearS/\

Unfortunately, simple complexity doesn’t
always mean simple algorithm...

Lower bound of Q(nlogn) is conjectured.

A conditional proof is known...
It holds if a central conjecture in the area of network coding
turns out to be frue. [https://arxiv.org/abs/1902.10935]

25

MATRIX MULTIPLICATION

Input: Aand B
Output: their product C=AB
Naive algorithm for n X n matrices:

For each oufput cell C;;
C;j = DotProd(row;(4),coli(B)")

n
= z A By;j
k=1

Running fime (unit cost)?

a1

12

rrrrrrrrrr

21

22

(31

(132

a41

(142

b11

bi2

b13

b:z 1

bao

ba3

qqqqqqqqqqqqqqq

~

| a11b12 + a12b22

as1 b13 + as2bos

26

ATTEMPTING A BETTER SOLUTION

What if we first partition the matrix into sub-matrices
Then divide and conquer on the sub-matrices
Example of partitioning: 4x4 matrix into four 2x2 matrices

[a bl _|%21 Q22| by; by
c d C11 €12 | dqyq1 dqo

27

MULTIPLYING PARTITIONED MATRICES

la b|
Le’rA—L gl =

e f €21 €22 | fo1 fa2
Let B = [=

g h gdi1 Y12 h11 h12
921 Y22 h21 h22—

Note C = AB = [a b] [e f] where a, b, ..., h are matrices
c dilg h

28

IDENTIFYING SUBPROBLEMS TO SOLVE

c-an=FAE] c-m-FT []

_[ae+bg af + bh _[ae+bg af + bh
~lce+dg cf +dh ~ lce+dg cf +dh]

-as =3[7| |
C =AB = -l Lg C =AB = cdllg |n
hae+bg af + bh [ae+bg af + bh
ce+dg| cf +dh ce+dg |[cf +dh

Recall ae, bg, etc., each represent matrix multiplication!
Can compute C using 8 matirix multiplications

29

SIZE OF SUBPROBLEMS & SUBSOLUTIONS

R | M o A s B

Suppose A4, B are n X n matrices
For simplicity assume n is a power of 2

Thena,b,c,d,e, f,g,h,1,s,t,uare g X g matrices

So we compute € with 8 multiplications of g X g matrices

(and 4 additions of such matrices)

30

coNNOULTL A WN -

R I G ST N G G SU e Qe e ¢
oOowooNOOTULEPE WN-— OV

Time complexity (unit cost)e

DnCMatrixMult(A, B, n)
// base case -===:4 o)

if n == 1 then return [[A[0][0]*B[0][0]]
// divide% (1) or O(n*) ﬁ (recall A, B have Master theorem
)

T(n) = 8T (g) + 0(n?)

2)
[a,b,c,d] = Partition(A n” entries) a=8b=2,y=2
[e,f,g,h] = Partition(B)

n x =log,8 =3
// conquer ——— = 8T(§) .
ae = DnCMatrixMult(a, e, n/2) x >y soT(n) € O(n°)
af = DnCMatrixMult(a, f, n/2) . |
bg = DnCMatrixMult(b, g, n/2) Same time as brute force!
bh = DnCMatrixMult(b, h, n/2) '
ce = DnCMatrixMult(c, e, n/2)
cf = DnCMatrixMult(c, f, n/2)
dg = DnCMatrixMult(d, g, n/2)
dh = DnCMatrixMult(d, h, n/2) N
// combine (with *matrix* additio

return [[ae+bg, af+bh], [cet+dg, cf+dh]]

STRASSEN FAST MATRIX MULTIPLICATION A

AB—[a b”e f'_[ae+bg af+bh]_c_
“lc dllg hl lce+dg cf+dn]l
Key idea: get rid of one multiplication!
P, =a(f — h) P, = (a+ b)h
P3=(C+d)€ P4=d(g—8)
Define | Ps = (a+d)(e+ h) Ps = (b—d)(g+ h)

P; = (a—c)(e+ f).

Each P; requires one multiplication

Can combine these P; terms with +/-
to compute r,s, t, ul

_LGORIT

r s]
t u

32

STRASSEN FAST I\/\AT RIX MULTIPLICATION ALGORITHM

AB=[“

Define

Claim

][rw+hgcﬁ+bq c=|T ﬂ
g h ce+dg cf +dh t u
Py =a(f —h) Py = (a+ b)h
P&—(C-Fd) P4=d(g—6)

= (a+d)(e+ h) Ps = (b—d)(g+ h)

= (a —c)(e + f).
r=PFP+ P, — P>+ Fs s =Py + P»
t = P33+ Py u = Ps + P — P3 — P

As an example, according to Strassen, t = P53 + Py
Plugging in P;,P,,we gett =(c+d)e+d(g — e)
This simplifiestot =ce+de + dg —de = ce + dg

33

Algorithm | Elts of A accessed to compute C' | Elts of B accessed to compute C
000t gddcE HE RgAgiigiigiigngn
O O0O00O000C HEEgiagiigiigiigngn
slslsll==l=l=l= HE BgiAgiigiigiign e
s v e e e B e Hp Npiigiigiighighgn
—]] = — My Rgiagiigiigiigngn
—_—— ——_——— — HENgiagiigiigiighgn
e Lo fd fond b L] o HpEgiagiigligiignign
Standard | DO O0000C ODDDODOOO
NAE="EIHMAO0 B (B (B (0 (R (0 LR L]
=MD WESOCC o) 3%/) (39 LB L8 LD (3
= EEMOME Eel o % e B 1 F
e e e o e O s s i/ 33 ¢ty 3 | 1 o 3
o m — g = — Rk () (1) om O Gk (]
— o — ws oy L&) ()] M M L
o W 22 [o B = E 0) 6L BB D (N O
Strassen || — wad == bl B &) B B RERERE IRE: RO

Source: https://www.computer.org/csdl/journal/td/2002/11/11105/13rRUXAASVuU

34

https://www.computer.org/csdl/journal/td/2002/11/l1105/13rRUxAASVu

1 StrassenMatrixMult(A, B, n)

2 // base case

3 = if n == 1 then return [[A[O0][0]*B[0][0]]

4

5 // divide ?Z?(f—d}h) IIjQZc(i?er}})b
_ T 3 = (c+ d)e w=d(g—e

° 189,00 = e SOy Po—(atdieth) Po=(b—d)g+h)

7 [e,T,g,h] = Partition(B) Pr = (a—c)(e+ f)

8

9 // conquer

10 P1 = StrassenMatrixMult(a, f-h, n/2)

11 P2 = StrassenMatrixMult(a+b, h, n/2)

12 P3 = StrassenMatrixMult(c+d, e, n/2)

13 P4 = StrassenMatrixMult(d, g-e, n/2)

14 P5 = StrassenMatrixMult(a+d, e+h, n/2)

15 P6 = StrassenMatrixMult(b-d, g+h, n/2)

16 P7 = StrassenMatrixMult(a-c, e+f, n/2)

17

18 // combine (with *matrix* addition)

19 = return [[P5+P4-P2+P6, P1+P2],

20 [P3+P4, P5+P1-P3-P7]] AN oI

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

StrassenMatrixMult(A, B, n) o(1)
// base case '

Running time complexity?

if n == 1 then return [[A[O0][0]*B[0]1[0]]

// divide o) or o(n?)

[a,b,c,d] = Partition(A)
[e,f,g,h] = Partition(B) 7T(n)

2

// conquer

P1 = StrassenMatrixMult(a, f-h, n/2)
P2 = StrassenMatrixMult(a+b, h, n/2)
P3 = StrassenMatrixMult(c+d, e, n/2)
P4 = StrassenMatrixMult(d, g-e, n/2)
P5 = StrassenMatrixMult(a+d, e+h, n/2)
P6 = StrassenMatrixMult(b-d, g+h, n/2)
P7 = StrassenMatrixMult(a-c, e+f, n/2)

// combine (with *matrix* addition)
return [[P5+P4-P2+P6, P1+P2],

T(n) =7T (g) + 0(n?)
Master theorem
a=7b=2,y=2
x =log, 7
x>1vysoT(n)eodn*)
T(n) € O(nl°827) ~ @(n281)

[P3+P4, P5+P1-P3-P7]1] 1 0®?

36

was improved in 1990 by Coppersmith-Winograd.

Their algorithm has complexity O(n
have been found more recently.

2:376) " Some slight improvements

How much better is
O(n?8) than ©(n3)¢

How much better is
O(n?37%) than B(n3)?2

Let n=10,000
n?81 ~ 174 billion
n3 = 1 trillion (~6x more)

Let n=10,000
n2376 ~ 3.2 billion
n3 = 1 trillion (~312x)

37

