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THE CLOSEST PAIR 

PROBLEM

classroom

You

overworked 

student
When someone near you
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THE CLOSEST PAIR PROBLEM

◆ Input: Set P of n 2D points

◆Output: pair p and q s.t. dist(p, q) minimum over all pairs

◆Break ties arbitrarily

◆ dist(p,q) = (p.x-q.x)2 + (p.y-q.y)2
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Can we Divide & Conquer?

◆ Like non-dominated points: sort by x-axis & divide in half

p4
p7

p8

p3

p1

p2

p6

p5

L R

Claim that doesn’t require a proof: closest pair (p, q):

1. (p, q) both in L or

2. (p, q) both in R or

3. One of (p,q) in L and one of (p,q) in R

We call this a spanning pair
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How to efficiently compute the 

minimum spanning pair?
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Observation 1

◆ Let δ = min (dist(pairL), dist(pairR))

◆ Then pairs (if closest globally) lies in the above 

2δ-wide green strip

δ δ

Q: Why?

L R→
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Example for Observation 1

p

δ δ

Q: Can p be part of a globally closest spanning pairs?

A: No. Everything in R has dist > δ to p. 

And we already have a solution with dist = δ.

L R→
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Observation 2

◆ Say, p (the lowest y valued point in strip) is in pairs

δ δ

p

◆ Then the other point can only lie in this δxδ square. 

δ

δ
Q: Why?

Has to be on the opposite 

side & can’t be > δ higher 

than p on y axis.

L R→
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Core Idea For Finding Spanning Pair

δ δ

1. Start from lowest y valued point in the strip 

2. Search the δxδ square points on the opposite side

3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth… 

L R→ 9
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Core Idea For Finding Spanning Pair

δ δ

1. Start from lowest y valued point in the strip 

2. Search the δxδ square points on the opposite side

3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth… 

L R→

Switching sides might 

complicate code…

Turns out it’s not needed to 

get good time complexity.
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A More Practical Idea

δ δ

◆ Don’t differentiate between same and opposite side

◆ Just search the 2δxδ above rectangle each time

L R→ 14
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A More Practical Idea

δ δ

◆ Don’t differentiate between same and opposite side
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Claim: inner loop performs O(1) iterations!

δ δ

S1

S2

S3

S4

Points in S

Θ(𝑛)

Time complexity?

Θ(𝑛 log 𝑛)

Θ(1)

Θ(1)
Θ(1)

? ? ?
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if |S| < 2 return −∞, −∞ , (∞, ∞)



Obs: as many as there are points in the 2δ x δ rectangle.

δ δ

Q: How many points can be in a 2δ x δ rectangle?   

A: As many as in the left δ x δ square + right δ x δ square.

L R→

For a particular 𝒊,
how many 𝒋 iterations occur?

δ

𝑺[𝒊]
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POINTS IN A 𝜹 × 𝜹 SQUARE

• Recall 𝛿 is the smallest distance between

any pair of points that are both in 𝐿 or both in 𝑅

• Note this square is entirely in 𝐿 or entirely in 𝑅

δ

δ

So, δ is the smallest distance between 

any pair of points in this square!

A point in the middle would rule out any 

other points

So, most efficient packing of points puts 

one in each corner (4 total)
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Obs: as many as there are points in the 2δ x δ rectangle.

δ δ

Q: How many points can be in a 2δ x δ rectangle?   

A: As many as in the left δ x δ square + right δ x δ square.

L R→

For a particular 𝒊,
how many 𝒋 iterations occur?

δ

𝑺[𝒊]

Can only contain 

eight points!

(technically six)
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• j-loop performs at most eight iterations

• Each does Θ 1  work, so entire j-loop does Θ(1) work!

• So entire i-loop does Θ(𝑛) work

• So, findMinSpanningPair does 𝚯(𝒏 𝐥𝐨𝐠 𝒏) work

δ δ

S1

S2

S3

S4

Points in S

Θ(𝑛)

Time complexity (unit cost)

Θ(𝑛 log 𝑛)

Θ(1)

Θ(1)
Θ(1)

? ? ?
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if |S| < 2 return −∞, −∞ , (∞, ∞)



• 𝑇′ 𝑛 : 𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑃𝑎𝑖𝑟(𝑃 1. . 𝑛 )

• 𝑇 𝑛 : 𝑅𝑒𝑐𝑢𝑟𝑠𝑒(𝑃 1. . 𝑛 )

• 𝑇′ 𝑛 = Θ 𝑛 log 𝑛 + 𝑇(𝑛)

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ(𝑛 log 𝑛)

• Lec2 notes using 

recursion trees showed 

• 𝑻 𝒏 ∈ 𝚯(𝒏 𝐥𝐨𝐠𝟐 𝒏)

• 𝑇′ 𝑛 ∈ Θ 𝑛 log 𝑛 +
Θ 𝑛 log2 𝑛

• So 𝑻′ 𝒏 ∈ 𝚯(𝒏 𝐥𝐨𝐠𝟐 𝒏)

Θ(𝑛 log 𝑛)

𝑇(𝑛)

Θ(1)

Θ 𝑛 + 𝑇
𝑛

2
Θ 𝑛 + 𝑇

𝑛

2

Θ(1)

Θ(𝑛 log 𝑛)

Θ(1)
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Time complexity (unit cost)



IMPROVING THIS RESULT FURTHER
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IMPROVING THE PREVIOUS ALGORITHM

• Sorting by 𝑦-values causes findMinSpanningPair to take 

𝑂(𝑛 log 𝑛) time instead of 𝑂(𝑛) time

• This happens in each recursive call,

and dominates the running time

• Avoid sorting 𝑃 over and over by creating

another copy of 𝑃 that is pre-sorted by 𝒚-values

• Assume for simplicity that x coordinates are unique
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Shamos’ algorithm (1975)

This selection step 

preserves the y-sort order

Observe PxL and PyL 

contain the same points

(specifically the points
with x <= xmid)

Moreover PxL is sorted by x

while PyL is sorted by y

And similarly for PxR, PyR…
No need to sort in Recurse!

27
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𝚯(𝒏) and preserves the y-sort order

Θ(𝑛)

Total Θ(𝑛) for this function
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if |S| < 2 return −∞, −∞ , (∞, ∞)



Time complexity
Θ(𝑛 log 𝑛)

Θ(𝑛)

𝑇
𝑛

2
𝑇

𝑛

2

Θ(1)
Θ(𝑛)

Θ(1)

𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ 𝑛

Merge sort recurrence…

𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

So runtime for Shamos’ 

algorithm is in 𝚯(𝒏 𝐥𝐨𝐠 𝒏)
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GREEDY

ALGORITHMS
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f(this point) = $720
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SOLVING OPTIMIZATION PROBLEMS

• Lots of techniques

• We will study greedy approaches first

• Later, dynamic programming

• Sort of like divide and conquer

but can sometimes be much more efficient than D&C

• Greedy algorithms are usually

• Very fast, but hard to prove optimality for

• Structured as follows…
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Local evaluation 

means we cannot 

consider future 
choices when 

deciding whether 

to include y in our 

solution.

We irrevocably

decide to include 

y (or not). We do 

not reconsider.

We choose the next element 

to include greedily by taking 

the y that gives the maximum 

local improvement.

This may or may not be a 

good idea…
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CORE CHARACTERISTICS 

OF GREEDY ALGORITHMS

Cannot consider how your 

current choice affects 
future choices

Cannot undo / change 

your choice
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PROBLEM:

INTERVAL SELECTION
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PROBLEM: INTERVAL SELECTION

• Input: a set 𝑨 = {𝑨𝟏, … , 𝑨𝒏} of time intervals

• Each interval 𝑨𝒊 has a start time 𝒔𝒊 and a finish time 𝒇𝒊

• Feasible solution: a subset 𝑿 of 𝑨 containing

pairwise disjoint intervals

• Output: a feasible solution of maximum size

• I.e., one that maximizes |𝑋|

Where 𝑠𝑖 and 𝑓𝑖 are 

positive integers

Chosen

Rejected

Bad solution. 

Not optimal!
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POSSIBLE GREEDY STRATEGIES

• Partial solutions

• 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑖] where each 𝑥𝑖 is an interval for the output

• Choices

• 𝒳 = 𝐴 (i.e., all intervals)

• Choice 𝑋 = { 𝑦 ∈ 𝒳 ∶ 𝑥1, … , 𝑥𝑖 , 𝑦 respects all constraints }

• i.e., where 𝑦 ∉ 𝑋 and ∀𝑥∈𝑋 disjoint(𝑦, 𝑥)

• Local evaluation function

• 𝑔 𝑦 = 𝑠𝑗 where 𝑦 = 𝐴[𝑗]

• (i.e., 𝑔 𝑦 = start time of interval 𝑦)
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POSSIBLE GREEDY STRATEGIES

FOR INTERVAL SELECTION
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STRATEGY 1: PROVING INCORRECTNESS

• Idea: find one input for which the algorithm gives

a non-optimal solution or an infeasible solution

x-axis0 2 4 6 8 10

Consider 
input:

Strategy 1

c h o s e n
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HOW ABOUT STRATEGY 2?

x-axis0 2 4 6 8 10

Consider 

input:

Strategy 2
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STRATEGY 3

x-axis0 2 4 6 8 10

x-axis0 2 4 6 8 10

𝐴[1] 𝐴[2]

𝐴[3]

𝐴[1] 𝐴[3]

𝐴[2]
Where is our local evaluation 

function 𝑔 in this code?
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STRATEGY 3
Time complexity:

Sort + one pass

∈ Θ(𝑛 log 𝑛)

How to prove this is correct?

(I.e., how can we show the returned 

solution is both feasible and optimal?)

Feasibility? Easy!

We always choose an interval that starts

after all other chosen intervals end

Optimality? Harder…
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GREEDY CORRECTNESS PROOFS

• Want to prove: greedy solution 𝑋 is correct (feasible & optimal)

• Usually show feasibility directly and optimality by contradiction:

• Suppose solution 𝑂 is better than 𝑋

• Show this necessarily leads to a contradiction

• Two broad strategies for deriving this contradiction:

1. Greedy stays ahead: show every choice in 𝑋 is

“at least as good” as the corresponding choice in 𝑂

2. Exchange: show 𝑂 can be improved by replacing some 

choice in 𝑂 with a choice in 𝑋
Let’s demonstrate approach #1 

(next time)
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