CS 341: ALGORITHMS

Lecture 5: finishing D\&C, greedy algorithms I
Readings: see website
Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

THE CLOSEST PAIR PROBLEM

```
| Input: Set P of n 2D points
* Output: pair p and q s.t. dist(p,q) minimum over all pairs
- Break ties arbitrarily
| dist(p,q)}=\sqrt{}{(\begin{array}{ll}{(x}&{q\cdotx}\end{array}\mp@subsup{)}{}{2}+(\begin{array}{ll}{p.y}&{q\cdoty}\end{array}\mp@subsup{)}{}{2}
```


Can we Divide \& Conquer?

Like non-dominated points: sort by x-axis $\& \in$ divide in half

Claim that doesn't require a proof: closest pair (p, q):

1. (p, q) both in L or
2. (p, q) both in R or
3. One of (p, q) in L and one of (p, q) in R
```
ClosestPair(P[1 . .n])
    sort(P) by x values
    Recurse(P)
Recurse(P[1.,n]) // precondition: P sorted by x
    // base case
    if }\textrm{n}<4\mathrm{ then compare all pairs and return closest
    // divide & conquer
    pairL = Recurse(P[1..(n/2)])
    pairR = Recurse(P[(n/2)+1 ..n])
    // combine
    pairS = findMinSpanningPair(P
    return minDistPair(pairL, pairR, pairS)
                                w to efficiently compute the
                                minimum spanning pair?
```


Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip

Core Idea For Finding Spanning Pair

2. Search the $\delta x \delta$ square points on the opposite side
3. Start from lowest y valued point in the strip
4. Search the $\delta x \delta$ square points on the opposite side
5. Repeat $1 \& 2$ for the next lowest y-valued point
6. So on and so forth...

7. Repeat $1 \& 2$ for the next lowest y-valued point
8. So on and so forth...

Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta x \delta$ square points on the opposite side

Core Idea For Finding Spanning Pair
3. Repeat $1 \& 2$ for the next lowest y-valued point

1. Start from lowest y valued point in the strip
2. Search the $\delta x \delta$ square points on the opposite side
3. So on and so forth...

4. Repeat $1 \& 2$ for the next lowest y-valued point
5. So on and so forth...

Claim: inner loop performs O(1) iterations!

Time complexity (unit cost)

- $T^{\prime}(n)$: ClosestPair (P[1..n])

IMPROVING THIS RESULT FURTHER

IMPROVING THE PREVIOUS ALGORITHM

- Sorting by y-values causes findMinSpanningPair to take $O(n \log n)$ time instead of $O(n)$ time
- This happens in each recursive call, and dominates the running time
- Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values
- Assume for simplicity that x coordinates are unique

Shamos' algorithm (1975)

findMinSpanningPair($\delta, \operatorname{Py}[1 . . n]$, xmid) // Py sorted by y
$S=\{p$ in Py : abs (xmid $-\mathrm{p} . \mathrm{x})<=\delta\} \quad \Theta(n)$ and preserves the y-sort order
if $|S|<2$ return $(-\infty,-\infty),(\infty, \infty)$
mosClosestPair($\mathrm{P}[1, \ldots])$
$\mathrm{Px}=\operatorname{sort}(\mathrm{P})$ by increasing x values
$P x=\operatorname{sort}(P)$ by increasing x values
$P y=\operatorname{sort}(P)$ by increasing y values
Py $=\operatorname{sort(P)}$ by
Recurse(Px, Py)
5 Recurse(Px[1, .n], Py[1,.n])
I/ base case
if $\mathrm{n}<4$ then return BruteForce(Px)
// divide \& conquer
xmid
PxL
$=\operatorname{Px}[n / 2] \cdot \mathrm{x}$
P
PxL $=\operatorname{Px[n}(1,(\mathrm{n} / 2)]$
$\mathrm{PxR}=\operatorname{Px}[(\mathrm{n} / 2+1) \ldots \mathrm{n}$
PyL $=$ select fron Py where $x>x$ xmid
PyL $=$ select p from Py where $p . x<=x$ mid
PyR $=$ select p from Py where $p . x>x m i d$
PyR $=$ select p from Py where $p . x>$ xmid
pairL $=$ Recurse(PxL, PyL) pairL $=$ Recurse(PxL, PyL)
pairR $=$ Recurse(PXR, PyR)
pair $=$ Rec
// combine
$\delta=\min (d i s t(p a i r L)$, dist(pairR))
pairs = findMinSpanningPair(δ, Py, xmid)
return mindistPair(pairl, pairR, pairs)
minPair $=(S[1], S[2]) / /$ arbitrary pair to start
for $i=1$ len(S)
for $j=(i+1)$..len(S)
if S[j].y $-\mathrm{S}[\mathrm{i}] \cdot \mathrm{y}>\delta$ then break
$\theta(n)$
return minPair

Total $\Theta(n)$ for this function
${ }^{27}$

SOLVING OPTIMIZATION PROBLEMS

- Lots of techniques
- We will study greedy approaches first
- Later, dynamic programming
- Sort of like divide and conquer
but can sometimes be much more efficient than D\&C
- Greedy algorithms are usually
- Very fast, but hard to prove optimality for
- Structured as follows..

PROBLEM: INTERVAL SELECTION

Where s_{i} and f_{i} are

 positive integers- Input: a set $A=\left\{A_{1}, \ldots, A n\right\}$ of time intervals
- Each interval A_{i} has a start time s_{i} and a finish time \boldsymbol{f}_{i}
- Feasible solution: a subset X of A containing pairwise disjoint intervals
- Output: a feasible solution of maximum size
- I.e., one that maximizes |X|

 Bad solution.
Not optimall Not optimall!

POSSIBLE GREEDY STRATEGIES

${ }^{1}$ Sort the intervals in increasing order of starting times. At any stage, choose the earliest starting interval that is disjoint from all previously chosen intervals

- Parial solutions
- $X=\left[x_{1}, x_{2}, \ldots, x_{i}\right]$ where each x_{i} is an interval for the output
- Choices
- $x=A$ (i.e., all intervals)
- Choice $(X)=\left\{y \in X:\left[x_{1}, \ldots, x_{i}, y\right]\right.$ respects all constraints $\}$ - i.e., where $y \notin X$ and $\forall_{x \in X} \operatorname{disjoint}(y, x)$
- Local evaluation function
- $g(y)=s_{j}$ where $y=A[j]$
- (i.e., $g(y)=$ start time of interval y)

STRATEGY 1: PROVING INCORRECTNESS

- Idea: find one input for which the algorithm gives
a non-optimal solution or an infeasible solution

Sort the intervals in increasing order of starting times. At any stage choose the earliest starting interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is s_{i}).
Consider $[0,10),[1,3),[5,7)$. input:

Sort the intervals in increasing order of finishing times. At any stage choose the earliest finishing interval that is disjoint from al previously chosen intervals (i.e., the local evaluation criterion is f_{i}).

Does one of these strategies yield a correct greedy algorithm?

HOW ABOUT STRATEGY 2?

Sort the intervals in increasing order of duration. At any stage, choose
Strategy 2 the interval of minimum duration that is disioint from all previously chosen intervals (i.e., the local evaluation criterion is $f_{i}-s_{i}$).
Consider $[0,5),[6,10),[4,7)$.

We will show that Strategy 3 (sort in increasing order of finishing times) always yields the optimal solution.

GREEDY CORRECTNESS PROOFS

- Want to prove: greedy solution X is correct (feasible \& optimal)
- Usually show feasibility directly and optimality by contradiction:
- Suppose solution O is better than X
- Show this necessarily leads to a contradiction
- Two broad strategies for deriving this contradiction:

1. Greedy stays ahead: show every choice in X is "at least as good" as the corresponding choice in 0
2. Exchange: show 0 can be improved by replacing some choice in O with a choice in $X \quad$ Let's demonstrate approach \# (next time)
