CS 341: ALGORITHMS

Lecture 4: divide \& conquer III
Readings: see website

THE SELECTION PROBLEM

- Input: An array A containing n distinct integer values, and an integer k between 1 and n
- Output: The \mathbf{k}-th smallest integer in \mathbf{A}
- Minimum is a special case where $k=1$
- Median is a special case where $k=\frac{n}{2}$
- Maximum is a special case where $k=n$
- Simple algorithm for solving selection?

Number of elements in this range $=i_{y}$

- What's the k-th smallest element of A ?
- If $\boldsymbol{k}=\boldsymbol{i}_{y}$ then y
- If $\boldsymbol{k}<\boldsymbol{i}_{\boldsymbol{y}}$ then the k th smallest in A_{L}
- If $k>i_{y}$ then the $\left(k-\boldsymbol{i}_{\boldsymbol{y}}\right)$ th smallest in A_{R}

OVERLY OPTIMISTIC ANALYSIS ©

A after
Restructure (A, y)

12	4	6	17	9	23	27	40

- If $i_{y}=\frac{n}{2}$, then we recurse on $\sim \frac{n}{2}$ elements,
- If we could always recurse on $\frac{n}{2}$ elements then
- We would get $T(n)=T\left(\frac{n}{2}\right)+\Theta(n)$
- Which would yield $a=1, b=2, y=1, x=\log _{2} 1=0$, $y>x$ and $T(n) \in \Theta\left(n^{y}\right)=\boldsymbol{\Theta}(n)$ by the Master theorem.

WORST-CASE ANALYSIS

A after

- If we always get $i_{y}=1$ and recurse on the right, then
- We get $T(n)=T(n-1)+\Theta(n)$
- By the substitution method this is $\Theta\left(n^{2}\right)$
- So, sometimes the pivot is good, sometimes it's bad.
- What about the average case?

PROOF SKEICH

- Since probability of a good pivot is $1 / 2$,
- on average, every two recursive calls, we will encounter a good pivot
- Encountering a good pivot reduces problem size to at most $\frac{3 n}{4}$
- So, problem size is reduced to $\frac{3 n}{4}$ after expected linear work
- Average case recurrence: $T(n)=T\left(\frac{3 n}{4}\right)+\Theta(n)$
- $T(n) \in \theta(n)$
- For any good pivot
we recurse on at most $\frac{3 n}{4}$ elements
Reducing the size of the subproblem by at least $1 / 4$
- Probability of an arbitrary pivot being good? $\rho=1 / 2$

TAKING SELECTION FURTHER

- We just showed:
- QuickSelect with average case runtime in $O(n)$
- Next up:
- Median-of-medians QuickSelect
Relies on getting a good pivot withir $O(1)$ recursive calls on average (MOMQuickSelect)
- worst case runtime in $O(n)$ \qquad

HIGH LEVEL ALGORITHM

- Similar to QuickSelect
- Choose a pivot
- Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
- Recursively call MOMQuickSelect on one subarray
- Only difference is how we choose the pivot
- Always want to pick a good pivot

HOW MUCH DOES THE PROBLEM SHRINK?

- Shrinks by at least $3(r+1)$
- Problem size $\sim n=10 r+5$
- Subproblem size $\leq n-$ Shrink $=n-3(r+1)$

$$
\cdot=10 r+5-3 r-3=7 r+2
$$

- Express in terms of n using $r=\left\lfloor\frac{n-5}{10}\right\rfloor$
- Subproblem size $\leq 7\left\lfloor\frac{n-5}{10}\right\rfloor+2 \leq 7 \frac{n-5}{10}+2$

$$
\cdot=\frac{7 n}{10}-7\left(\frac{5}{10}\right)+2=\frac{7 n}{10}-\frac{3}{2} \leq \frac{7 n}{10}
$$

- Let $T(n)=c^{\prime} n+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)$ where $c^{\prime}>0$

Guess \& check

- Want to prove: $\boldsymbol{T}(\boldsymbol{n})=c n$ for some $c>0$ $T(n)=c n$
- Note c and c^{\prime} are independent constants
- c^{\prime} comes from the work at
each level of recursion being $O(n)$
- c is a positive constant we are trying to show exists
- I.H.: Suppose $\exists c>0: T\left(n^{\prime}\right)=c n^{\prime}$ for $15 \leq n^{\prime}<n$
- $T(n)=c^{\prime} n+c \frac{n}{5}+c \frac{7 n}{10}$
(by inductive hypoth.)
- $T(n)=c n$
(want this to be true)
- $\Leftrightarrow c^{\prime} n+c \frac{n}{5}+c \frac{7 n}{10}=c n$
(equivalently)
- $\Leftrightarrow c^{\prime}+c \frac{1}{5}+c \frac{7}{10}=c \Leftrightarrow c=10 c^{\prime}$
(by algebra)

