CS 341: ALGORITHMS

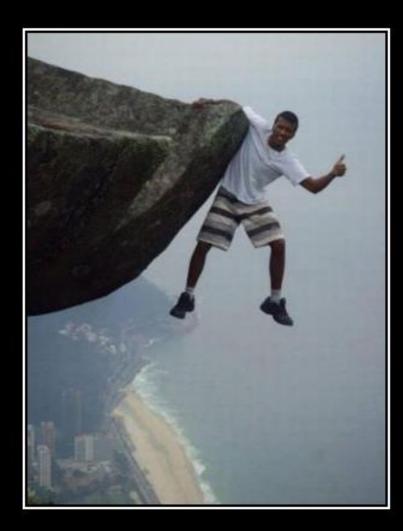
Lecture 4: divide & conquer III

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca



THE **SELECTION** PROBLEM

NATURAL SELECTION

in progress...

THE SELECTION PROBLEM

- Input: An array A containing n <u>distinct</u> integer values, and an integer k between 1 and n
- Output: The k-th smallest integer in A
- Minimum is a special case where k = 1
- Median is a special case where $k = \frac{n}{2}$
- Maximum is a special case where k = n
- Simple algorithm for solving selection?

Suppose we choose a **pivot** element y in the array A, and we **restructure** A so that all elements less than y precede y in A, and all elements greater than y occur after y in A. (This is exactly what is done in *Quicksort*, and it takes **linear time**.)

40

0

 \boldsymbol{A}

Number of elements on each side depend on the **value** *y*...



Number of elements in this range = i_y

 A_L

- What's the k-th smallest element of A?
 - If $k = i_y$ then y
 - If $k < i_{y}$ then the *k*th smallest in A_{L}
 - If $k > i_y$ then the $(k i_y)$ th smallest in A_R

Recursive calls

 A_R

· · · · ·	kSelect(k, A[1n])	Precondition: $1 \le 1$	k < n
	if n = 1 then return A[1] // base case recondition. I <u>s</u>	$\kappa \ge n$
3	- AF1]		
	y = A[1]	<pre>// pick an arbitrary pivot</pre>	
	(AL, AR, iy) = Restruct	ure(A, y)	
6			
	if k == iy return y		
	else if k < iy then	<pre>return QuickSelect(k, AL)</pre>	
	else /* k > iy */	return QuickSelect(k - iy, AR)	383838
0			3333333
1 Rest	<pre>ructure(A[1n], y)</pre>		
2	AL = new array[1n]	<pre>// allocate more than enough</pre>	
3	AR = new array[1n]	<pre>// to avoid need for expansion</pre>	
3 4	nL = 0, nR = 0		
5			
	for i = 1 n		
7	if A[i] < y then	AL[nL++] = A[i]	
8	else A[i] > y then		
9			
	return (AL, AR, nL+1)	// nL+1 is the new index of y	

OVERLY OPTIMISTIC ANALYSIS ③

12

A after Restructure(A, y)

• If $i_y = \frac{n}{2}$, then we recurse on $\sim \frac{n}{2}$ elements,

• If we could <u>**always**</u> recurse on $\frac{n}{2}$ elements then

• We would get $T(n) = T\left(\frac{n}{2}\right) + \Theta(n)$

But we **don't** always recurse on $\frac{n}{2}$ elements!

• Which would yield $a = 1, b = 2, y = 1, x = \log_2 1 = 0$, y > x and $T(n) \in \Theta(n^y) = \Theta(n)$ by the Master theorem.

 A_{I}

WORST-CASE ANALYSIS

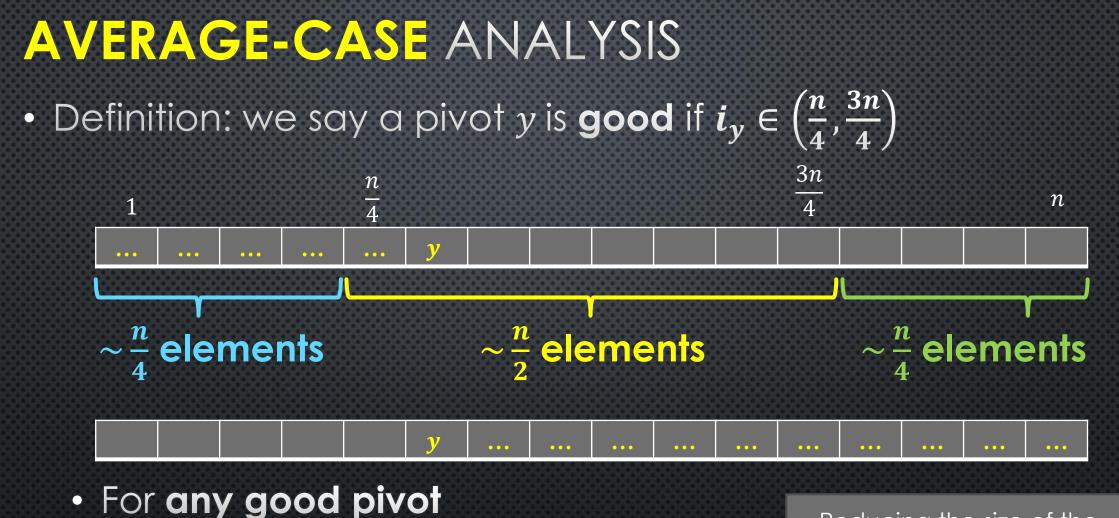
A after Restructure(A, y)

• If we always get $i_y = 1$ and recurse on the right, then

 A_{I}

- We get $T(n) = T(n-1) + \Theta(n)$
- By the substitution method this is $\Theta(n^2)$

- So, sometimes the pivot is good, sometimes it's bad...
- What about the average case?



we recurse on at most $\frac{3n}{4}$ elements

Reducing the size of the subproblem by at least 1/4

Probability of an arbitrary pivot being good?

PROOF SKETCH

- Since probability of a good pivot is $\frac{1}{2}$,
- on average, every two recursive calls, we will encounter a good pivot
- Encountering a good pivot reduces problem size to at most $\frac{3n}{4}$
- So, problem size is reduced to $\frac{3n}{4}$ after **expected linear work**
- Average case recurrence: $T(n) = T\left(\frac{3n}{4}\right) + \Theta(n)$

• $T(n) \in \Theta(n)$

Here is a more rigorous proof of the average-case complexity: We say the algorithm is in phase j if the current subarray has size s, where

$$n\left(\frac{3}{4}\right)^{j+1} < s \le n\left(\frac{3}{4}\right)^j.$$

This is just for your notes, in case you want to know how you'd do this analysis formally

Let X_j be a random variable that denotes the amount of computation time occurring in phase j. If the pivot is in the middle half of the current subarray, then we transition from phase j to phase j + 1. This occurs with probability 1/2, so the expected number of recursive calls in phase jis 2. The computing time for each recursive call is linear in the size of the current subarray, so $E[X_j] \leq 2cn(3/4)^j$ (where $E[\cdot]$ denotes the expectation of a random variable). The total time of the algorithm is given by $X = \sum_{j>0} X_j$. Therefore

$$E[X] = \sum_{j \ge 0} E[X_j] \le 2cn \sum_{j \ge 0} (3/4)^j = 8cn \in O(n).$$

$$\sum_{k=0}^\infty ar^k = rac{a}{1-r}, ext{ for } |r| < 1.$$

TAKING SELECTION FURTHER

- We just showed:
 - QuickSelect with <u>average case</u> runtime in O(n)
- Next up:
 - Median-of-medians QuickSelect (MOMQuickSelect)
 - worst case runtime in O(n)

The algorithm we will see picks a **good pivot** in **every** recursive call Relies on getting a **good pivot** within O(1) recursive calls **on average**

Must get a **good pivot** within O(1) recursive calls **always**

HIGH LEVEL ALGORITHM

- Similar to QuickSelect
 - Choose a pivot
 - Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
 - Recursively call MOMQuickSelect on one subarray
- Only difference is **how** we choose the pivot
 - <u>Always</u> want to pick a good pivot

ALWAYS PICKING A GOOD PIVOT

Example input A[1...50]: 11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27, 4, 2, 50, 23, 45, 3, 13, 43, 22, 10, 32, 35, 41, 24, 1, 30, 12, 15, 26, 16, 19, 36, 33, 37, 39, 25, 40, 29, 42

<u>88868888</u>	6666666666	500000000000	0000000000			8888888888888	000000000	9999999999999	666666666666666	
Group into rows of 5						Find m	edian 0	Build array of		
11	38	6	21	20	11	38	6	21	20	medians
17	14	9	7	5	17	14	9	7	5	20, 9, 34, 44,
8	34	49	47	28	8	34	49	47	28	23, 22, 32, 15,
18	44	31	46	48	18	44	31	46	48	33, 39
27	4	2	50	23	27	4	2	50	23	
45	3	13	43	22	45	3	13	43	22	Time complexity?
10	32	35	41	24	10	32	35	41	24	
1	30	12	15	26	1	30	12	15	26	<u>Recursively</u> find
16	19	36	33	37	16	19	36	33	37	the median of
39	25	40	29	42	39	25	40	29	42	these medians: 23
Time			forth		Time			for the		
Time complexity for this step?						e com	plexity	Recursive		

HOW GOOD IS THE PIVOT 23 ? Recall: median of each row									Th 50	# elements ≤ 23 is at least 3(5) This is at least 3/10ths of our 50-element input, or $3n/10$.					
11	38	6	21	20	6	11	20		n ordering						
17	14	9	7	5	5	7	9	5	7	9	14	17			
8	34	49	47	28	8	28	34	1	12	15	26	30			
18	44	31	46	48	18	31	44	6	11	20	21	38	8888		
27	4	2	50	23	2	4	<u>23</u>	3	13	22	43	45	88888		
45	3	13	43	22	3	13	22	2	1	23	2.7	50			
10	32	35	41	24	10	24	32	10	24	32	35	41			
1	30	12	15	26	1	12	15			33	36	37			
16	19	36	33	37	16	19	33	16	19			.			
39	25	40	29	42	25	29	39	8 25	28 29	34	47 40	49 42			

elements \geq 23 is **at least** 3(6). This is > **3/10ths** of our 50-element input.

So, after restructuring, pivot 23 must have at least 3n/10 elements before <u>and</u> after it

This is a **good** pivot!

31

ΤŎ

We recurse on A_L or A_R , and both have size **at most** 7n/10

46

48

```
MOMQuickSelect(k = 11, n = 14, A)
    MOMQuickSelect(k, n, A)
1
                                                       11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47
        // base case
2
        if n <= 14 then sort(A) and return A[k]
                                                       5, 6, 7, 9, 7, 11, 14, 17, 20, 21, 34, 38, 47, 49
 3
4
        // divide and conquer to find medians
 5
        r = (n-5) / 10
 6
        medians[1..(2*r+1)] = new array
7
        for i = 1...(2*r+1)
8
9
            B[1..5] = A[(5*(i-1)+1)..(5*i)]
            sort(B)
10
11
            medians[i] = B[3]
12
        y = MOMQuickSelect(r+1, 2*r+1, medians)
13
14
        // divide and conquer to find rank k
15
        (AL, AR, iy) = Restructure(A, y)
16
                 k == iy then return y
17
        if
        else if k < iy then return MOMQuickSelect(k, iy-1, AL)
18
        else /* k > iy */ then return MOMQuickSelect(k-iy, n-iy, AR)
19
```

	MOMQuic	kSelec	t(k = 1	1, $n = 2$	1 , <i>A</i>)			
MOMQuickSelect(k, n, A)	11, 38, 6, 2	21, 20, 17	7, 14, 9, 7	, 5, 8, 34, <u>4</u>	49, 47, 28	<mark>,</mark> 18, 44, 3	1, 46, 48, 2	7
// base case		_						8888
<pre>if n <= 14 then sort(A) and r</pre>			$r = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$	$\frac{21-5}{10} =$	1	Not considering at most 9 elements		
<pre>// divide and conquer to find </pre>	d medians					30000000		
r = (n-5) / 10 medians[1(2*r+1)] = new arr	c a V	B	11	38	6	21	20	
for $i = 1(2*r+1)$	ay	sort(B) 6	11	20	21	38	
B[15] = A[(5*(i-1)+1)	.(5*i)]		17	14	9	7	5	
sort(B)			5	7	9	14	17	
<pre>medians[i] = B[3]</pre>		l				100000000		
			8	34	49	47	28	
y = MOMQuickSelect(r+1, 2*r+1)	I, medians	S)	8	28	34	47	49	
<pre>// divide and conquer to find</pre>		r	nedian	s 20,	9,34			
(AL, AR, iy) = Restructure(A,		$\mathbf{y} = \mathbf{i}$	MOMQ	uickSel	ect(2, 3)	, [20, 9 , 3	$\mathbf{34]}) \Rightarrow 20$	
<pre>if k == iy then retu else if k < iy then retu else /* k > iy */ then retu</pre>	urn MOMQu:			_				

```
MOMQuickSelect(k = 11, n = 21, A)
                                       11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27
MOMQuickSelect(k, n, A)
    // base case
                                                     Restructure(A, y = 20) \Rightarrow
    if n <= 14 then sort(A) and return A[k]
                                                             A_{L} = [11, 6, 17, 14, 9, 7, 5, 8, 18]
    // divide and conquer to find medians
                                                        A_R = [38, 21, 34, 49, 47, 28, 44, 31, 46, 48, 27]
    r = (n-5) / 10
    medians[1..(2*r+1)] = new array
                                                                  i_{y} = |A_{L}| + 1 = 10
    for i = 1..(2*r+1)
         B[1..5] = A[(5*(i-1)+1)..(5*i)]
                                                       k = 11 > i_{\gamma} = 10
         sort(B)
                                                              k-i_{v}=1 \qquad n-i_{v}=10
         medians[i] = B[3]
    y = MOMQuickSelect(r+1, 2*r+1, medians)
                                                        MOMQuickSelect(1, 10, A_R) \Rightarrow 21
    // divide and conquer to find rank k
    (AL, AR, iy) = Restructure(A, y)
    if k == iy then return y
    else if k < iy then return MOMQuickSelect(k, iy-1, AL)
    else /* k > iv */ then return MOMQuickSelect(k-iv, n-iv, AR)
```

2

3

4

5

6

7

8

9

10

11

12

13

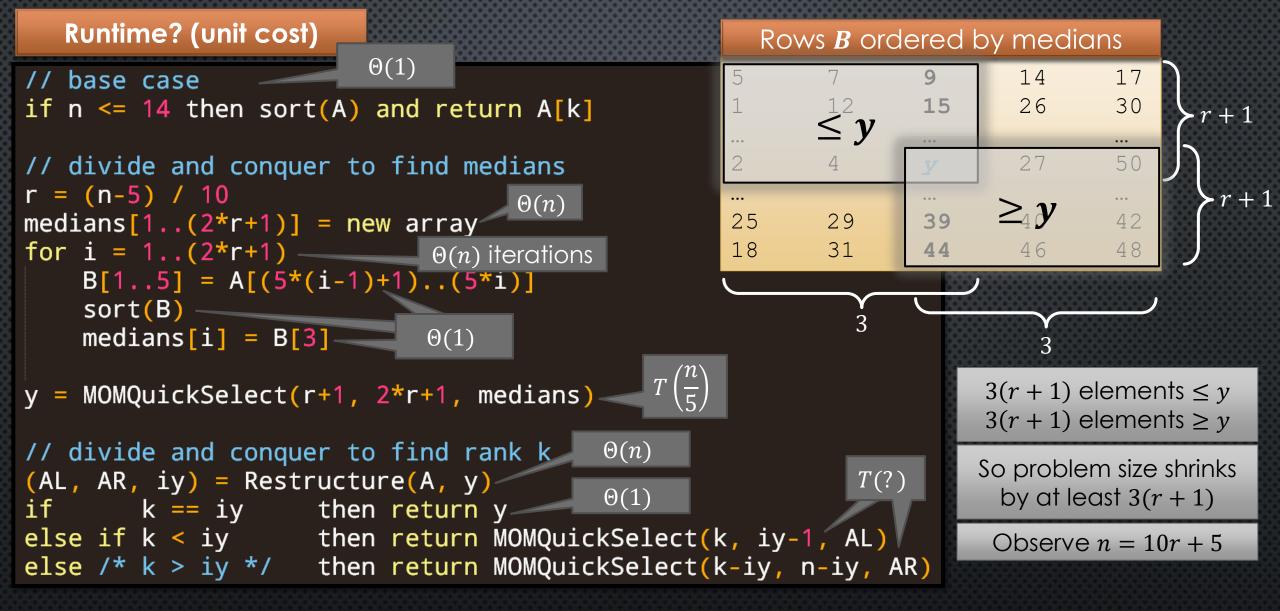
14

15

16

17

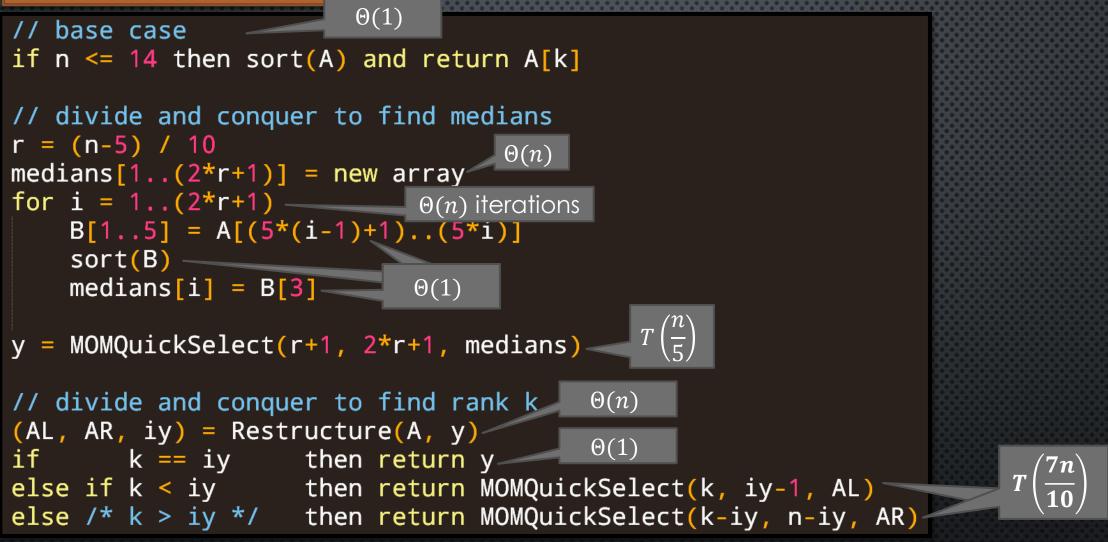
18



HOW MUCH DOES THE PROBLEM SHRINK?

- Shrinks by at least 3(r+1)
- Problem size $\sim = n = 10r + 5$
- Subproblem size $\leq n Shrink = n 3(r + 1)$
 - = 10r + 5 3r 3 = 7r + 2
 - Express in terms of *n* using $r = \left| \frac{n-5}{10} \right|$
 - Subproblem size $\leq 7 \left| \frac{n-5}{10} \right| + 2 \leq 7 \frac{n-5}{10} + 2$

•
$$=\frac{7n}{10}-7\left(\frac{5}{10}\right)+2=\frac{7n}{10}-\frac{3}{2}\leq\frac{7n}{10}$$



 $T(n) \in O(n) + T(n/5) + T(7n/10)$ if $n \ge 15$ $T(n) \in O(1)$ if $n \le 14$

The key fact is that 1/5 + 7/10 = 9/10 < 1.

$T(n) \in O(n) + T(n/5) + T(7n/10)$ if $n \ge 15$ $T(n) \in O(1)$ if $n \le 14$

The fact that $T(n) \in \Theta(n)$ can be proven formally using guess-and-check (induction) or informally using the recursion tree method.

