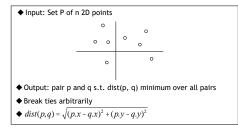


THE CLOSEST PAIR PROBLEM

THE CLOSEST PAIR PROBLEM



CS 341: ALGORITHMS Lecture 5: finishing D&C, greedy algorithms I

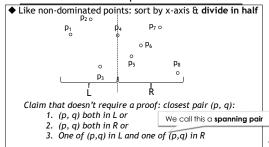
Readings: see website

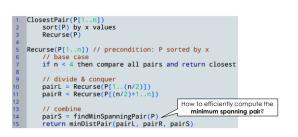
Trevor Brown https://student.cs.uwaterloo.ca/~cs341 trevor.brown@uwaterloo.ca

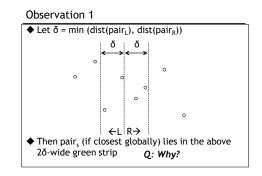
1

3

5



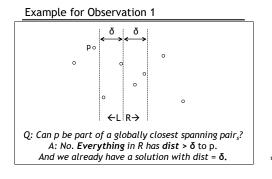


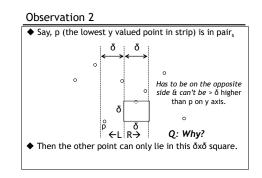


1

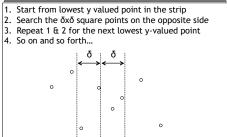
.

12



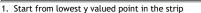


Core Idea For Finding Spanning Pair

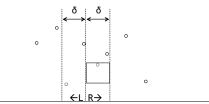


 $R \rightarrow$

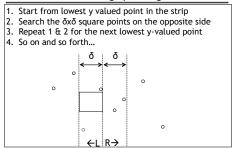
Core Idea For Finding Spanning Pair



- 2. Search the $\delta x \delta$ square points on the opposite side
- 3. Repeat 1 & 2 for the next lowest y-valued point

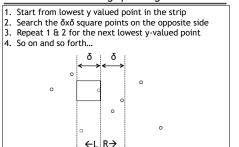


Core Idea For Finding Spanning Pair



11

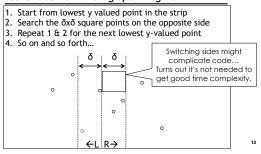
Core Idea For Finding Spanning Pair

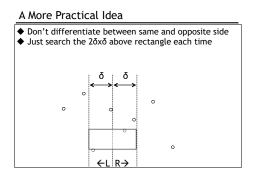


16

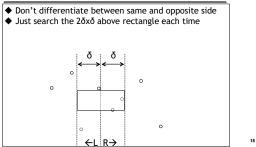
18

Core Idea For Finding Spanning Pair

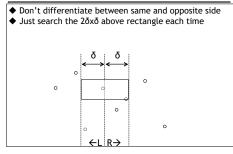




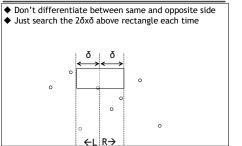
A More Practical Idea



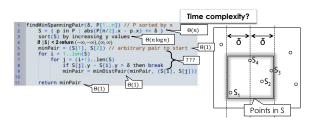
A More Practical Idea



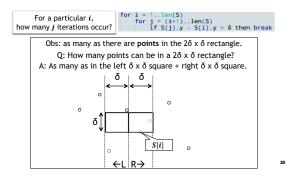
A More Practical Idea







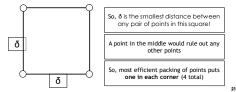
Claim: inner loop performs O(1) iterations!

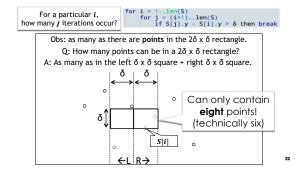


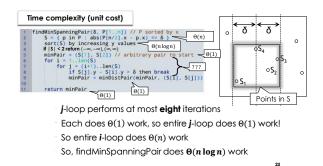
POINTS IN A $\delta \times \delta$ SQUARE

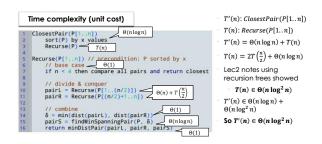
Recall δ is the smallest distance between any pair of points that are both in *L* or both in *R*

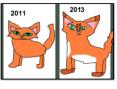
Note this square is entirely in L or entirely in R









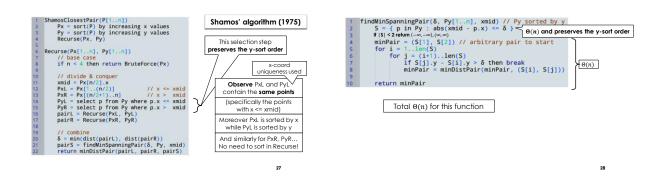


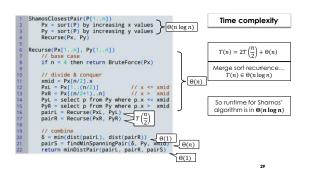
IMPROVING THIS RESULT FURTHER

25

IMPROVING THE PREVIOUS ALGORITHM

- Sorting by y-values causes findMinSpanningPair to take $O(n \log n)$ time instead of O(n) time
- This happens in each recursive call, and dominates the running time
- Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values
- Assume for simplicity that x coordinates are unique





ALGORITHMS

Optimization Problems

 $3x_1 + 2x_2 = 12$ m: Given a problem instance, find a feasible solution that maximizes (or minimizes) a certain objective function. +2 x 5 n Instance: Input for the specified problem. $|\mathbf{x}_i + 2\mathbf{x}_i| \leq 1$ $|\mathbf{x}_i + 3\mathbf{x}_i| \geq 3$ ts: Requirements that must be satisfied by any feasible solution. Feasible Solution: For any problem instance I, feasible(I) is the set of all outputs (i.e., solutions) for the instance I that satisfy the given constraints. **n**: A function $f : feasible(I) \to \mathbb{R}^+ \cup \{0\}$. We often f(this point) = \$720 think of f as being a profit or a cost function. al Solution: A feasible solution $X \in feasible(I)$ such that the profit f(X) is maximized (or the cost f(X) is minimized).

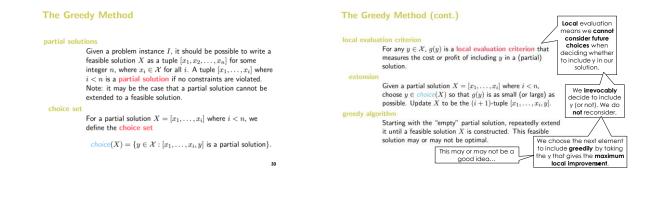
SOLVING OPTIMIZATION PROBLEMS

Lots of techniques

- We will study greedy approaches first
- Later, dynamic programming

Sort of like divide and conquer but can sometimes be much more efficient than D&C

- Greedy algorithms are usually
- Very fast, but hard to prove optimality for
- Structured as follows...



31

35

CORE CHARACTERISTICS

Cannot consider how you

values of the function g).

For certain greedy algorithms, it is possible to prove that they always yield optimal solutions. However, these proofs can be tricky and complicated!

95% CONFIDENCE INTERVAL? **WHY NOT 100%** PROBLEM: **CONFIDENCE? INTERVAL SELECTION**

40

PROBLEM: INTERVAL SELECTION

Where s_i and f_i are positive integers

- Input: a set $A = \{A_1, ..., An\}$ of time intervals Each interval A_i has a start time s_i and a finish time f_i
- Feasible solution: a subset X of A containing pairwise disjoint intervals
- Output: a feasible solution of maximum size

I.e., one that maximizes |X|

Chosen		Bad solution. Not optimal!
Rejected		

37

39

41

POSSIBLE GREEDY STRATEGIES

Sort the intervals in increasing order of starting times. At any stage, choose the earliest starting interval that is disjoint from all previously chosen intervals

previously chosen interv

Partial solutions

- $X = [x_1, x_2, \dots, x_i]$ where each x_i is an interval for the output **Choices**
 - $\mathcal{X} = A$ (i.e., **all** intervals)
 - C = M(101, an interval)
 - $\begin{aligned} & \text{Choice}(X) = \{ \, y \in \mathcal{X} : [x_1, \dots, x_i, y] \text{ respects all constraints } \} \\ & \text{ i.e., where } y \notin X \text{ and } \forall_{x \in X} \text{ disjoint}(y, x) \end{aligned}$

Local evaluation function

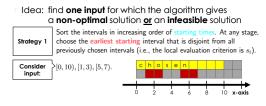
- $g(y) = s_j$ where y = A[j]
 - (i.e., g(y) =start time of interval y)

POSSIBLE GREEDY STRATEGIES FOR INTERVAL SELECTION

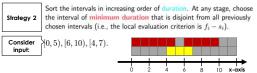
- Sort the intervals in increasing order of starting times. At any stage, choose the earliest starting interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is s_i).
- ² Sort the intervals in increasing order of duration. At any stage, choose the interval of minimum duration that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is $f_i s_i$).
- ³ Sort the intervals in increasing order of finishing times. At any stage, choose the earliest finishing interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is f_i).

Does one of these strategies yield a correct greedy algorithm?

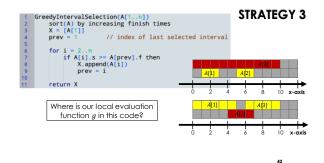
STRATEGY 1: PROVING INCORRECTNESS



HOW ABOUT STRATEGY 2?



We will show that Strategy 3 (sort in increasing order of finishing times) always yields the optimal solution.



1 2	<pre>GreedyIntervalSelection(A[1n]) sort(A) by increasing finish ti</pre>	mes		STRATEGY 3
3	X = [A[1]]			Time complexity:
4	<pre>prev = 1 // index of las</pre>	st selected inte	erval	Sort + one pass
6 7 8 9	<pre>for i = 2n if A[i].s >= A[prev].f ther X.append(A[i]) prev = i</pre>	1		$\in \Theta(n \log n)$
11	return X			
	How to prove this is correct?			
	How to prove this is correct? e., how can we show the returned ution is both feasible and optimal ?)	We always ch	oose a	Y? Easy! n interval that starts sen intervals end
	e., how can we show the returned	We always ch	oose a 1er cho	n interval that starts

GREEDY CORRECTNESS PROOFS

Want to prove: greedy solution X is correct (feasible & optimal)

 $\underline{\textit{Usually}}$ show feasibility directly and optimality by contradiction:

- \circ Suppose solution O is better than X
- Show this necessarily leads to a contradiction

Two broad strategies for **deriving** this contradiction:

- Greedy stays ahead: show every choice in X is "at least as good" as the corresponding choice in 0
- 2 Exchange: show 0 can be improved by replacing some choice in 0 with a choice in X

 Let's demonstrate approach #1 (next time)

.1 11/1/07