PROBLEM: NON-DOMINATED POINTS

A point dominates
everything to the southwest
So, I am a non-dominated poin

MORE FORMALLY

Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, we say $\left(x_{1}, y_{1}\right)$ dominates $\left(x_{2}, y_{2}\right)$ if $\boldsymbol{x}_{1}>\boldsymbol{x}_{2}$ and $\boldsymbol{y}_{1}>\boldsymbol{y}_{2}$ Input: a set S of n points with distinct \mathbf{x} values
Output: all non-dominated points in S, i.e., all points in S that are
not dominated by any point in S
 (brute force)
algorithm for this?

BRUTE FORCE ALGORITHM

Observe that the non-dominated points form a staircase and all the other
points are "under" this staircase.
The treads of the staircase are determined by the y-co-ordinates of the non-dominated points. The risers of the staircase are determined by the -co-ordinates of the non-dominated points. The staircase descends from left to right.

PROBLEM DECOMPOSITION

Suppose we pre-sort the points in S with respect to their x-co-ordinates This takes time $\Theta(n \log n)$. This takes time $\Theta(n \log n)$

PROBLEM DECOMPOSITION

Divide Let the first $n / 2$ points be denoted S_{1} and let the last $n / 2$ point be denoted S_{2}.

PROBLEM DECOMPOSITION

Combine: Given the non-dominated points in S_{1} and the non-dominated points in S_{2}, how do we find the non-dominated points in S ?

s_{1}

Observe that no point in S_{1} dominates a point in S_{2}.
Therefore we only need to eliminate the points in S_{1} that are dominated by a point in S_{2}. It turns out that this can be done in time $O(n)$.

```
        sort S by x-coord
        sortssey x
Recurse(S[1, .n]) // precondition: S sorted by x
    if }\textrm{n}==1\mathrm{ then return }\textrm{S
    1/ divide
    S1=S[1..floor(n/2)]
    1/ conquer
    Q[1,.q] = Recurse(S1)
    ]= Recurse(S2)
    // combine
    while i< <= q and Q[i],y>= R[1],y
    // postcondition: return sorted by x
    return concat(Q[1,.i-1], R)
```

BONUS SLIDE: WHAT IF X VALUES ARE NOT DISTINCT
R might contain multiple points with the same x value but with different y values
If there are points in Q with the same x as $R[1]$, and a lower y, then the algorithm would say they are dominated by R[1]. Wrong! We can find all of the points with the same x as $R[1]$ in linear time If there are multiple such points, and some are in Q, then they are not dominated by R[1], but might be dominated by the next element $R[i]$ of R that has a different x
So, we compare them with $R[i] . y$ (in linear time) instead of $R[1] . y$
All of the other points in Q with \times different from $R[1] . x$ are compared with R[1].y as usual (in linear time)

BRUTE FORCE ALGORITHM

One row per digit of Y
For each row copy the k bits of X Add the k rows together $\Theta(k)$ binary additions of $\Theta(k)$ bit numbers
Total runtime is

MULTIPRECISION MULTIPLICATION

Input: two \boldsymbol{k}-bit positive integers X and Y With binary representations:

$$
\begin{aligned}
& X=[X[k-1], \ldots, X[0]] \\
& Y=[Y[k-1], \ldots, Y[0]]
\end{aligned}
$$

Output: The $2 k$-bit positive integer $Z=X Y$ With binary representation: $Z=[Z[2 k-1], \ldots, Z[0]]$

Here, we are interested in the bit complexity of algorithms that solve Multiprecision Multiplication, which means that the complexity is expressed as a function of k (the size of the problem instance is $2 k$ bits)
$\Theta\left(\boldsymbol{k}^{2}\right)$ bit operations

A DIVIDE-AND-CONQUER APPROACH

Let X_{L} be the integer formed by the $k / 2$ high-order bits of X and let X_{R} be the integer formed by the $k / 2$ low-order bits of X.
Similarly for Y.

EXPRESSING \boldsymbol{k}-BIT MULT. AS $\boldsymbol{k} / \mathbf{2 - B I T}$ MULT.

$$
\begin{aligned}
& X=2^{k / 2} X_{L}+X_{R} \text { and } Y=2^{k / 2} Y_{L}+Y_{R} \\
& \text { So } X Y=\left(2^{k / 2} X_{L}+X_{R}\right)\left(2^{k / 2} Y_{L}+Y_{R}\right) \\
& =2^{k} X_{L} Y_{L}+2^{k / 2}\left(X_{L} Y_{R}+X_{R} Y_{L}\right)+X_{R} Y_{R} \\
& \text { Suggests a D\&C approach... }
\end{aligned}
$$

Divide into four $k / 2$-bit multiplication subproblems
Conquer with recursive calls
Combine with k-bit addition and bit shifting

1 DnCMultiply ($\mathrm{X}, \mathrm{Y}, \mathrm{k}$)
If base case
if $k=1$ then return [[X[0]*Y[0]]]

Recall: $X Y=2^{k} X_{L} Y_{L}+2^{k / 2}\left(X_{L} Y_{R}+X_{R} Y_{L}\right)+X_{R} Y_{R}$

KARATSUBA'S ALGORITHM

Let's optimize from four subproblems to three
Recall: $X Y=2^{k} X_{L} Y_{L}+2^{k / 2}\left(\boldsymbol{X}_{L} \boldsymbol{Y}_{R}+\boldsymbol{X}_{R} \boldsymbol{Y}_{L}\right)+X_{R} Y_{R}$
Idea: compute $\boldsymbol{X}_{L} \boldsymbol{Y}_{\boldsymbol{R}}+\boldsymbol{X}_{\boldsymbol{R}} \boldsymbol{Y}_{L}$ with only one multiplication
Note $\boldsymbol{X}_{L} \boldsymbol{Y}_{\boldsymbol{R}}+\boldsymbol{X}_{\boldsymbol{R}} \boldsymbol{Y}_{\boldsymbol{L}}$ appears in $\left(\boldsymbol{X}_{\boldsymbol{L}}+\boldsymbol{X}_{\boldsymbol{R}}\right)\left(\boldsymbol{Y}_{\boldsymbol{L}}+\boldsymbol{Y}_{\boldsymbol{R}}\right)$
$\left(X_{L}+X_{R}\right)\left(Y_{L}+Y_{R}\right)=X_{L} \boldsymbol{Y}_{L}+X_{L} \boldsymbol{Y}_{R}+X_{R} \boldsymbol{Y}_{L}+X_{R} \boldsymbol{Y}_{R}$
Let $X_{T}=X_{L}+X_{R}$ and $Y_{T}=Y_{L}+Y_{R}$
Then $\boldsymbol{X}_{L} \boldsymbol{Y}_{\boldsymbol{R}}+\boldsymbol{X}_{\boldsymbol{R}} \boldsymbol{Y}_{\boldsymbol{L}}=\boldsymbol{X}_{\boldsymbol{T}} \boldsymbol{Y}_{\boldsymbol{T}}-\boldsymbol{X}_{L} \boldsymbol{Y}_{L}-\boldsymbol{X}_{\boldsymbol{R}} \boldsymbol{Y}_{\boldsymbol{R}}$
And the other two terms $\boldsymbol{X}_{L} \boldsymbol{Y}_{L}$ and $\boldsymbol{X}_{\boldsymbol{R}} \boldsymbol{Y}_{\boldsymbol{R}}$ are already in $\boldsymbol{X} \boldsymbol{Y}$

So $X Y=2^{k} X_{L} Y_{L}+2^{k / 2}\left(X_{T} Y_{T}-X_{L} Y_{L}-X_{R} Y_{R}\right)+X_{R} Y_{R}$\begin{tabular}{c}

Only three unique
multipiciications!
1

\hline
\end{tabular}

For millennia it was widely thought that $O\left(n^{2}\right)$ multiplication was optimal.
Then in 1960, the 23 -year-old Russian mathematician Anatoly Karatsuba took a seminar led by Andrey Kolmogorov, one of the great mathematicians of the 20th century.
Kolmogorov asserted that there was no general procedure for doing multiplication that required fewer than n^{2} steps.

Karatsuba thought there was-and after a week of searching, he found it.

https://wuw.wired.com/story/mathematicians-

 discover-the-perfect-way-to-multiply/

Quoting Fürer, author of the $\boldsymbol{O}\left(\boldsymbol{n} \log \boldsymbol{n} 2^{\boldsymbol{O}\left(\log ^{*} \boldsymbol{n}\right)}\right)$ algorithm:

"It was kind of a general consensus that multiplication is such an important basic operation that, just from an aesthetic point of view, such an important operation requires a nice complexity bound...

From general experience the mathematics of basic things at the end always turns out to be elegant."

Note that $X_{L}+X_{R}$ and $Y_{L}+Y_{R}$ could be $(k / 2+1)$-bit integers
However, computation of Z_{3} can be accomplished by multiplying $(k / 2)$-bit integers and accounting for carries by extra additions.
Various techniques can be used to handle the case when k is not a power of two. One possible solution is to pad with zeroes on the left. So let m be the smallest power of two that is $\geq k$. The complexity is $\Theta\left(m^{\log _{2} 3}\right)$. Since $m<2 k$ the complexity is $O\left((2 k)^{\log _{2} 3}\right)=O\left(3 k^{\log _{2} 3}\right)=O\left(k^{\log _{2} 3}\right)$ There are further improvements known:

- The Toom-Cook algorithm splits X and Y into three equal parts and uses five multipliations of $(k / 3)$-bit integers. The recurrence is
$T(k)=5 T(k / 3)+\Theta(k)$ and $T(k)=5 T(k / 3)+\Theta(k)$, and then $T(k) \in \Theta\left(k^{\log _{3} 5}\right)=\Theta\left(k^{1.47}\right)$.
- The 1971 Schonhage Strassen algovithm (based on FFT) has complexity $O(n \log n \log \log n)$.
- The 2007 Furer algorithm has complexity $O\left(n \log n 2^{O\left(\log { }^{*} n\right)}\right.$.

And Harvey and van der Hoeven achieved $O(n \log n)$ in November 2020! https://hal.archives-ouvertes.fr/hal-02070778/document]

Their method is a refinement of the major work that came before them. It splits up digits, uses an improved version of the fast Fourier transform, and takes advantage of other advances made over the past 40 years.

> Unfortunately, simple complexity doesn't
> always mean simple algorithm...

Lower bound of $\Omega(n \log n)$ is conjectured.
A conditional proof is known..
it holds if a central conjecture in the area of network coding turns out to be true. [https://arxiv.org/abs/1902.10935]

MATRIX MULTIPLICATION

Input: A and B
Output: their product $\mathbf{C = A B}$

Naïve algorithm for $n \times n$ matrices:
For each output cell $\boldsymbol{C}_{i j}$
$C_{i j}=\operatorname{DotProd}\left(\operatorname{row}_{i}(A), \operatorname{col}_{j}(B)^{T}\right)$ $=\sum_{k=1}^{n} A_{i k} B_{k j}$
Running time (unit cost)?

ATTEMPTING A BETTER SOLUTION

What if we first partition the matrix into sub-matrices Then divide and conquer on the sub-matrices Example of partitioning: 4×4 matrix into four 2×2 matrices

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll|ll}
a_{11} & a_{12} & b_{11} & b_{12} \\
a_{21} & a_{22} & b_{21} & b_{22} \\
\hline c_{11} & c_{12} & d_{11} & d_{12} \\
c_{21} & c_{22} & d_{21} & d_{22}
\end{array}\right]
$$

MULTIPLYING PARTITIONED MATRICES
Let $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll|ll}a_{11} & a_{12} & b_{11} & b_{12} \\ a_{21} & a_{22} & b_{21} & b_{22} \\ \hline c_{11} & c_{12} & d_{11} & d_{12} \\ c_{21} & c_{22} & d_{21} & d_{22}\end{array}\right]$
Let $\mathrm{B}=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll|ll}e_{11} & e_{12} & f_{11} & f_{12} \\ e_{21} & e_{22} & f_{21} & f_{22} \\ \hline g_{11} & g_{12} & h_{11} & h_{12} \\ g_{21} & g_{22} & h_{21} & h_{22}\end{array}\right]$
Note $C=A B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ where $\boldsymbol{a}, \boldsymbol{b}, \ldots, \boldsymbol{h}$ are matrices

IDENTIFYING SUBPROBLEMS TO SOLVE

$$
\begin{array}{rlrl}
C & =A B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right] & C & C=A B=\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & d \\
h
\end{array}\right] \\
& =\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right] & & =\left[\begin{array}{ll}
a e+b g & \frac{a f+b h}{c e+d g} \\
c f+d h
\end{array}\right] \\
C & =A B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right] & C & =A B=\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h \\
c & d
\end{array}\right] \\
& =\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right] & & =\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
\end{array}
$$

Recall ae, bg, etc., each represent matrix multiplication!

$$
\text { Can compute } C \text { using } 8 \text { matrix multiplications } \quad{ }_{29}
$$

SIZE OF SUBPROBLEMS \& SUBSOLUTIONS

$$
A B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]=\boldsymbol{C}=\left[\begin{array}{ll}
\boldsymbol{r} & \boldsymbol{s} \\
\boldsymbol{t} & \boldsymbol{u}
\end{array}\right]
$$

Suppose A, B are $n \times n$ matrices
For simplicity assume n is a power of 2
Then $a, b, c, d, e, f, g, h, r, s, t, u$ are $\frac{n}{2} \times \frac{n}{2}$ matrices
So we compute C with 8 multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices (and 4 additions of such matrices)

STRASSEN FAST MATRIX MULTIPLICATION ALGORITHM

As an example，according to Strassen， $\boldsymbol{t}=\boldsymbol{P}_{\mathbf{3}}+\boldsymbol{P}_{\mathbf{4}}$ Plugging in P_{3}, P_{4} ，we get $\boldsymbol{t}=(\boldsymbol{c}+\boldsymbol{d}) \boldsymbol{e}+\boldsymbol{d}(\boldsymbol{g}-\boldsymbol{e})$
This simplifies to $\boldsymbol{t}=\boldsymbol{c e}+\boldsymbol{d e}+\boldsymbol{d} \boldsymbol{g}-\boldsymbol{d e}=\boldsymbol{c} \boldsymbol{e}+\boldsymbol{d} \boldsymbol{g}$
33

STRASSEN FAST MATRIX MULTIPLICATION ALGORITHM

$A B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]=\boldsymbol{C}=\left[\begin{array}{ll}\boldsymbol{r} & \boldsymbol{s} \\ \boldsymbol{t} & \boldsymbol{u}\end{array}\right]$
Key idea：get rid of one multiplication！

Each P_{i} requires one multiplication
Can combine these P_{i} terms with $+/$－ to compute r, s, t, u ！

Algorithm	Elts of A accessed to compute C	Elts of B accessed to compute C
Standard	ーローローローロ	■ I I I I I
	－－－－－－	11 1 1 1 1 I
	－－－－－	$\square 1 \square 1 \square 11$
	－－－－－	1111 1 1 1 1
	－－－－－－－	1111 1 1 1 I
	－－－－－－－	■ I I 1 1 I
	－－－－－－－	$\square 11151$
		ПП丁T丁丁丁口
	可 $\bar{\sim}$	
		lith In la l t 1 I
	ง $=-$－\％ 7 \％	
	\％\sim_{4}	1．
		114 4 リ リ \％\％
Strassen	\because－- 边	

Source：https：／／wmw．computer．org／csdl／journal／td／2002／11／11 105／13rRUxAASVU

Strassen's algorithm was improved in 1990 by Coppersmith-Winograd. Their algorithm has complexity $O\left(n^{2.376}\right)$. Some slight improvements have been found more recently.

How much better is
$\Theta\left(n^{2.81}\right)$ than $\Theta\left(n^{3}\right)$?
:---:
$n^{2.81} \approx 174$ billion
$n^{3}=1$ trillion ($\sim 6 \times$ more $)$

How much better is
$\Theta\left(n^{2376}\right)$ than $\Theta\left(n^{3}\right)$?
:---:
$n^{2.376} \approx 3.2$ billion
$n^{3}=1$ trillion $(\sim 312 x)$

